Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100206
Sajid Naveed , Mujtaba Husnain
Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.
{"title":"A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM","authors":"Sajid Naveed , Mujtaba Husnain","doi":"10.1016/j.ibmed.2025.100206","DOIUrl":"10.1016/j.ibmed.2025.100206","url":null,"abstract":"<div><div>Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100206"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ensemble models as part of federated learning leverage the ability of individual models to learn unique patterns from the training dataset to make more efficient predictions than single predicting systems. This study aggregates the output of four best-performing EfficientNet models to arrive at the final heart failure severity prediction through federated learning. The seven variants of EfficientNet models (B0-B7) learn the features from the cardiac magnetic resonance images that are most relevant to heart failure severity. Further, the performance of every model variant has been analysed with three different optimizers i.e. Adam, SGD, and RMSprop. It has been observed that the developed ensemble prediction system provides an improved overall testing accuracy of 0.95. It is also worthy to note that the ensemble prediction has yielded significant improvement in the prediction of individual classes which is evident from sensitivity measure of 0.95, 0.88, 1.00, 0.93, and 0.98 for hyperdynamic, mild, moderate, normal and severe classes respectively. It is obvious from these results that the proposed ensemble EfficientNet prediction system would assist the radiologist in better interpretation of cardiac magnetic resonance images. This in turn would benefit the cardiologist in understanding the HF progress and planning effective therapeutic intervention.
{"title":"An intelligent ensemble EfficientNet prediction system for interpretations of cardiac magnetic resonance images in heart failure severity diagnosis","authors":"Muthunayagam Muthulakshmi , Kotteswaran Venkatesan , Balaji Prasanalakshmi , Rahayu Syarifah Bahiyah , Vijayakumar Divya","doi":"10.1016/j.ibmed.2025.100218","DOIUrl":"10.1016/j.ibmed.2025.100218","url":null,"abstract":"<div><div>Ensemble models as part of federated learning leverage the ability of individual models to learn unique patterns from the training dataset to make more efficient predictions than single predicting systems. This study aggregates the output of four best-performing EfficientNet models to arrive at the final heart failure severity prediction through federated learning. The seven variants of EfficientNet models (B0-B7) learn the features from the cardiac magnetic resonance images that are most relevant to heart failure severity. Further, the performance of every model variant has been analysed with three different optimizers i.e. Adam, SGD, and RMSprop. It has been observed that the developed ensemble prediction system provides an improved overall testing accuracy of 0.95. It is also worthy to note that the ensemble prediction has yielded significant improvement in the prediction of individual classes which is evident from sensitivity measure of 0.95, 0.88, 1.00, 0.93, and 0.98 for hyperdynamic, mild, moderate, normal and severe classes respectively. It is obvious from these results that the proposed ensemble EfficientNet prediction system would assist the radiologist in better interpretation of cardiac magnetic resonance images. This in turn would benefit the cardiologist in understanding the HF progress and planning effective therapeutic intervention.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100218"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100204
Abrar Mohammad , Haneen Awad , Huthaifa I. Ashqar
Intracytoplasmic Sperm Injection (ICSI) is widely used to treat almost all forms of male infertility and to overcome fertilization failure. While ICSI is a powerful procedure, it's also considered quite expensive, which means couples and clinicians have to make informed decisions about whether or not to proceed with this treatment. About 10,036 patient records, 46 attribute sets, and one label column that indicates the success or failure of pregnancy after the ICSI treatment were used to conduct this research. The data were gathered from Razan infertility center in Palestine. The ICSI dataset contains only clinical features that are known prior to deciding on ICSI treatment. The dataset contains 46 features, 5 of the independent features have categorical values, 12 are numerical, 3 are string, and 26 are binary. Based on the results, RF algorithm achieved the highest AUC score of 0.97, followed by the NN with a score of 0.95, and the RIMARC algorithm with a score of 0.92. AUC is a widely used metric for evaluating the performance of binary classification models. Therefore, judging by the AUC scores, it appears that RF algorithm outperformed the other two algorithms in terms of the evaluated metric. The method employed in our analysis demonstrates considerable promise, practicality, and generalizability, driving advancements in fertility treatments and ultimately improving the chances of couples achieving their desired family goals.
