首页 > 最新文献

Advances in neurobiology最新文献

英文 中文
Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. 有助于肌萎缩性脊髓侧索硬化症进展的星形胶质细胞-神经元相互作用
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_12
Brigid K Jensen

Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.

肌萎缩侧索硬化症(ALS)是一种影响大脑、脑干和脊髓运动神经元的复杂疾病。该病的病因非常复杂,有 40 多种基因可导致该病,而且约 90% 的患者没有家族史。星形胶质细胞是导致渐冻人症的主要因素,特别是通过参与加速疾病的进展。通过对 SOD1、TDP43、FUS、C9orf72、VCP、TBK1 等遗传形式疾病的研究,以及最近对来自散发性个体的患者衍生细胞的研究,已发现许多生物机制可导致运动神经元的内在或神经胶质介导的神经毒性。总体而言,星形胶质细胞对神经元的健康和存活通常起着支持和有益的作用,但其中许多作用都会转变为有害和神经毒性。虽然具体的途径可能因疾病起源而异,但星形胶质细胞与神经元之间的交流改变是 ALS 的共同特征。本章详细研究了不同的遗传形式,以及从散发性患者衍生细胞中了解到的情况。总之,本章强调了星形胶质细胞和神经元在这一复杂疾病中的相互作用,并描述了星形胶质细胞介导的运动神经元毒性、兴奋毒性、氧化/亚硝基应激、蛋白质失衡、代谢失衡、炎症、营养因子缺失、血脑屏障/血脊髓屏障受累、疾病扩散以及细胞外基质/细胞粘附/TGF-β信号通路的主要特征。
{"title":"Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression.","authors":"Brigid K Jensen","doi":"10.1007/978-3-031-64839-7_12","DOIUrl":"10.1007/978-3-031-64839-7_12","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. 从平衡到失衡:前额叶星形胶质细胞在认知灵活性和应激生物学中的作用
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_6
Bolati Wulaer, Mika A Holtz, Jun Nagai

In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.

在错综复杂的神经生理学领域,星形胶质细胞历来被认为是平衡细胞;然而,它们参与异稳态的机理--尤其是它们如何调节对压力的适应性反应以及压力的累积影响,从而破坏认知功能并诱发精神疾病--现在已开始被揭开谜底。在这里,我们将星形胶质细胞假设为关键的异稳态参与者,其分子适应性是压力相关神经精神疾病中认知灵活性的基础,从而填补了这一空白。我们回顾了星形胶质细胞如何对糖皮质激素和肾上腺素/去甲肾上腺素等应激介质做出反应,并发生与适应不良变化平行的形态和功能转变。我们对最新研究结果的综合分析表明,这些神经胶质的变化,尤其是在需要大量新陈代谢的前额叶皮质中,可能是一些神经精神机制的基础,这些机制的特点是能量代谢和星形胶质细胞网络被破坏、谷氨酸清除能力受损以及突触支持减弱。我们认为,星形胶质细胞的作用超出了其平衡作用的范围,它们积极参与大脑的异质反应,尤其是通过调节对认知功能至关重要的能量基质。
{"title":"Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology.","authors":"Bolati Wulaer, Mika A Holtz, Jun Nagai","doi":"10.1007/978-3-031-64839-7_6","DOIUrl":"10.1007/978-3-031-64839-7_6","url":null,"abstract":"<p><p>In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Microglia. 小胶质细胞的进化
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_3
Elena Guffart, Marco Prinz

Microglial cells are unique tissue-resident macrophages located in the parenchyma of the central nervous system (CNS). A recent comparative transcriptional study on microglia across more than 20 species from leach across chicken and many more up to humans revealed multiple conserved features. The results indicate the imperative role of microglia over the last 500 million years (Geirsdottir et al. Cell 181:746, 2020). Improved understanding of microglial evolution provides essential insights into conserved and divergent microglial pathways and will have implications for future development of microglia-based therapies to treat CNS disorders. Not only therapeutic approaches may be rethought, but also the understanding of sex specificity of the immune system within the CNS needs to be renewed. Besides revealing the highly detailed characteristics of microglia, the former paradigm of microglia being the only CNS-resident immune cells was outdated by the identification of CNS-associated macrophages (CAMs) as CNS interface residents, who, most likely, accompanied microglia in evolution over the past million years.

