首页 > 最新文献

Advances in neurobiology最新文献

英文 中文
Emerging Microglial Therapies and Targets in Clinical Trial. 临床试验中的新兴小胶质细胞疗法和靶点
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_35
Yan Ling, Andrea Crotti

Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.

调节小胶质细胞功能以治疗神经退行性疾病和神经精神疾病是神经科学药物开发的一个新兴领域。这主要归功于人类基因关联研究以及生物学证据表明,先天性免疫系统是神经功能障碍中神经元损失的反应性部分的叠加因果因素。鉴定编码小胶质细胞免疫调节蛋白的疾病风险基因变异为评估小胶质细胞功能或功能障碍如何影响神经元健康提供了工具。通过开发可改变髓系细胞功能的临床阶段治疗化合物,我们能够研究调节小胶质细胞功能如何成为缓解神经系统疾病的变革性方法。提高我们促进小胶质细胞平衡和修复功能的能力,有望为神经系统疾病患者带来更好的治疗效果。在本章中,我们将概述目前临床试验中正在研究的小胶质细胞新兴疗法和靶点。
{"title":"Emerging Microglial Therapies and Targets in Clinical Trial.","authors":"Yan Ling, Andrea Crotti","doi":"10.1007/978-3-031-55529-9_35","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_35","url":null,"abstract":"<p><p>Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Models to Study Human Microglia In vitro. 体外研究人类小胶质细胞的新兴模型
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_30
Henna Jäntti, Lois Kistemaker, Alice Buonfiglioli, Lot D De Witte, Tarja Malm, Elly M Hol

New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.

新的体外模型为研究活体人类小胶质细胞提供了一个令人兴奋的机会。以前,了解人类小胶质细胞在健康和疾病中的作用的一个主要限制因素是其可用性有限。在这里,我们概述了获得人类干细胞或血液单核细胞衍生的小胶质细胞样细胞的方法,这些细胞为研究提供了几乎无限的活人类小胶质细胞来源。我们探讨了了解小胶质细胞本体如何有助于在培养皿中更准确地模拟小胶质细胞的特征和功能。此外,我们将干细胞衍生分化方法分为基于胚状体、生长因子驱动和共培养驱动的方法,并回顾了将干细胞直接重编程为小胶质细胞样细胞的新型病毒方法。此外,我们还回顾了该领域用于验证小胶质细胞身份和表征功能性小胶质细胞表型的典型读数。我们概述了在更接近人类中枢神经系统(发育中)的环境中研究小胶质细胞的方法,如含有整合或先天发育的小胶质细胞的共培养和类脑器官系统。我们将重点介绍如何利用类小胶质细胞揭示人类疾病的分子和功能机制,重点是阿尔茨海默病和其他神经退行性疾病以及神经发育疾病。最后,我们对在培养皿中更精确地模拟人类小胶质细胞所面临的挑战和未来的机遇进行了重要概述,并得出结论:新型体外小胶质细胞样细胞具有令人兴奋的潜力,可将小胶质细胞的临床前研究带入一个新时代。
{"title":"Emerging Models to Study Human Microglia In vitro.","authors":"Henna Jäntti, Lois Kistemaker, Alice Buonfiglioli, Lot D De Witte, Tarja Malm, Elly M Hol","doi":"10.1007/978-3-031-55529-9_30","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_30","url":null,"abstract":"<p><p>New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology. 基于计算分形的神经肿瘤学和神经创伤学磁共振加权成像 (SWI) 分析。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_23
Antonio Di Ieva

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.