{"title":"Comparing machine learning approaches for predicting the success of ICSI treatment: A study on clinical applications","authors":"Abrar Mohammad , Haneen Awad , Huthaifa I. Ashqar","doi":"10.1016/j.ibmed.2025.100204","DOIUrl":"10.1016/j.ibmed.2025.100204","url":null,"abstract":"<div><div>Intracytoplasmic Sperm Injection (ICSI) is widely used to treat almost all forms of male infertility and to overcome fertilization failure. While ICSI is a powerful procedure, it's also considered quite expensive, which means couples and clinicians have to make informed decisions about whether or not to proceed with this treatment. About 10,036 patient records, 46 attribute sets, and one label column that indicates the success or failure of pregnancy after the ICSI treatment were used to conduct this research. The data were gathered from Razan infertility center in Palestine. The ICSI dataset contains only clinical features that are known prior to deciding on ICSI treatment. The dataset contains 46 features, 5 of the independent features have categorical values, 12 are numerical, 3 are string, and 26 are binary. Based on the results, RF algorithm achieved the highest AUC score of 0.97, followed by the NN with a score of 0.95, and the RIMARC algorithm with a score of 0.92. AUC is a widely used metric for evaluating the performance of binary classification models. Therefore, judging by the AUC scores, it appears that RF algorithm outperformed the other two algorithms in terms of the evaluated metric. The method employed in our analysis demonstrates considerable promise, practicality, and generalizability, driving advancements in fertility treatments and ultimately improving the chances of couples achieving their desired family goals.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100209
Geethu S. Kumar, B. Ankayarkanni
Stress detection is crucial for monitoring mental health and preventing stress-related disorders. Real-time stress detection shows promise with photoplethysmography (PPG), a non-invasive optical technology that analyzes blood volume changes in the microvascular bed of tissue. This study introduces a novel hybrid model, Conv-XGBoost, which combines Convolutional Neural Networks (CNN) and eXtreme Gradient Boosting (XGBoost) to improve the accuracy and robustness of stress detection from PPG signals. The Conv-XGBoost model utilizes the feature extraction capabilities of CNNs to process PPG signals, converting them into spectrograms that capture the time–frequency characteristics of data. The XGBoost component is essential for handling the complex, high-dimensional feature sets provided by the CNN, enhancing prediction capabilities through gradient boosting. This customized approach addresses the limitations of traditional machine learning algorithms in dealing with hand-crafted features. The Pulse Rate Variability-based Photoplethysmography dataset was chosen for training and validation. The outcomes of the experiments revealed that the proposed Conv-XGBoost model outperformed more conventional machine learning techniques with a training accuracy of 98.87%, validation accuracy of 93.28% and an F1-score of 97.25%. Additionally, the model demonstrated superior resilience to noise and variability in PPG signals, common in real-world scenarios. This study underscores how hybrid models can improve stress detection and sets the stage for future research integrating physiological signals with advanced deep learning techniques.
{"title":"Leveraging Conv-XGBoost algorithm for perceived mental stress detection using Photoplethysmography","authors":"Geethu S. Kumar, B. Ankayarkanni","doi":"10.1016/j.ibmed.2025.100209","DOIUrl":"10.1016/j.ibmed.2025.100209","url":null,"abstract":"<div><div>Stress detection is crucial for monitoring mental health and preventing stress-related disorders. Real-time stress detection shows promise with photoplethysmography (PPG), a non-invasive optical technology that analyzes blood volume changes in the microvascular bed of tissue. This study introduces a novel hybrid model, Conv-XGBoost, which combines Convolutional Neural Networks (CNN) and eXtreme Gradient Boosting (XGBoost) to improve the accuracy and robustness of stress detection from PPG signals. The Conv-XGBoost model utilizes the feature extraction capabilities of CNNs to process PPG signals, converting them into spectrograms that capture the time–frequency characteristics of data. The XGBoost component is essential for handling the complex, high-dimensional feature sets provided by the CNN, enhancing prediction capabilities through gradient boosting. This customized approach addresses the limitations of traditional machine learning algorithms in dealing with hand-crafted features. The Pulse Rate Variability-based Photoplethysmography dataset was chosen for training and validation. The outcomes of the experiments revealed that the proposed Conv-XGBoost model outperformed more conventional machine learning techniques with a training accuracy of 98.87%, validation accuracy of 93.28% and an F1-score of 97.25%. Additionally, the model demonstrated superior resilience to noise and variability in PPG signals, common in real-world scenarios. This study underscores how hybrid models can improve stress detection and sets the stage for future research integrating physiological signals with advanced deep learning techniques.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100209"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143377342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100230