小胶质细胞是位于中枢神经系统(CNS)实质中的独特的组织驻留巨噬细胞。最近一项关于小胶质细胞的比较转录研究揭示了从水蛭到鸡,再到人类等 20 多个物种的多种保守特征。研究结果表明,在过去的 5 亿年中,小胶质细胞发挥着至关重要的作用(Geirsdottir et al. Cell 181:746, 2020)。对小胶质细胞进化的进一步了解为了解保守和分化的小胶质细胞通路提供了重要启示,并将对未来开发基于小胶质细胞的疗法治疗中枢神经系统疾病产生影响。我们不仅需要重新思考治疗方法,还需要重新认识中枢神经系统内免疫系统的性特异性。除了揭示了小胶质细胞的高细节特征外,中枢神经系统相关巨噬细胞(CAMs)也是中枢神经系统的界面居民,它们很可能伴随着小胶质细胞在过去一百万年中不断进化。
{"title":"Evolution of Microglia.","authors":"Elena Guffart, Marco Prinz","doi":"10.1007/978-3-031-55529-9_3","DOIUrl":"10.1007/978-3-031-55529-9_3","url":null,"abstract":"<p><p>Microglial cells are unique tissue-resident macrophages located in the parenchyma of the central nervous system (CNS). A recent comparative transcriptional study on microglia across more than 20 species from leach across chicken and many more up to humans revealed multiple conserved features. The results indicate the imperative role of microglia over the last 500 million years (Geirsdottir et al. Cell 181:746, 2020). Improved understanding of microglial evolution provides essential insights into conserved and divergent microglial pathways and will have implications for future development of microglia-based therapies to treat CNS disorders. Not only therapeutic approaches may be rethought, but also the understanding of sex specificity of the immune system within the CNS needs to be renewed. Besides revealing the highly detailed characteristics of microglia, the former paradigm of microglia being the only CNS-resident immune cells was outdated by the identification of CNS-associated macrophages (CAMs) as CNS interface residents, who, most likely, accompanied microglia in evolution over the past million years.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Self-Similarity Logic May Shape the Organization of the Nervous System. 自相似性逻辑可能塑造神经系统的组织结构
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_10
Diego Guidolin, Cinzia Tortorella, Raffaele De Caro, Luigi F Agnati

From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.

从形态学的角度来看,神经系统在从单细胞到细胞网络的不同观察层次上都呈现出分形、自相似的几何特征。从功能角度看,神经系统的特点是分层组织,不同微型的自相似结构(网络)相互嵌套。特别是神经元网络,神经元通过分子网络相互连接,形成神经元系统,而神经元的运行则得益于其分子网络,这些分子网络主要由蛋白质组成,通过蛋白质与蛋白质之间的相互作用,这些蛋白质可以组装成多聚体复合物,作为微型设备工作。在此基础上,人们提出了 "自相似逻辑 "一词,用来描述一种嵌套组织,在这种组织中,各个层次都使用几乎相同的规则(逻辑)来执行操作。自相似性和自相似性逻辑似乎都与生物物理证据密切相关,证明神经系统是一种模式形成系统,可以灵活地从一种连贯状态切换到另一种连贯状态。因此,它们可以代表描述神经系统复杂性及其协调、整体行为的关键概念。
{"title":"A Self-Similarity Logic May Shape the Organization of the Nervous System.","authors":"Diego Guidolin, Cinzia Tortorella, Raffaele De Caro, Luigi F Agnati","doi":"10.1007/978-3-031-47606-8_10","DOIUrl":"10.1007/978-3-031-47606-8_10","url":null,"abstract":"<p><p>From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term \"self-similarity logic\" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Dimension Analysis in Neurological Disorders: An Overview. 神经系统疾病中的分形维度分析:概述。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_16
Leticia Díaz Beltrán, Christopher R Madan, Carsten Finke, Stephan Krohn, Antonio Di Ieva, Francisco J Esteban

Fractal analysis has emerged as a powerful tool for characterizing irregular and complex patterns found in the nervous system. This characterization is typically applied by estimating the fractal dimension (FD), a scalar index that describes the topological complexity of the irregular components of the nervous system, both at the macroscopic and microscopic levels, that may be viewed as geometric fractals. Moreover, temporal properties of neurophysiological signals can also be interpreted as dynamic fractals. Given its sensitivity for detecting changes in brain morphology, FD has been explored as a clinically relevant marker of brain damage in several neuropsychiatric conditions as well as in normal and pathological cerebral aging. In this sense, evidence is accumulating for decreases in FD in Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, and many other neurological disorders. In addition, it is becoming increasingly clear that fractal analysis in the field of clinical neurology opens the possibility of detecting structural alterations in the early stages of the disease, which highlights FD as a potential diagnostic and prognostic tool in clinical practice.

