O. Dimitriev, K. Grytsenko, O. I. Tolmachev, Y. Slominskii, M. Kudinova, S. Schrader
Rhodanine derivatives of merocyanine dyes with residues of 1,3,3-trimethyl-3H-indole and 3-ethylbenzothiazoline have been found to possess two molecular forms in diluted solutions of polar solvents such as dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidinone. The first molecular form was observed to prevail at low concentrations of the dyes, normally up to 10−5 M. The second one prevails at higher concentrations and is displayed through a new band in the electronic absorption spectrum, which is red-shifted with respect to the absorption band of the first form. No similar effect was found for these dyes by use of nonpolar solvents or upon alkyl-substitution of the molecules at nitrogen atom in the rhodanine moiety. We assign the above two forms to different molecular isomers and the analogous spectral changes were shown to take place by light or heat influence which correspond to a typical isomerization effect for the related merocyanine dyes. It is discussed that the isomer transformation is facilitated by the increased mobility of the proton bonded to the nitrogen atom of the rhodanine moiety in the polar environment and the increased amount of dye-dye collisions.
{"title":"Effect of Concentration on Isomerization of Rhodanine Derivatives of Merocyanine Dyes in Polar Solvents","authors":"O. Dimitriev, K. Grytsenko, O. I. Tolmachev, Y. Slominskii, M. Kudinova, S. Schrader","doi":"10.1155/2014/468910","DOIUrl":"https://doi.org/10.1155/2014/468910","url":null,"abstract":"Rhodanine derivatives of merocyanine dyes with residues of 1,3,3-trimethyl-3H-indole and 3-ethylbenzothiazoline have been found to possess two molecular forms in diluted solutions of polar solvents such as dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidinone. The first molecular form was observed to prevail at low concentrations of the dyes, normally up to 10−5 M. The second one prevails at higher concentrations and is displayed through a new band in the electronic absorption spectrum, which is red-shifted with respect to the absorption band of the first form. No similar effect was found for these dyes by use of nonpolar solvents or upon alkyl-substitution of the molecules at nitrogen atom in the rhodanine moiety. We assign the above two forms to different molecular isomers and the analogous spectral changes were shown to take place by light or heat influence which correspond to a typical isomerization effect for the related merocyanine dyes. It is discussed that the isomer transformation is facilitated by the increased mobility of the proton bonded to the nitrogen atom of the rhodanine moiety in the polar environment and the increased amount of dye-dye collisions.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90535529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruthenium(III) catalyzes perborate oxidation of substituted 5-oxoacids in acidic solution. The catalyzed oxidation is first order with respect to the oxidant and catalyst. The rate of ruthenium(III) catalyzed oxidation displays the Michaelis-Menten kinetics on the reductant and is independent of [H
{"title":"Ruthenium(III) Catalysis in Perborate Oxidation of 5-Oxoacids","authors":"S. Devi, P. Krishnamoorthy, B. Muthukumaran","doi":"10.1155/2014/879608","DOIUrl":"https://doi.org/10.1155/2014/879608","url":null,"abstract":"Ruthenium(III) catalyzes perborate oxidation of substituted 5-oxoacids in acidic solution. The catalyzed oxidation is first order with respect to the oxidant and catalyst. The rate of ruthenium(III) catalyzed oxidation displays the Michaelis-Menten kinetics on the reductant and is independent of [H","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78594637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Habibi‐Khorassani, M. Maghsoodlou, M. Shahraki, Sadegh Talaie Far, M. Mousavi
For the first time, in a green protocol, an investigation of the kinetics and mechanism of the reaction between benzaldehyde 1, 4-chloroanilinne 2, and acetophenone 3 compounds in the presence of saccharose as a catalyst was performed for generating β-aminoketone. For determining the kinetic parameters, the reaction was monitored by using the UV/Vis spectrophotometry technique. The second order rate constant () was automatically calculated by the standard equations contained within the program. In the studied temperature range, the second order rate constant (, ) depended on reciprocal temperature that was in good consistent with Arrhenius and Eyring equations, respectively. These data provided the suitable plots for calculating the activation energy and parameters (Ea, , , and ) of the reaction. Furthermore, useful information was obtained from studying the effects of solvent, concentration, and catalyst on the reaction mechanism. The results showed that the first step of the reaction mechanism is a rate determining step (RDS). The obtained experimental data and also the steady state assumption confirmed the proposed mechanism.