Shujaat Ali Zaidi , Varin Chouvatut , Chailert Phongnarisorn , Dussadee Praserttitipong
Endometriosis, a complex gynecological condition, presents significant diagnostic challenges due to the subtle and varied appearance of its lesions. This study leverages deep learning to classify endometriosis lesions in laparoscopic images using the Gynecologic Laparoscopy Endometriosis Dataset (GLENDA). Three deep learning models VGG19, ResNet50, and Inception V3 were trained and evaluated with 5-fold cross-validation to enhance generalizability and mitigate overfitting. Robust data augmentation techniques were applied to address dataset limitations. The models were tasked with classifying lesions into pathological and nonpathological categories. Experimental results demonstrated strong performance, with VGG19, ResNet50, and Inception V3 achieving accuracies of 0.89, 0.91, and 0.93, respectively. Inception V3 outperformed the others, highlighting its efficacy for this task. The findings underscore the potential of deep learning in improving endometriosis diagnosis, offering a reliable tool for clinicians. This study contributes to the growing field of AI-driven medical image analysis, emphasizing the value of cross-validation and data augmentation in enhancing model performance for specialized medical applications.
{"title":"Deep learning based detection of endometriosis lesions in laparoscopic images with 5-fold cross-validation","authors":"Shujaat Ali Zaidi , Varin Chouvatut , Chailert Phongnarisorn , Dussadee Praserttitipong","doi":"10.1016/j.ibmed.2025.100230","DOIUrl":"10.1016/j.ibmed.2025.100230","url":null,"abstract":"<div><div>Endometriosis, a complex gynecological condition, presents significant diagnostic challenges due to the subtle and varied appearance of its lesions. This study leverages deep learning to classify endometriosis lesions in laparoscopic images using the Gynecologic Laparoscopy Endometriosis Dataset (GLENDA). Three deep learning models VGG19, ResNet50, and Inception V3 were trained and evaluated with 5-fold cross-validation to enhance generalizability and mitigate overfitting. Robust data augmentation techniques were applied to address dataset limitations. The models were tasked with classifying lesions into pathological and nonpathological categories. Experimental results demonstrated strong performance, with VGG19, ResNet50, and Inception V3 achieving accuracies of 0.89, 0.91, and 0.93, respectively. Inception V3 outperformed the others, highlighting its efficacy for this task. The findings underscore the potential of deep learning in improving endometriosis diagnosis, offering a reliable tool for clinicians. This study contributes to the growing field of AI-driven medical image analysis, emphasizing the value of cross-validation and data augmentation in enhancing model performance for specialized medical applications.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100230"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143621027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100199
Bernada E. Sianga , Maurice C. Mbago , Amina S. Msengwa
Cardiovascular Diseases (CVDs) are the major cause of morbidity, disability, and mortality worldwide and are the most life-threatening diseases. Early detection and appropriate action can significantly reduce the effects and complications of CVD. Prediction of the likelihood that an individual can develop CVD adverse outcomes is essential. Machine learning methods are used to predict the risk of CVD incidences. Optimal model parameters were obtained using the grid search and randomized search methods. A hyperparameter tuning method with the highest accuracy was used to find the optimal parameters for the six algorithms used in this study. Two experiments were deployed: the first was training and testing the CVD dataset using hyperparameterized ML algorithms excluding geographical features, and the second included geographical features. The geographical features are air humidity, temperature and education status of a location. The performances of the two experiments were compared using classification metrics. The findings revealed that the performance of the second experiment outperformed the first experiment. XGBoost achieved the highest accuracy of 95.24 %, followed by the decision tree 93.87 % and support vector machine 92.87 % when geographical features were included (second experiment). Including geographical risk factors in predicting CVD is crucial as they contribute to the probability of developing CVD incidences.