磁感应强度加权成像(SWI)是一种磁共振成像(MRI)技术,能够描述脱氧血红蛋白、钙和铁等不同物质产生的磁感应强度。SWI 在临床神经成像中的主要应用是检测微出血和静脉血管。过去几年中,SWI 定量分析技术不断发展,旨在提供可用作神经影像生物标记的新参数。每种技术都各有利弊,但目前还没有金标准。分形维度(FD)作为一种新的潜在客观参数被研究用于监测SWI模式的瘤内空间填充特性。我们发现,在不同肿瘤或不同胶质瘤分级中发现的 SWI 模式可以用分形维度的梯度来表示,从而使每个肿瘤都能被赋予特定的 SWI 指纹。因此,分形维度被认为是一种潜在的图像生物标记,可用于分析肿瘤的内在结构,从而改善临床神经影像学的鉴别诊断,确定适当的治疗方法,并改善患者的预后。这些前景广阔的初步研究结果可扩展到神经创伤学领域,通过应用基于分形的计算分析,对脑外伤患者的微出血进行定性和定量成像。总之,可以进一步研究基于分形的 SWI 形态计量学,以便与其他技术互补使用,从而对脑肿瘤的时间演变和后续治疗反应形成整体认识,并进一步应用于神经创伤学和脑血管神经外科等其他领域。
{"title":"Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology.","authors":"Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_23","DOIUrl":"10.1007/978-3-031-47606-8_23","url":null,"abstract":"<p><p>Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG Complexity Analysis of Brain States, Tasks and ASD Risk. 大脑状态、任务和自闭症风险的脑电图复杂性分析。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_37
Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King

Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.

自闭症谱系障碍是一种发病率越来越高、使人衰弱的神经发育疾病,也是脑电图(EEG)诊断的难题。尽管几十年来进行了大量的电生理学研究,但仍未找到自闭症谱系障碍(ASD)的脑电图生物标志物。我们假设,作为认知过程中神经元宏观功能的一部分,人类中枢神经系统复杂动态系统行为的减少可能会在高风险 ASD 成人的整个脑电图中检测到。在三项研究中,我们比较了 39 名患有 ASD 的成人的 20 个脑电图通道在静息、认知和社交技能任务中的相关维度、最大李普诺夫指数、樋口分形维度、多尺度熵、多分形去趋势波动分析和科尔莫戈罗夫复杂性的中位数。我们发现复杂性分布不均,分层序列集群显示了潜在的认知处理差异,但没有根据自闭症风险进行明确区分。我们认为,大脑状态和任务的复杂性测量之间存在统计学意义上的显著差异。虽然我们的研究需要更大样本的重复,但我们相信,我们的电生理和分析方法有可能成为早期诊断 ASD 的生物标志物。
{"title":"EEG Complexity Analysis of Brain States, Tasks and ASD Risk.","authors":"Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King","doi":"10.1007/978-3-031-47606-8_37","DOIUrl":"10.1007/978-3-031-47606-8_37","url":null,"abstract":"<p><p>Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Analysis in MATLAB: A Tutorial for Neuroscientists. MATLAB 中的分形分析:神经科学家教程》(Fractal Analysis in MATLAB: A Tutorial for Neuroscientists)。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_41
Juan Ruiz de Miras

MATLAB is one of the software platforms most widely used for scientific computation. MATLAB includes a large set of functions, packages, and toolboxes that make it simple and fast to obtain complex mathematical and statistical computations for many applications. In this chapter, we review some tools available in MATLAB for performing fractal analyses on typical neuroscientific data in a practical way. We provide detailed examples of how to calculate the fractal dimension of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software packages for fractal analysis.

MATLAB 是科学计算领域应用最广泛的软件平台之一。MATLAB 包含大量函数、软件包和工具箱,可以简单快速地进行复杂的数学和统计计算,适用于多种应用。在本章中,我们将回顾 MATLAB 中可用来对典型神经科学数据进行分形分析的一些实用工具。我们提供了如何在 MATLAB 中计算一维、二维和三维数据分形维度的详细示例。此外,我们还回顾了其他分形分析软件包。
{"title":"Fractal Analysis in MATLAB: A Tutorial for Neuroscientists.","authors":"Juan Ruiz de Miras","doi":"10.1007/978-3-031-47606-8_41","DOIUrl":"10.1007/978-3-031-47606-8_41","url":null,"abstract":"<p><p>MATLAB is one of the software platforms most widely used for scientific computation. MATLAB includes a large set of functions, packages, and toolboxes that make it simple and fast to obtain complex mathematical and statistical computations for many applications. In this chapter, we review some tools available in MATLAB for performing fractal analyses on typical neuroscientific data in a practical way. We provide detailed examples of how to calculate the fractal dimension of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software packages for fractal analysis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Neurodynamics. 分形神经动力学。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_33
Karolina Armonaite, Livio Conti, Franca Tecchio

The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.