分形分析已成为描述神经系统中不规则和复杂模式的有力工具。分形维度(FD)是描述神经系统不规则成分拓扑复杂性的标量指数,在宏观和微观层面均可被视为几何分形。此外,神经生理信号的时间属性也可以解释为动态分形。鉴于分形在检测大脑形态变化方面的灵敏度,分形已被探索用作几种神经精神疾病以及正常和病理脑衰老中大脑损伤的临床相关标记。从这个意义上说,越来越多的证据表明,在阿尔茨海默病、额颞叶痴呆症、帕金森病、多发性硬化症和许多其他神经系统疾病中,FD 都会下降。此外,分形分析在临床神经病学领域的应用也越来越清楚,它为检测疾病早期阶段的结构改变提供了可能,这突出表明分形分析是临床实践中一种潜在的诊断和预后工具。
{"title":"Fractal Dimension Analysis in Neurological Disorders: An Overview.","authors":"Leticia Díaz Beltrán, Christopher R Madan, Carsten Finke, Stephan Krohn, Antonio Di Ieva, Francisco J Esteban","doi":"10.1007/978-3-031-47606-8_16","DOIUrl":"10.1007/978-3-031-47606-8_16","url":null,"abstract":"<p><p>Fractal analysis has emerged as a powerful tool for characterizing irregular and complex patterns found in the nervous system. This characterization is typically applied by estimating the fractal dimension (FD), a scalar index that describes the topological complexity of the irregular components of the nervous system, both at the macroscopic and microscopic levels, that may be viewed as geometric fractals. Moreover, temporal properties of neurophysiological signals can also be interpreted as dynamic fractals. Given its sensitivity for detecting changes in brain morphology, FD has been explored as a clinically relevant marker of brain damage in several neuropsychiatric conditions as well as in normal and pathological cerebral aging. In this sense, evidence is accumulating for decreases in FD in Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, and many other neurological disorders. In addition, it is becoming increasingly clear that fractal analysis in the field of clinical neurology opens the possibility of detecting structural alterations in the early stages of the disease, which highlights FD as a potential diagnostic and prognostic tool in clinical practice.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Time Series: Background, Estimation Methods, and Performances. 分形时间序列:背景、估算方法和性能。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_5
Camillo Porcaro, Sadaf Moaveninejad, Valentina D'Onofrio, Antonio DiIeva

Over the past 40 years, from its classical application in the characterization of geometrical objects, fractal analysis has been progressively applied to study time series in several different disciplines. In neuroscience, starting from identifying the fractal properties of neuronal and brain architecture, attention has shifted to evaluating brain signals in the time domain. Classical linear methods applied to analyzing neurophysiological signals can lead to classifying irregular components as noise, with a potential loss of information. Thus, characterizing fractal properties, namely, self-similarity, scale invariance, and fractal dimension (FD), can provide relevant information on these signals in physiological and pathological conditions. Several methods have been proposed to estimate the fractal properties of these neurophysiological signals. However, the effects of signal characteristics (e.g., its stationarity) and other signal parameters, such as sampling frequency, amplitude, and noise level, have partially been tested. In this chapter, we first outline the main properties of fractals in the domain of space (fractal geometry) and time (fractal time series). Then, after providing an overview of the available methods to estimate the FD, we test them on synthetic time series (STS) with different sampling frequencies, signal amplitudes, and noise levels. Finally, we describe and discuss the performances of each method and the effect of signal parameters on the accuracy of FD estimation.

