Background: Preterm infants are at risk for severe infections due to their immature immune systems. Factors such as early life pain/stress experiences and feeding may influence immune activation and maturation of immune systems. However, the underlying mechanism remains unclear. Fecal calprotectin (FCP) is a noninvasive surrogate biomarker of mucosal inflammation in the gastrointestinal tract and has been used in detecting intestinal inflammation in specific pediatric gastrointestinal disorders.
Objective: To describe the longitudinal trajectory of FCP levels in preterm infants and investigate the contributing factors that are associated with FCP levels.
Design: A longitudinal study design was used.
Settings: Preterm infants were recruited from 2 neonatal intensive care units (NICU) of a children's medical center in the North-eastern US.
Methods: Preterm infants were followed during their first 4 weeks of NICU hospitalization. Stool samples were collected twice per week to quantify the FCP levels. Cumulative pain/stress experiences and feeding types were measured daily. A linear mixed-effect model was used to examine the associations between FCP levels and demographic and clinical characteristics, cumulative pain/stress, and feeding over time.
Results: Forty-nine preterm infants were included in the study. Infants' FCP levels varied largely with a mean of 268.7±261.3 µg/g and increased over time. Preterm infants experienced an average of 7.5±5.0 acute painful procedures and 15.3±20.8 hours of chronic painful procedures per day during their NICU stay. The mean percentage of mother's own milk increased from the first week (57.1±36.5%) to the fourth week (60.7±38.9%) after birth. Elevated FCP concentration was associated with acute and cumulative (chronic) pain/stress levels, mother's own milk, non-White race, and higher severity of illness score.
Conclusions: FCP levels were elevated in preterm infants with wide interindividual and intraindividual variations. Cumulative pain/stress during the NICU hospitalization, feeding, race, and health status may influence FCP concentrations in early life that may be associated with inflammatory gut processes.