大脑网络中神经元持续的电活动,即神经动力学,反映了神经元池的结构和功能。神经元的兴奋和抑制投射活动与特定的大脑功能有关。在这里,我们的目的是研究在清醒和睡眠状态下,不同受试者之间以及受试者内部的局部持续电活动是否表现出其特有的频谱和分形特征。此外,我们还希望证明,复杂系统的典型测量方法能够捕捉到线性频谱分析所遗漏的生理特征。在这项研究中,我们重点评估了功率谱密度(PSD)和樋口分形维度(HFD)测量方法。神经动力学识别的具体特征对临床的相关影响主要体现在根据神经动力学对皮层区块进行分类的潜力,以及提高神经调节干预治疗继发于神经元活动失衡症状的有效性。
{"title":"Fractal Neurodynamics.","authors":"Karolina Armonaite, Livio Conti, Franca Tecchio","doi":"10.1007/978-3-031-47606-8_33","DOIUrl":"10.1007/978-3-031-47606-8_33","url":null,"abstract":"<p><p>The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractals in Neuroimaging. 神经成像中的分形
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_22
Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva

Several natural phenomena can be described by studying their statistical scaling patterns, hence leading to simple geometrical interpretation. In this regard, fractal geometry is a powerful tool to describe the irregular or fragmented shape of natural features, using spatial or time-domain statistical scaling laws (power-law behavior) to characterize real-world physical systems. This chapter presents some works on the usefulness of fractal features, mainly the fractal dimension and the related Hurst exponent, in the characterization and identification of pathologies and radiological features in neuroimaging, mainly, magnetic resonance imaging.

一些自然现象可以通过研究其统计缩放模式来描述,从而得出简单的几何解释。在这方面,分形几何是一种强大的工具,可以利用空间或时域统计缩放规律(幂律行为)来描述现实世界物理系统的特征,从而描述自然特征的不规则或破碎形状。本章将介绍一些关于分形特征(主要是分形维度和相关赫斯特指数)在神经成像(主要是磁共振成像)中表征和识别病理学和放射学特征方面的实用性研究。
{"title":"Fractals in Neuroimaging.","authors":"Salim Lahmiri, Mounir Boukadoum, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_22","DOIUrl":"10.1007/978-3-031-47606-8_22","url":null,"abstract":"<p><p>Several natural phenomena can be described by studying their statistical scaling patterns, hence leading to simple geometrical interpretation. In this regard, fractal geometry is a powerful tool to describe the irregular or fragmented shape of natural features, using spatial or time-domain statistical scaling laws (power-law behavior) to characterize real-world physical systems. This chapter presents some works on the usefulness of fractal features, mainly the fractal dimension and the related Hurst exponent, in the characterization and identification of pathologies and radiological features in neuroimaging, mainly, magnetic resonance imaging.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG). 利用脑电图(EEG)的分形分析和希尔伯特黄变换进行精神病理学的护理点检测(POCT)。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_35
Mohammed Sakib Ihsan Khan, Herbert F Jelinek

Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.

研究表明,仅依靠自我报告来诊断精神疾病并不能始终得出准确的结果。随着技术以及人工智能和其他机器学习算法的进步,医疗点检测(POCT)得以引入,包括脑电图特征描述以及与可能的精神病理学的相关性。与线性方法相比,非线性脑电图分析方法具有显著优势。经验模式分解(EMD)是一种可靠的脑电图预处理非线性方法。在本章中,我们将现有的两种脑电图复杂性测量方法--樋口分形维度(HFD)和样本熵(SE),与我们新提出的使用希尔伯特-黄变换(HFD-HHT)的樋口分形维度的方法进行比较。我们以一名 20 岁健康男性的 2 分钟脑电图为例,介绍了这三种复杂度测量方法在信号预处理后的应用。此外,我们还展示了这些复杂度测量在重度抑郁症(MDD)与健康对照组分类中的实用性。我们的研究与之前的研究结果一致,都表明在全频段、阿尔法频段和贝塔频段的 HFD 和 SE 值增加,这表明脑电图不规则性增加。此外,大多数电极的 HFD-HHT 值在这三个频段都有所下降,这表明频率-时间域的不规则性有所降低。我们的结论是,所有这三种复杂性测量方法都是有助于脑电图分析的重要特征,可纳入 POCT 系统。
{"title":"Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG).","authors":"Mohammed Sakib Ihsan Khan, Herbert F Jelinek","doi":"10.1007/978-3-031-47606-8_35","DOIUrl":"10.1007/978-3-031-47606-8_35","url":null,"abstract":"<p><p>Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. 内源性阿片类药物在安慰剂和安慰剂效应中的作用:从疼痛到表现再到百忧解
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_10
Patrick L Kerr, John M Gregg

Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.