在过去的 40 年中,分形分析从其在几何物体特征描述中的经典应用,逐渐被应用到多个不同学科的时间序列研究中。在神经科学领域,从识别神经元和大脑结构的分形特性开始,注意力已经转移到评估时域中的大脑信号。用于分析神经生理信号的经典线性方法可能会将不规则成分归类为噪声,从而造成潜在的信息损失。因此,表征分形特性,即自相似性、尺度不变性和分形维度(FD),可以提供这些信号在生理和病理条件下的相关信息。目前已提出了几种方法来估计这些神经生理信号的分形特性。然而,对信号特征(如静止性)和其他信号参数(如采样频率、振幅和噪声水平)的影响还进行了部分测试。在本章中,我们首先概述了分形在空间(分形几何)和时间(分形时间序列)领域的主要特性。然后,在概述了现有的分形估计方法后,我们在不同采样频率、信号幅度和噪声水平的合成时间序列(STS)上对这些方法进行了测试。最后,我们描述并讨论了每种方法的性能以及信号参数对 FD 估计精度的影响。
{"title":"Fractal Time Series: Background, Estimation Methods, and Performances.","authors":"Camillo Porcaro, Sadaf Moaveninejad, Valentina D'Onofrio, Antonio DiIeva","doi":"10.1007/978-3-031-47606-8_5","DOIUrl":"10.1007/978-3-031-47606-8_5","url":null,"abstract":"<p><p>Over the past 40 years, from its classical application in the characterization of geometrical objects, fractal analysis has been progressively applied to study time series in several different disciplines. In neuroscience, starting from identifying the fractal properties of neuronal and brain architecture, attention has shifted to evaluating brain signals in the time domain. Classical linear methods applied to analyzing neurophysiological signals can lead to classifying irregular components as noise, with a potential loss of information. Thus, characterizing fractal properties, namely, self-similarity, scale invariance, and fractal dimension (FD), can provide relevant information on these signals in physiological and pathological conditions. Several methods have been proposed to estimate the fractal properties of these neurophysiological signals. However, the effects of signal characteristics (e.g., its stationarity) and other signal parameters, such as sampling frequency, amplitude, and noise level, have partially been tested. In this chapter, we first outline the main properties of fractals in the domain of space (fractal geometry) and time (fractal time series). Then, after providing an overview of the available methods to estimate the FD, we test them on synthetic time series (STS) with different sampling frequencies, signal amplitudes, and noise levels. Finally, we describe and discuss the performances of each method and the effect of signal parameters on the accuracy of FD estimation.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal-Based Analysis of Arteriovenous Malformations (AVMs). 基于分形的动静脉畸形(AVM)分析。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_21
Antonio Di Ieva, Gernot Reishofer

Arteriovenous malformations (AVMs) are cerebrovascular lesions consisting of a pathologic tangle of the vessels characterized by a core termed the nidus, which is the "nest" where the fistulous connections occur. AVMs can cause headache, stroke, and/or seizures. Their treatment can be challenging requiring surgery, endovascular embolization, and/or radiosurgery as well. AVMs' morphology varies greatly among patients, and there is still a lack of standardization of angioarchitectural parameters, which can be used as morphometric parameters as well as potential clinical biomarkers (e.g., related to prognosis).In search of new diagnostic and prognostic neuroimaging biomarkers of AVMs, computational fractal-based models have been proposed for describing and quantifying the angioarchitecture of the nidus. In fact, the fractal dimension (FD) can be used to quantify AVMs' branching pattern. Higher FD values are related to AVMs characterized by an increased number and tortuosity of the intranidal vessels or to an increasing angioarchitectural complexity as a whole. Moreover, FD has been investigated in relation to the outcome after Gamma Knife radiosurgery, and an inverse relationship between FD and AVM obliteration was found.Taken altogether, FD is able to quantify in a single and objective value what neuroradiologists describe in qualitative and/or semiquantitative way, thus confirming FD as a reliable morphometric neuroimaging biomarker of AVMs and as a potential surrogate imaging biomarker. Moreover, computational fractal-based techniques are under investigation for the automatic segmentation and extraction of the edges of the nidus in neuroimaging, which can be relevant for surgery and/or radiosurgery planning.