{"title":"Predicting the prevalence of cardiovascular diseases using machine learning algorithms","authors":"Bernada E. Sianga , Maurice C. Mbago , Amina S. Msengwa","doi":"10.1016/j.ibmed.2025.100199","DOIUrl":"10.1016/j.ibmed.2025.100199","url":null,"abstract":"<div><div>Cardiovascular Diseases (CVDs) are the major cause of morbidity, disability, and mortality worldwide and are the most life-threatening diseases. Early detection and appropriate action can significantly reduce the effects and complications of CVD. Prediction of the likelihood that an individual can develop CVD adverse outcomes is essential. Machine learning methods are used to predict the risk of CVD incidences. Optimal model parameters were obtained using the grid search and randomized search methods. A hyperparameter tuning method with the highest accuracy was used to find the optimal parameters for the six algorithms used in this study. Two experiments were deployed: the first was training and testing the CVD dataset using hyperparameterized ML algorithms excluding geographical features, and the second included geographical features. The geographical features are air humidity, temperature and education status of a location. The performances of the two experiments were compared using classification metrics. The findings revealed that the performance of the second experiment outperformed the first experiment. XGBoost achieved the highest accuracy of 95.24 %, followed by the decision tree 93.87 % and support vector machine 92.87 % when geographical features were included (second experiment). Including geographical risk factors in predicting CVD is crucial as they contribute to the probability of developing CVD incidences.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100199"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100198
Peace Ezeobi Dennis , Angella Musiimenta , William Wasswa , Stella Kyoyagala
Introduction
Neonatal sepsis is a global challenge that contributes significantly to neonatal morbidity and mortality. The current diagnostic methods depend on conventional culture methods, a procedure that takes time and leads to delays in making timely treatment decisions. This study proposes a machine learning algorithm utilizing electronic medical record (EMR) data from Mbarara Regional Referral Hospital (MRRH) to enhance early detection and treatment of neonatal sepsis.
Methods
We performed a retrospective study on a dataset of neonates hospitalized for at least 48 h in the Neonatal Intensive Care Unit (NICU) at MRRH between October 2015 to September 2019 who received at least one sepsis evaluation. 482 records of neonates met the inclusion criteria and the dataset comprises 38 neonatal sepsis screening parameters. The study considered two outcomes for sepsis evaluations: culture-positive if a blood culture was positive, and clinically positive if cultures were negative but antibiotics were administered for at least 120 h. We implemented k-fold cross-validation with k set to 10 to guarantee robust training and testing of the models. Seven machine learning models were trained to classify inputs as sepsis positive or negative, and their performance was compared with physician diagnoses.
Results
The results of this study show that the proposed algorithm, combining maternal risk factors, neonatal clinical signs, and laboratory tests (the algorithm demonstrated a sensitivity and specificity of at least 95 %) outperformed the physician diagnosis (Sensitivity = 89 %, Specificity = 11 %). SVM model with radial basis function, polynomial kernels, and DT model (with the highest AUROC values of 98 %) performed better than the other models.
Conclusions
The study shows that the combination of maternal risk factors, neonatal clinical signs, and laboratory tests can help improve the prediction of neonatal sepsis. Further research is warranted to assess the potential performance improvements and clinical efficacy in a prospective trial.