将近两个世纪以来,安慰剂效应和免惊厥效应一直都有据可查。然而,有关这些现象的神经生物学基础的研究直到最近才开始。同样,有关安慰剂/安慰剂效应的广泛社会影响的研究,尤其是在医疗保健服务环境中的研究,也处于起步阶段。安慰剂/虚幻效应的生物和社会心理结果具有同等的相关性。内源性阿片系统是产生此类结果的常见途径。本章介绍了安慰剂/安慰剂在医学中的历史;描述了与疼痛调节有关的安慰剂/安慰剂相关文献的现状;总结了与运动和锻炼中的人体表现有关的研究成果;讨论了安慰剂/安慰剂效应在不同患者群体中的影响;并介绍了安慰剂/安慰剂在精神药理学相关研究中的影响,包括内源性阿片类药物与抗抑郁药物疗法新研究方向的相关性。
{"title":"The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac.","authors":"Patrick L Kerr, John M Gregg","doi":"10.1007/978-3-031-45493-6_10","DOIUrl":"10.1007/978-3-031-45493-6_10","url":null,"abstract":"<p><p>Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depression, Cancer, Inflammation, and Endogenous Opioids: Pathogenic Relationships and Therapeutic Options. 抑郁症、癌症、炎症和内源性阿片类药物:致病关系与治疗方案》。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_21
Jennifer Hancock, Cristian Sirbu, Patrick L Kerr

Endogenous opioids and their associated receptors form a system that maintains survival by positively reinforcing behaviors that are vital to life. Cancer and cancer treatment side effects capitalize on this system pathogenically, leading to maladaptive biological responses (e.g., inflammation), as well as cognitive and emotional consequences, most notably depression. Psychologists who treat people with cancer frequently find depression to be a primary target for intervention. However, in people with cancer, the etiology of depression is unique and complex. This complexity necessitates that psycho-oncologists have a fundamental working knowledge of the biological substrates that underlie depression/cancer comorbidity. Building on other chapters in this volume pertaining to cancer and endogenous opioids, this chapter focuses on the clinical applications of basic scientific findings.

内源性阿片类物质及其相关受体形成了一个系统,通过积极强化对生命至关重要的行为来维持生存。癌症和癌症治疗的副作用从病理学角度利用了这一系统,导致不适应的生物反应(如炎症)以及认知和情绪后果,其中最显著的是抑郁症。治疗癌症患者的心理学家经常发现,抑郁是干预的主要目标。然而,对于癌症患者来说,抑郁症的病因是独特而复杂的。这种复杂性要求肿瘤心理学家对抑郁/癌症并发症的生物学基础知识有基本的了解。在本卷中有关癌症和内源性阿片类药物的其他章节的基础上,本章将重点讨论基础科学发现的临床应用。
{"title":"Depression, Cancer, Inflammation, and Endogenous Opioids: Pathogenic Relationships and Therapeutic Options.","authors":"Jennifer Hancock, Cristian Sirbu, Patrick L Kerr","doi":"10.1007/978-3-031-45493-6_21","DOIUrl":"10.1007/978-3-031-45493-6_21","url":null,"abstract":"<p><p>Endogenous opioids and their associated receptors form a system that maintains survival by positively reinforcing behaviors that are vital to life. Cancer and cancer treatment side effects capitalize on this system pathogenically, leading to maladaptive biological responses (e.g., inflammation), as well as cognitive and emotional consequences, most notably depression. Psychologists who treat people with cancer frequently find depression to be a primary target for intervention. However, in people with cancer, the etiology of depression is unique and complex. This complexity necessitates that psycho-oncologists have a fundamental working knowledge of the biological substrates that underlie depression/cancer comorbidity. Building on other chapters in this volume pertaining to cancer and endogenous opioids, this chapter focuses on the clinical applications of basic scientific findings.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1