动静脉畸形(AVM)是一种脑血管病变,由病态的血管纠结组成,其特点是有一个被称为 "巢 "的核心,也就是发生瘘管连接的 "巢穴"。动静脉畸形可导致头痛、中风和/或癫痫发作。其治疗可能具有挑战性,需要进行手术、血管内栓塞和/或放射外科手术。为了寻找新的诊断和预后神经影像生物标志物,有人提出了基于分形的计算模型来描述和量化瘤巢的血管结构。事实上,分形维度(FD)可用于量化 AVM 的分支模式。分形维度值越高,说明动静脉畸形的特点是潮内血管的数量和迂曲程度增加,或整个血管结构的复杂性增加。总之,FD 能够以单一、客观的数值量化神经放射学家以定性和/或半定量方式描述的情况,从而证实 FD 是一种可靠的 AVM 形态计量神经影像生物标志物,也是一种潜在的替代影像生物标志物。此外,目前正在研究基于分形的计算技术,用于自动分割和提取神经影像学中的瘤巢边缘,这可能与手术和/或放射外科规划相关。
{"title":"Fractal-Based Analysis of Arteriovenous Malformations (AVMs).","authors":"Antonio Di Ieva, Gernot Reishofer","doi":"10.1007/978-3-031-47606-8_21","DOIUrl":"10.1007/978-3-031-47606-8_21","url":null,"abstract":"<p><p>Arteriovenous malformations (AVMs) are cerebrovascular lesions consisting of a pathologic tangle of the vessels characterized by a core termed the nidus, which is the \"nest\" where the fistulous connections occur. AVMs can cause headache, stroke, and/or seizures. Their treatment can be challenging requiring surgery, endovascular embolization, and/or radiosurgery as well. AVMs' morphology varies greatly among patients, and there is still a lack of standardization of angioarchitectural parameters, which can be used as morphometric parameters as well as potential clinical biomarkers (e.g., related to prognosis).In search of new diagnostic and prognostic neuroimaging biomarkers of AVMs, computational fractal-based models have been proposed for describing and quantifying the angioarchitecture of the nidus. In fact, the fractal dimension (FD) can be used to quantify AVMs' branching pattern. Higher FD values are related to AVMs characterized by an increased number and tortuosity of the intranidal vessels or to an increasing angioarchitectural complexity as a whole. Moreover, FD has been investigated in relation to the outcome after Gamma Knife radiosurgery, and an inverse relationship between FD and AVM obliteration was found.Taken altogether, FD is able to quantify in a single and objective value what neuroradiologists describe in qualitative and/or semiquantitative way, thus confirming FD as a reliable morphometric neuroimaging biomarker of AVMs and as a potential surrogate imaging biomarker. Moreover, computational fractal-based techniques are under investigation for the automatic segmentation and extraction of the edges of the nidus in neuroimaging, which can be relevant for surgery and/or radiosurgery planning.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifractal Analysis of Brain Tumor Interface in Glioblastoma. 胶质母细胞瘤脑肿瘤界面的多分形分析
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_25
Jacksson Sánchez, Miguel Martín-Landrove

The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.

肿瘤的生长动态是一个非常复杂的过程,通常伴随着许多染色体畸变,这些畸变决定了肿瘤的遗传和动态异质性。因此,肿瘤界面表现出一种非规则性的异质性行为,通常用单一的分形维度来描述。更合适的方法是将肿瘤界面视为一个多分形对象,可以用一组广义分形维度来描述。本研究利用去趋势波动和多分形分析来描述胶质母细胞瘤的复杂性。
{"title":"Multifractal Analysis of Brain Tumor Interface in Glioblastoma.","authors":"Jacksson Sánchez, Miguel Martín-Landrove","doi":"10.1007/978-3-031-47606-8_25","DOIUrl":"10.1007/978-3-031-47606-8_25","url":null,"abstract":"<p><p>The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats. 脑啡肽能挽救大鼠颞下颌关节疼痛相关行为
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_7
Karin N Westlund, A Caitlynn Iddings

Temporomandibular joint disorders include a variety of clinical syndromes that are difficult to manage if associated with debilitating severe jaw pain. Thus, seeking additional experimental therapies for temporomandibular joint pain reduction is warranted. Targeted enkephalin gene therapy approaches provide clear promise for pain control. The studies detailed here indicate significant analgesia and protection of joint tissue are provided after injection of an overexpression viral vector gene therapy near the joint. The viral vector gene therapy described provides overexpression of naturally occurring opioid peptides after its uptake by trigeminal nerve endings. The viral vectors act as independent "minipump" sources for the opioid peptide synthesis in the neuronal cytoplasm producing the intended biological function, reduction of pain, and tissue repair. The antinociceptive effects provided with this delivery method of opioid expression persist for over 4 weeks. This is coincident with the expected time frame for the duration of the transgene overproduction of the endogenous opioid peptide before its diminution due to dormancy of the virus. These experimental studies establish a basis for the use of replication-defective herpes simplex type 1-based gene therapy for severe chronic inflammatory temporomandibular joint destruction and pain. As innovative means of significantly reducing joint inflammation and preserving tissue architecture, gene therapies may extend their clinical usefulness for patients with temporomandibular joint disorders.