{"title":"A neonatal sepsis prediction algorithm using electronic medical record data from Mbarara Regional Referral Hospital","authors":"Peace Ezeobi Dennis , Angella Musiimenta , William Wasswa , Stella Kyoyagala","doi":"10.1016/j.ibmed.2025.100198","DOIUrl":"10.1016/j.ibmed.2025.100198","url":null,"abstract":"<div><h3>Introduction</h3><div>Neonatal sepsis is a global challenge that contributes significantly to neonatal morbidity and mortality. The current diagnostic methods depend on conventional culture methods, a procedure that takes time and leads to delays in making timely treatment decisions. This study proposes a machine learning algorithm utilizing electronic medical record (EMR) data from Mbarara Regional Referral Hospital (MRRH) to enhance early detection and treatment of neonatal sepsis.</div></div><div><h3>Methods</h3><div>We performed a retrospective study on a dataset of neonates hospitalized for at least 48 h in the Neonatal Intensive Care Unit (NICU) at MRRH between October 2015 to September 2019 who received at least one sepsis evaluation. 482 records of neonates met the inclusion criteria and the dataset comprises 38 neonatal sepsis screening parameters. The study considered two outcomes for sepsis evaluations: culture-positive if a blood culture was positive, and clinically positive if cultures were negative but antibiotics were administered for at least 120 h. We implemented k-fold cross-validation with k set to 10 to guarantee robust training and testing of the models. Seven machine learning models were trained to classify inputs as sepsis positive or negative, and their performance was compared with physician diagnoses.</div></div><div><h3>Results</h3><div>The results of this study show that the proposed algorithm, combining maternal risk factors, neonatal clinical signs, and laboratory tests (the algorithm demonstrated a sensitivity and specificity of at least 95 %) outperformed the physician diagnosis (Sensitivity = 89 %, Specificity = 11 %). SVM model with radial basis function, polynomial kernels, and DT model (with the highest AUROC values of 98 %) performed better than the other models.</div></div><div><h3>Conclusions</h3><div>The study shows that the combination of maternal risk factors, neonatal clinical signs, and laboratory tests can help improve the prediction of neonatal sepsis. Further research is warranted to assess the potential performance improvements and clinical efficacy in a prospective trial.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100198"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2024.100188
Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan
The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.
{"title":"Deep learning-based approach to diagnose lung cancer using CT-scan images","authors":"Mohammad Q. Shatnawi, Qusai Abuein, Romesaa Al-Quraan","doi":"10.1016/j.ibmed.2024.100188","DOIUrl":"10.1016/j.ibmed.2024.100188","url":null,"abstract":"<div><div>The work in this research focuses on the automatic classification and prediction of lung cancer using computed tomography (CT) scans, employing Deep Learning (DL) strategies, specifically Enhanced Convolutional Neural Networks (CNNs), to enable rapid and accurate image analysis. This research designed and developed pre-trained models, including ConvNeXtSmall, VGG16, ResNet50, InceptionV3, and EfficientNetB0, to classify lung cancer. The dataset was divided into four classes, consisting of 338 images of adenocarcinoma, 187 images of large cell carcinoma, 260 images of squamous cell carcinoma, and 215 normal images. Notably, The Enhanced CNN model achieved an unprecedented testing accuracy of 100 %, outperforming all other models, which included ConvNeXt at 87 %, VGG16 at 99 %, ResNet50 at 94.5 %, InceptionV3 at 76.9 %, and EfficientNetB0 at 97.9 %. The study of this research is considered the first one that hits 100 % testing accuracy with an Enhanced CNN, demonstrating significant advancements in lung cancer detection through the application of sophisticated image enhancement techniques and innovative model architectures. This highlights the potential of Enhanced CNN models in transforming lung cancer diagnostics and emphasizes the importance of integrating advanced image processing techniques into clinical practice.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100188"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic Obstructive Pulmonary Disease (COPD) has been presenting highly significant global health challenges for many decades. Equally, it is important to slow down this disease's ever-increasingly challenging impact on hospital patient loads. It has become necessary, if not critical, to capitalise on existing knowledge of advanced artificial intelligence to achieve the early detection of COPD and advance personalised care of COPD patients from their homes. The use of machine learning and reaching out on the classification of the multiple types of COPD severities effectively and at progressively acceptable levels of confidence is of paramount importance. Indeed, this capability will feed into highly effective personalised care of COPD patients from their homes while significantly improving their quality of life.
Auscultation lung sound analysis has emerged as a valuable, non-invasive, and cost-effective remote diagnostic tool of the future for respiratory conditions such as COPD. This research paper introduces a novel machine learning-based approach for classifying multiple COPD severities through the analysis of lung sound data streams. Leveraging two open datasets with diverse acoustic characteristics and clinical manifestations, the research study involves the transformation and decomposition of lung sound data matrices into their eigenspace representation in order to capture key features for machine learning and detection. Early eigenvalue spectra analyses were also performed to discover their distinct manifestations under the multiple established COPD severities. This has led us into projecting our experimental data matrices into their eigenspace with the use of the manifested data features prior to the machine learning process. This was followed by various methods of machine classification of COPD severities successfully. Support Vector Classifiers, Logistic Regression, Random Forests and Naive Bayes Classifiers were deployed. Systematic classifier performance metrics were also adopted; they showed early promising classification accuracies beyond 75 % for distinguishing COPD severities.
