Experimental study of the plasma gas phase in low-pressure radiofrequency discharges of oxygen and hexamethyldisiloxane is presented. The plasma phase has been studied by means of optical emission spectroscopy. Mass spectroscopy of the neutral and of the charged species has been performed too, directly sampling the plasma gas phase, by a dedicated spectrometer. We also measured the ion energy distribution. We have studied the influence of the operating conditions on the plasma gas-phase composition which plays a primary role in the formation process of SiO2 films, which are known for their important applicative uses.
{"title":"Characterization of the Chemical Kinetics in an O2/HMDSO RF Plasma for Material Processing","authors":"R. Barni, S. Zanini, C. Riccardi","doi":"10.1155/2012/205380","DOIUrl":"https://doi.org/10.1155/2012/205380","url":null,"abstract":"Experimental study of the plasma gas phase in low-pressure radiofrequency discharges of oxygen and hexamethyldisiloxane is presented. The plasma phase has been studied by means of optical emission spectroscopy. Mass spectroscopy of the neutral and of the charged species has been performed too, directly sampling the plasma gas phase, by a dedicated spectrometer. We also measured the ion energy distribution. We have studied the influence of the operating conditions on the plasma gas-phase composition which plays a primary role in the formation process of SiO2 films, which are known for their important applicative uses.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72950954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added to the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.
{"title":"Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function","authors":"M. Ayouz, D. Babikov","doi":"10.1155/2012/951371","DOIUrl":"https://doi.org/10.1155/2012/951371","url":null,"abstract":"New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added to the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81663921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The potential energy surface (PES) of NO on Pt(997) has been elucidated: the adsorption states and diffusion processes of NO on Pt(997) at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). When NO molecules adsorb on a surface at a low temperature (11 K), each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997): a bridge site of the upper step, an fcc- (or hcp-) hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.
{"title":"Potential Energy Surface of NO on Pt(997): Adsorbed States and Surface Diffusion","authors":"N. Tsukahara, J. Yoshinobu","doi":"10.1155/2012/571657","DOIUrl":"https://doi.org/10.1155/2012/571657","url":null,"abstract":"The potential energy surface (PES) of NO on Pt(997) has been elucidated: the adsorption states and diffusion processes of NO on Pt(997) at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). When NO molecules adsorb on a surface at a low temperature (11 K), each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997): a bridge site of the upper step, an fcc- (or hcp-) hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82004892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cage compound CL-20 (a.k.a., 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, HNIW, or 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane) is a well-studied high-energy-density material (HEDM). The high positive gas- ) and solid- () phase heat of formation values for CL-20 conformers have often been attributed to the strain energy of this cage compound and, by implication, to the conventional ring strain energy (CRSE) inherent in isowurtzitane which may be viewed as a “parent compound” (although not the synthetic precursor) of CL-20. values and destabilization energies (DSEs), which include the contribution from CRSE, were determined by computation using a relatively new multilevel ab intio model chemistry. Compared to cubane, isowurtzitane does not have an exceptionally high CRSE. It is about the same as that of cyclopropane and cyclobutane. These investigations demonstrate that instead of the CRSE inherent in the isowurtzitane parent compound, the relatively high and DSE values of CL-20 conformers must be due, primarily, to torsional strain (Pitzer strain), transannular strain (Prelog strain), and van der Waals interactions that occur due to the presence of the six >N–NO2 substituents that replace the six methylene (–CH2–) groups in the isowurtzitane parent compound. These conclusions are even more pronounced when 2,4,6,8,10,12-hexaazaisowurtzitane is viewed as the “parent compound.”
{"title":"A Theoretical Investigation of the Ring Strain Energy, Destabilization Energy, and Heat of Formation of CL-20","authors":"J. Bumpus","doi":"10.1155/2012/175146","DOIUrl":"https://doi.org/10.1155/2012/175146","url":null,"abstract":"The cage compound CL-20 (a.k.a., 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, HNIW, or 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane) is a well-studied high-energy-density material (HEDM). The high positive gas- ) and solid- () phase heat of formation values for CL-20 conformers have often been attributed to the strain energy of this cage compound and, by implication, to the conventional ring strain energy (CRSE) inherent in isowurtzitane which may be viewed as a “parent compound” (although not the synthetic precursor) of CL-20. values and destabilization energies (DSEs), which include the contribution from CRSE, were determined by computation using a relatively new multilevel ab intio model chemistry. Compared to cubane, isowurtzitane does not have an exceptionally high CRSE. It is about the same as that of cyclopropane and cyclobutane. These investigations demonstrate that instead of the CRSE inherent in the isowurtzitane parent compound, the relatively high and DSE values of CL-20 conformers must be due, primarily, to torsional strain (Pitzer strain), transannular strain (Prelog strain), and van der Waals interactions that occur due to the presence of the six >N–NO2 substituents that replace the six methylene (–CH2–) groups in the isowurtzitane parent compound. These conclusions are even more pronounced when 2,4,6,8,10,12-hexaazaisowurtzitane is viewed as the “parent compound.”","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82866201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ab Initio potential energy surfaces for the ground () and excited () electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.