{"title":"Full Kinetics and a Mechanistic Investigation of the Green Protocol for Synthesis of β-Aminoketone in the Presence of Saccharose as a Catalyst by a One-Pot Three-Component Reaction","authors":"S. Habibi‐Khorassani, M. Maghsoodlou, M. Shahraki, Sadegh Talaie Far, M. Mousavi","doi":"10.1155/2014/426749","DOIUrl":"https://doi.org/10.1155/2014/426749","url":null,"abstract":"For the first time, in a green protocol, an investigation of the kinetics and mechanism of the reaction between benzaldehyde 1, 4-chloroanilinne 2, and acetophenone 3 compounds in the presence of saccharose as a catalyst was performed for generating β-aminoketone. For determining the kinetic parameters, the reaction was monitored by using the UV/Vis spectrophotometry technique. The second order rate constant () was automatically calculated by the standard equations contained within the program. In the studied temperature range, the second order rate constant (, ) depended on reciprocal temperature that was in good consistent with Arrhenius and Eyring equations, respectively. These data provided the suitable plots for calculating the activation energy and parameters (Ea, , , and ) of the reaction. Furthermore, useful information was obtained from studying the effects of solvent, concentration, and catalyst on the reaction mechanism. The results showed that the first step of the reaction mechanism is a rate determining step (RDS). The obtained experimental data and also the steady state assumption confirmed the proposed mechanism.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90759452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Priya, A. Arun, M. Elumalai, S. Kiruthika, B. Muthukumaran
The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.
研究了在碱性-酸性介质中,铂电极在无膜过碳酸钠燃料电池上电催化氧化乙醇。在这个电池中,乙醇被用作燃料,过碳酸钠被用作氧化剂,这是第一次在碱性-酸性介质中使用。过碳酸钠在水介质中产生过氧化氢。在室温下,当混合燃料流量为0.3 mL min - 2时,基于层流的微流体无膜燃料电池的最大功率密度可达18.96 mW cm - 2。所研制的燃料电池没有质子交换膜。简单的平面结构无膜乙醇燃料电池具有很高的设计灵活性,可以很容易地将微尺度燃料电池集成到实际的微流体系统和便携式电源应用中。
{"title":"A Development of Ethanol/Percarbonate Membraneless Fuel Cell","authors":"M. Priya, A. Arun, M. Elumalai, S. Kiruthika, B. Muthukumaran","doi":"10.1155/2014/862691","DOIUrl":"https://doi.org/10.1155/2014/862691","url":null,"abstract":"The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87575322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.