This research benchmark contributes to computer-aided medical diagnosis and supports the integration of auscultation lung sound analyses into COPD assessment protocols for individualised patient care and treatment. Future work involves the acquisition of larger volumes of lung sound data while also exploring multi-modal sensing of COPD patients for heterogeneous data fusion to advance COPD severity classification performance.
{"title":"Features and eigenspectral densities analyses for machine learning and classification of severities in chronic obstructive pulmonary diseases","authors":"Timothy Albiges, Zoheir Sabeur, Banafshe Arbab-Zavar","doi":"10.1016/j.ibmed.2025.100217","DOIUrl":"10.1016/j.ibmed.2025.100217","url":null,"abstract":"<div><div>Chronic Obstructive Pulmonary Disease (COPD) has been presenting highly significant global health challenges for many decades. Equally, it is important to slow down this disease's ever-increasingly challenging impact on hospital patient loads. It has become necessary, if not critical, to capitalise on existing knowledge of advanced artificial intelligence to achieve the early detection of COPD and advance personalised care of COPD patients from their homes. The use of machine learning and reaching out on the classification of the multiple types of COPD severities effectively and at progressively acceptable levels of confidence is of paramount importance. Indeed, this capability will feed into highly effective personalised care of COPD patients from their homes while significantly improving their quality of life.</div><div>Auscultation lung sound analysis has emerged as a valuable, non-invasive, and cost-effective remote diagnostic tool of the future for respiratory conditions such as COPD. This research paper introduces a novel machine learning-based approach for classifying multiple COPD severities through the analysis of lung sound data streams. Leveraging two open datasets with diverse acoustic characteristics and clinical manifestations, the research study involves the transformation and decomposition of lung sound data matrices into their eigenspace representation in order to capture key features for machine learning and detection. Early eigenvalue spectra analyses were also performed to discover their distinct manifestations under the multiple established COPD severities. This has led us into projecting our experimental data matrices into their eigenspace with the use of the manifested data features prior to the machine learning process. This was followed by various methods of machine classification of COPD severities successfully. Support Vector Classifiers, Logistic Regression, Random Forests and Naive Bayes Classifiers were deployed. Systematic classifier performance metrics were also adopted; they showed early promising classification accuracies beyond 75 % for distinguishing COPD severities.</div><div>This research benchmark contributes to computer-aided medical diagnosis and supports the integration of auscultation lung sound analyses into COPD assessment protocols for individualised patient care and treatment. Future work involves the acquisition of larger volumes of lung sound data while also exploring multi-modal sensing of COPD patients for heterogeneous data fusion to advance COPD severity classification performance.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100217"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.ibmed.2025.100229
Khaled M. Toffaha , Mecit Can Emre Simsekler , Mohammed Atif Omar , Imad ElKebbi
Patient no-shows for scheduled medical appointments pose significant challenges to healthcare systems, resulting in wasted resources, increased costs, and disrupted continuity of care. This comprehensive review examines state-of-the-art machine learning (ML) approaches for predicting patient no-shows in outpatient settings, analyzing 52 publications from 2010 to 2025.
The study reveals significant advancements in the field, with Logistic Regression (LR) as the most commonly used model in 68% of the studies. Tree-based models, ensemble methods, and deep learning techniques have gained traction in recent years, reflecting the field’s evolution. The best-performing models achieved Area Under the Curve (AUC) scores between 0.75 and 0.95, with accuracy ranging from 52% to 99.44%. Methodologically, researchers addressed common challenges such as class imbalance using various sampling techniques and employed a wide range of feature selection methods to improve model efficiency. The review also highlighted the importance of considering temporal factors and the context-dependent nature of no-show behavior across different healthcare settings.
Using the ITPOSMO framework (Information, Technology, Processes, Objectives, Staffing, Management, and Other Resources), the study identified several gaps in current ML approaches. Key challenges include data quality and completeness, model interpretability, and integration with existing healthcare systems. Future research directions include improving data collection methods, incorporating organizational factors, ensuring ethical implementation, and developing standardized approaches for handling data imbalance. The review also suggests exploring new data sources, utilizing ML algorithms to analyze patient behavior patterns, and using transfer learning techniques to adapt models across different healthcare facilities.