{"title":"Ab Initio Potential Energy Surfaces for Both the Ground () and Excited () Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr","authors":"Anyang Li, Sen Lin, D. Xie","doi":"10.1155/2012/572148","DOIUrl":"https://doi.org/10.1155/2012/572148","url":null,"abstract":"Ab Initio potential energy surfaces for the ground () and excited () electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87784595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ultrasonic velocity and density of binary liquid mixtures of quinoline with o-xylene, m-xylene, and p-xylene have been measured over the entire range of composition at = 303.15, 308.15, 313.15, and 318.15 K. Using these data, various parameters like adiabatic compressibility (β), intermolecular free length (), and acoustic impedance () and some excess parameters like excess adiabatic compressibility (), excess intermolecular free length (), excess acoustic impedance (), and excess ultrasonic velocity () have been calculated for all the three mixtures. The calculated deviations and excess functions have been fitted to Redlich-Kister polynomial equation. The observed deviations have been explained on the basis of the intermolecular interactions present in these mixtures.
{"title":"Excess Transport Properties of Binary Mixtures of Quinoline with Xylenes at Different Temperatures","authors":"Sk. Fakruddin, C. Srinivasu, B. Rao, K. Narendra","doi":"10.1155/2012/324098","DOIUrl":"https://doi.org/10.1155/2012/324098","url":null,"abstract":"The ultrasonic velocity and density of binary liquid mixtures of quinoline with o-xylene, m-xylene, and p-xylene have been measured over the entire range of composition at = 303.15, 308.15, 313.15, and 318.15 K. Using these data, various parameters like adiabatic compressibility (β), intermolecular free length (), and acoustic impedance () and some excess parameters like excess adiabatic compressibility (), excess intermolecular free length (), excess acoustic impedance (), and excess ultrasonic velocity () have been calculated for all the three mixtures. The calculated deviations and excess functions have been fitted to Redlich-Kister polynomial equation. The observed deviations have been explained on the basis of the intermolecular interactions present in these mixtures.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82126202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Espinosa-García, M. Monge-Palacios, J. Corchado
Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms) approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H
{"title":"Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems","authors":"J. Espinosa-García, M. Monge-Palacios, J. Corchado","doi":"10.1155/2012/164752","DOIUrl":"https://doi.org/10.1155/2012/164752","url":null,"abstract":"Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms) approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76426884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP) below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533) and 15N NMR chemical shifts (R2 = 0.9531) of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT) and a 6-311
{"title":"Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups","authors":"Ricardo Infante-Castillo, S. Hernández‐Rivera","doi":"10.1155/2012/304686","DOIUrl":"https://doi.org/10.1155/2012/304686","url":null,"abstract":"This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP) below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533) and 15N NMR chemical shifts (R2 = 0.9531) of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT) and a 6-311","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82536123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.
{"title":"Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics","authors":"Dániel Kozma, G. Tóth","doi":"10.1155/2012/135172","DOIUrl":"https://doi.org/10.1155/2012/135172","url":null,"abstract":"Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79779136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conformational preference of N,N-diethyl- N-methyl- N-(2-methoxyethyl) ammonium cation ([DEME] +), which is one of the quaternary ammonium-based ionic liquid cation, in the gas phase has been investigated using a density functional theory (DFT) calculation. Eight candidates for the stable conformers of [DEME] + exist in the gas phase, and can it energetically classify into two groups. One is a five conformers group, which has the N + ⋯ O − intramolecular attractive interaction form (the folded form). The other is a three conformers group, which is the noninteraction form (the extended form). The transformation from the folded form to the extended form induces large changes in the dipole moment and partial charges of N and O atoms. Here we show that the difference in the dipole moment and partial charges of N and O atoms associated with the conformational change of [DEME] + are closely related to the molecular orientation of [DEME]-based ionic liquids in the liquid state.
利用密度泛函理论(DFT)计算研究了季铵盐离子液体阳离子N,N-二乙基- N-甲基- N-(2-甲氧基乙基)铵离子阳离子([DEME] +)在气相中的构象偏好。[DEME] +在气相中存在8种候选的稳定构象,在能量上可分为两类。一种是五构象基团,具有N + O -分子内吸引相互作用形式(折叠形式)。另一种是三构象群,是非相互作用形式(扩展形式)。从折叠形式到扩展形式的转变引起了N和O原子的偶极矩和部分电荷的巨大变化。本文表明,与[DEME] +构象变化相关的N和O原子的偶极矩和部分电荷的差异与[DEME]基离子液体在液态时的分子取向密切相关。
{"title":"Conformational Analysis of Quaternary Ammonium-Type Ionic Liquid Cation, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) Ammonium Cation","authors":"T. Takekiyo, Y. Imai, H. Abe, Y. Yoshimura","doi":"10.1155/2012/829523","DOIUrl":"https://doi.org/10.1155/2012/829523","url":null,"abstract":"Conformational preference of N,N-diethyl- N-methyl- N-(2-methoxyethyl) ammonium cation ([DEME] +), which is one of the quaternary ammonium-based ionic liquid cation, in the gas phase has been investigated using a density functional theory (DFT) calculation. Eight candidates for the stable conformers of [DEME] + exist in the gas phase, and can it energetically classify into two groups. One is a five conformers group, which has the N + ⋯ O − intramolecular attractive interaction form (the folded form). The other is a three conformers group, which is the noninteraction form (the extended form). The transformation from the folded form to the extended form induces large changes in the dipole moment and partial charges of N and O atoms. Here we show that the difference in the dipole moment and partial charges of N and O atoms associated with the conformational change of [DEME] + are closely related to the molecular orientation of [DEME]-based ionic liquids in the liquid state.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82265914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}