{"title":"Equilibrium, Kinetics, and Thermodynamics of the Removal of Nickel(II) from Aqueous Solution Using Cow Hooves","authors":"I. Osasona, O. Ajayi, A. Adebayo","doi":"10.1155/2014/863173","DOIUrl":"https://doi.org/10.1155/2014/863173","url":null,"abstract":"The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76694254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most recent spectroscopic studies of single bubble (SBSL) and multibubble (MBSL) sonoluminescence reveal that the origin of extreme intrabubble conditions is related to nonequilibrium plasma formed inside the collapsing bubbles. Analysis of the relative populations of OH(A2Σ
{"title":"Plasma Formation during Acoustic Cavitation: Toward a New Paradigm for Sonochemistry","authors":"S. Nikitenko","doi":"10.1155/2014/173878","DOIUrl":"https://doi.org/10.1155/2014/173878","url":null,"abstract":"The most recent spectroscopic studies of single bubble (SBSL) and multibubble (MBSL) sonoluminescence reveal that the origin of extreme intrabubble conditions is related to nonequilibrium plasma formed inside the collapsing bubbles. Analysis of the relative populations of OH(A2Σ","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82953346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermally activated, acid-activated, and acid-leached of thermally activated kaolinites were prepared from the Egyptian ore. The physical and chemical properties were studied using N2 sorption at −196°C, FTIR, SEM, and the total surface acidity. The sorption of ions on the investigated sorbents was controlled with the solution pH, sorbent dosage, and initial concentration of solution. Kinetic and equilibrium sorption at 30°C were employed. Four kinetic models were applied to the kinetic sorption data; pseudo-second-order, Elovich, and intraparticle diffusion models fitted well the kinetic data whereas pseudo-first-order model was less applicable. Elovich parameters refer to physical sorption type of on nonuniform sites and the intraparticle diffusion controls the sorption of by kaolinites to a small extent. The equilibrium sorption data followed Langmuir and D-R models; the negative value of indicates a spontaneous sorption and the mean sorption energy obtained shows also physical sorption. The sorption capacities of nonactivated and activated Egyptian kaolinites towards sorption (10.87–45.45 mg·g−1) were good sorbents as compared with those uptaken by other clays reported in the literature and proved to be more active besides being less expensive and highly available.
{"title":"Sorption of Ammonium Ions onto Natural and Modified Egyptian Kaolinites: Kinetic and Equilibrium Studies","authors":"O. El-Shafey, N. Fathy, T. El-Nabarawy","doi":"10.1155/2014/935854","DOIUrl":"https://doi.org/10.1155/2014/935854","url":null,"abstract":"Thermally activated, acid-activated, and acid-leached of thermally activated kaolinites were prepared from the Egyptian ore. The physical and chemical properties were studied using N2 sorption at −196°C, FTIR, SEM, and the total surface acidity. The sorption of ions on the investigated sorbents was controlled with the solution pH, sorbent dosage, and initial concentration of solution. Kinetic and equilibrium sorption at 30°C were employed. Four kinetic models were applied to the kinetic sorption data; pseudo-second-order, Elovich, and intraparticle diffusion models fitted well the kinetic data whereas pseudo-first-order model was less applicable. Elovich parameters refer to physical sorption type of on nonuniform sites and the intraparticle diffusion controls the sorption of by kaolinites to a small extent. The equilibrium sorption data followed Langmuir and D-R models; the negative value of indicates a spontaneous sorption and the mean sorption energy obtained shows also physical sorption. The sorption capacities of nonactivated and activated Egyptian kaolinites towards sorption (10.87–45.45 mg·g−1) were good sorbents as compared with those uptaken by other clays reported in the literature and proved to be more active besides being less expensive and highly available.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75830240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Jeevanandham, S. Kumar, P. Periyasamy, A. Kumbharkhane
The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100%) have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant and relaxation time have been obtained by using least square fit method. By using these parameters , effective Kirkwood correlation factor , corrective Kirkwood correlation factor , Bruggeman factor , excess dielectric constant , and excess inverse relaxation time values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.
{"title":"Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry","authors":"P. Jeevanandham, S. Kumar, P. Periyasamy, A. Kumbharkhane","doi":"10.1155/2014/659531","DOIUrl":"https://doi.org/10.1155/2014/659531","url":null,"abstract":"The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100%) have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant and relaxation time have been obtained by using least square fit method. By using these parameters , effective Kirkwood correlation factor , corrective Kirkwood correlation factor , Bruggeman factor , excess dielectric constant , and excess inverse relaxation time values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78012323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on , shows fractional–order dependence on , and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.
{"title":"Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling","authors":"J. P. Shubha, Puttaswamy","doi":"10.1155/2014/238984","DOIUrl":"https://doi.org/10.1155/2014/238984","url":null,"abstract":"Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on , shows fractional–order dependence on , and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90287123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.
{"title":"Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure","authors":"Stephen Majoni, J. Hossenlopp","doi":"10.1155/2014/710487","DOIUrl":"https://doi.org/10.1155/2014/710487","url":null,"abstract":"Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75361025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}