By addressing these challenges, healthcare providers can leverage ML to improve resource allocation, enhance patient care quality, and advance predictive analytics in healthcare. This comprehensive review underscores the potential of ML in predicting no-shows while acknowledging the complexities and challenges in its practical implementation.
病人爽约给医疗保健系统带来了巨大挑战,导致资源浪费、成本增加和护理连续性中断。本综述分析了 2010 年至 2025 年间发表的 52 篇论文,探讨了用于预测门诊患者爽约情况的最先进的机器学习(ML)方法。研究显示,该领域取得了重大进展,在 68% 的研究中,逻辑回归(LR)是最常用的模型。基于树的模型、集合方法和深度学习技术在近几年得到了广泛应用,反映了该领域的发展。表现最好的模型的曲线下面积(AUC)得分在 0.75 到 0.95 之间,准确率在 52% 到 99.44% 之间。在方法上,研究人员利用各种采样技术解决了类不平衡等常见难题,并采用了多种特征选择方法来提高模型效率。该综述还强调了考虑时间因素和不同医疗环境中缺席行为的环境依赖性的重要性。利用 ITPOSMO 框架(信息、技术、流程、目标、人员配备、管理和其他资源),该研究确定了当前 ML 方法中的几个差距。主要挑战包括数据质量和完整性、模型可解释性以及与现有医疗保健系统的集成。未来的研究方向包括改进数据收集方法、纳入组织因素、确保符合道德规范的实施,以及开发处理数据不平衡的标准化方法。该综述还建议探索新的数据源,利用 ML 算法分析患者行为模式,并使用迁移学习技术在不同的医疗机构间调整模型。通过应对这些挑战,医疗机构可以利用 ML 改善资源分配,提高患者护理质量,并推进医疗领域的预测分析。这篇全面的综述强调了人工智能在预测病例缺席方面的潜力,同时也承认了其实际应用中的复杂性和挑战。
{"title":"Predicting patient no-shows using machine learning: A comprehensive review and future research agenda","authors":"Khaled M. Toffaha , Mecit Can Emre Simsekler , Mohammed Atif Omar , Imad ElKebbi","doi":"10.1016/j.ibmed.2025.100229","DOIUrl":"10.1016/j.ibmed.2025.100229","url":null,"abstract":"<div><div>Patient no-shows for scheduled medical appointments pose significant challenges to healthcare systems, resulting in wasted resources, increased costs, and disrupted continuity of care. This comprehensive review examines state-of-the-art machine learning (ML) approaches for predicting patient no-shows in outpatient settings, analyzing 52 publications from 2010 to 2025.</div><div>The study reveals significant advancements in the field, with Logistic Regression (LR) as the most commonly used model in 68% of the studies. Tree-based models, ensemble methods, and deep learning techniques have gained traction in recent years, reflecting the field’s evolution. The best-performing models achieved Area Under the Curve (AUC) scores between 0.75 and 0.95, with accuracy ranging from 52% to 99.44%. Methodologically, researchers addressed common challenges such as class imbalance using various sampling techniques and employed a wide range of feature selection methods to improve model efficiency. The review also highlighted the importance of considering temporal factors and the context-dependent nature of no-show behavior across different healthcare settings.</div><div>Using the ITPOSMO framework (Information, Technology, Processes, Objectives, Staffing, Management, and Other Resources), the study identified several gaps in current ML approaches. Key challenges include data quality and completeness, model interpretability, and integration with existing healthcare systems. Future research directions include improving data collection methods, incorporating organizational factors, ensuring ethical implementation, and developing standardized approaches for handling data imbalance. The review also suggests exploring new data sources, utilizing ML algorithms to analyze patient behavior patterns, and using transfer learning techniques to adapt models across different healthcare facilities.</div><div>By addressing these challenges, healthcare providers can leverage ML to improve resource allocation, enhance patient care quality, and advance predictive analytics in healthcare. This comprehensive review underscores the potential of ML in predicting no-shows while acknowledging the complexities and challenges in its practical implementation.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100229"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}