颞下颌关节疾病包括多种临床综合征,如果伴有使人衰弱的剧烈下颌疼痛,就很难处理。因此,有必要寻求更多的实验性疗法来减轻颞下颌关节疼痛。靶向脑啡肽基因治疗方法为控制疼痛提供了明确的希望。本文详述的研究表明,在关节附近注射过表达病毒载体基因疗法后,可提供明显的镇痛效果并保护关节组织。所述病毒载体基因疗法可在三叉神经末梢摄取天然阿片肽后使其过度表达。病毒载体作为独立的 "微型泵",在神经元细胞质中合成阿片肽,从而产生预期的生物功能、减轻疼痛和修复组织。这种阿片肽表达传递方法所产生的抗痛觉效应可持续 4 周以上。这与病毒休眠导致内源性阿片肽减少之前转基因过度产生内源性阿片肽的预期持续时间相吻合。这些实验研究为利用复制缺陷型单纯疱疹 1 型基因疗法治疗严重的慢性炎症性颞下颌关节破坏和疼痛奠定了基础。作为显著减轻关节炎症和保护组织结构的创新手段,基因疗法可能会扩大其对颞下颌关节疾病患者的临床应用。
{"title":"Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats.","authors":"Karin N Westlund, A Caitlynn Iddings","doi":"10.1007/978-3-031-45493-6_7","DOIUrl":"10.1007/978-3-031-45493-6_7","url":null,"abstract":"<p><p>Temporomandibular joint disorders include a variety of clinical syndromes that are difficult to manage if associated with debilitating severe jaw pain. Thus, seeking additional experimental therapies for temporomandibular joint pain reduction is warranted. Targeted enkephalin gene therapy approaches provide clear promise for pain control. The studies detailed here indicate significant analgesia and protection of joint tissue are provided after injection of an overexpression viral vector gene therapy near the joint. The viral vector gene therapy described provides overexpression of naturally occurring opioid peptides after its uptake by trigeminal nerve endings. The viral vectors act as independent \"minipump\" sources for the opioid peptide synthesis in the neuronal cytoplasm producing the intended biological function, reduction of pain, and tissue repair. The antinociceptive effects provided with this delivery method of opioid expression persist for over 4 weeks. This is coincident with the expected time frame for the duration of the transgene overproduction of the endogenous opioid peptide before its diminution due to dormancy of the virus. These experimental studies establish a basis for the use of replication-defective herpes simplex type 1-based gene therapy for severe chronic inflammatory temporomandibular joint destruction and pain. As innovative means of significantly reducing joint inflammation and preserving tissue architecture, gene therapies may extend their clinical usefulness for patients with temporomandibular joint disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Endogenous Opioids in Cardioprotection. 内源性阿片类药物在心脏保护中的作用
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_19
Cristina Sirbu

The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.

阿片系统包括阿片受体(OPRs)和内源性阿片肽。本章将重点介绍 OPRs 在心血管系统中的分布、在心脏中的表达模式、阿片肽的激活以及 OPRs 激活对心血管功能的潜在影响。在心脏中,OPRs 与 G 蛋白偶联受体(GPCR)超家族中的β-肾上腺素能受体(β-ARs)共同表达,在功能上与β-Ars 相互影响,并改变儿茶酚胺诱导的效应。它们参与心脏收缩力、能量代谢、心肌细胞存活或死亡、血管阻力等。本文介绍了阿片系统在中枢和外周层面调节全身循环的作用。在生理(即衰老)和病理(动脉粥样硬化、心力衰竭、原发性高血压、缺血性应激)条件下讨论了这些途径。刺激 OPRs 不仅能抑制心脏兴奋-收缩耦合,还能保护心脏免受缺氧和缺血性损伤。高血压患者的内分泌器官和神经元系统对阿片类药物的敏感性增强。阿片类药物系统可通过心脏和神经信号选择性地模拟这些反应。利用阿片类药物的心脏保护作用的临床机会需要未来的研究来提供对心脏性能和电生理特性影响的更具体细节。
{"title":"The Role of Endogenous Opioids in Cardioprotection.","authors":"Cristina Sirbu","doi":"10.1007/978-3-031-45493-6_19","DOIUrl":"10.1007/978-3-031-45493-6_19","url":null,"abstract":"<p><p>The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1