Step-based metrics provide simple measures of ambulatory activity, yet device software either includes undisclosed proprietary step detection algorithms or simply do not compute step-based metrics. We aimed to develop and validate a simple algorithm to accurately detect steps across various ambulatory and non-ambulatory activities. Seventy-five adults (21-39 years) completed seven simulated activities of daily living (e.g., sitting, vacuuming, folding laundry) and an incremental treadmill protocol from 0.22-2.2ms-1. Directly observed steps were hand-tallied. Participants wore GENEActiv and ActiGraph accelerometers, one of each on their waist and on their non-dominant wrist. Raw acceleration (g) signals from the anterior-posterior, medial-lateral, vertical, and vector magnitude (VM) directions were assessed separately for each device. Signals were demeaned across all activities and bandpass filtered [0.25, 2.5Hz]. Steps were detected via peak picking, with optimal thresholds (i.e., minimized absolute error from accumulated hand counted) determined by iterating minimum acceleration values to detect steps. Step counts were converted into cadence (steps/minute), and k-fold cross-validation quantified error (root mean squared error [RMSE]). We report optimal thresholds for use of either device on the waist (threshold=0.0267g) and wrist (threshold=0.0359g) using the VM signal. These thresholds yielded low error for the waist (RMSE<173 steps, ≤2.28 steps/minute) and wrist (RMSE<481 steps, ≤6.47 steps/minute) across all activities, and outperformed ActiLife's proprietary algorithm (RMSE=1312 and 2913 steps, 17.29 and 38.06 steps/minute for the waist and wrist, respectively). The thresholds reported herein provide a simple, transparent framework for step detection using accelerometers during treadmill ambulation and activities of daily living for waist- and wrist-worn locations.
Objective: To investigate the convergent validity of a global positioning system (GPS)-based and two consumer-based measures with trip logs for classifying pedestrian, cycling, and vehicle trips in children and adults.
Methods: Participants (N = 34) wore a Qstarz GPS tracker, Fitbit Alta, and Garmin vivosmart 3 on multiple days and logged their outdoor pedestrian, cycling, and vehicle trips. Logged trips were compared with device-measured trips using the Personal Activity Location Measurement System (PALMS) GPS-based algorithms, Fitbit's SmartTrack, and Garmin's Move IQ. Trip- and day-level agreement were tested.
Results: The PALMS identified and correctly classified the mode of 75.6%, 94.5%, and 96.9% of pedestrian, cycling, and vehicle trips (84.5% of active trips, F1 = 0.84 and 0.87) as compared with the log. Fitbit and Garmin identified and correctly classified the mode of 26.8% and 17.8% (22.6% of active trips, F1 = 0.40 and 0.30) and 46.3% and 43.8% (45.2% of active trips, F1 = 0.58 and 0.59) of pedestrian and cycling trips. Garmin was more prone to false positives (false trips not logged). Day-level agreement for PALMS and Garmin versus logs was favorable across trip modes, though PALMS performed best. Fitbit significantly underestimated daily cycling. Results were similar but slightly less favorable for children than adults.
Conclusions: The PALMS showed good convergent validity in children and adults and were about 50% and 27% more accurate than Fitbit and Garmin (based on F1). Empirically-based recommendations for improving PALMS' pedestrian classification are provided. Since the consumer devices capture both indoor and outdoor walking/running and cycling, they are less appropriate for trip-based research.