Pub Date : 2023-01-04DOI: 10.1186/s43065-022-00069-y
B. W. Chong, Xijun Shi
{"title":"Meta-analysis on PET plastic as concrete aggregate using response surface methodology and regression analysis","authors":"B. W. Chong, Xijun Shi","doi":"10.1186/s43065-022-00069-y","DOIUrl":"https://doi.org/10.1186/s43065-022-00069-y","url":null,"abstract":"","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47887980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-03DOI: 10.1186/s43065-022-00065-2
Dada Zhang, Chun-Hsing Ho, Fangfang Zhang
{"title":"Evaluating the impact of factors in vehicle based pavement sensing implementation: sensor placement, pavement temperature, speed, and threshold","authors":"Dada Zhang, Chun-Hsing Ho, Fangfang Zhang","doi":"10.1186/s43065-022-00065-2","DOIUrl":"https://doi.org/10.1186/s43065-022-00065-2","url":null,"abstract":"","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"4 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43019684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Passive buildings are proving to be a solution to menaces of energy crisis and greenhouse gas emissions across the world. Such buildings tend to exhibit low energy demand owing to their cleverly designed envelopes, which comprise of walls, roofs, doors, windows and other openings. This requires use of new materials and technology, leading to an increased initial construction cost. However, with reduced energy consumption, the lifecycle cost of a passive building may be lower than that of a conventional building. These passive buildings also need to cater to occupants' comfort which is subject to local climatic conditions and climate change. This article discusses economic feasibility and climatic adaptability of a passive building, in addition to advances in passive building strategies. Owing to lack of general awareness and standards related to passive building construction, these buildings have not achieved enough popularity. While many countries are striving hard to bring passive buildings to common masses, a large number of countries are yet to initiate the move. This article outlines several active organizations, standards and rating systems for passive buildings. This article also presents some of the recent research trends and a comprehensive bibliography for the benefit of researchers and practitioners.
{"title":"Passive buildings: a state-of-the-art review.","authors":"Vishwajit Anand, Vishnu Lakshmi Kadiri, Chandrasekhar Putcha","doi":"10.1186/s43065-022-00068-z","DOIUrl":"https://doi.org/10.1186/s43065-022-00068-z","url":null,"abstract":"<p><p>Passive buildings are proving to be a solution to menaces of energy crisis and greenhouse gas emissions across the world. Such buildings tend to exhibit low energy demand owing to their cleverly designed envelopes, which comprise of walls, roofs, doors, windows and other openings. This requires use of new materials and technology, leading to an increased initial construction cost. However, with reduced energy consumption, the lifecycle cost of a passive building may be lower than that of a conventional building. These passive buildings also need to cater to occupants' comfort which is subject to local climatic conditions and climate change. This article discusses economic feasibility and climatic adaptability of a passive building, in addition to advances in passive building strategies. Owing to lack of general awareness and standards related to passive building construction, these buildings have not achieved enough popularity. While many countries are striving hard to bring passive buildings to common masses, a large number of countries are yet to initiate the move. This article outlines several active organizations, standards and rating systems for passive buildings. This article also presents some of the recent research trends and a comprehensive bibliography for the benefit of researchers and practitioners.</p>","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"4 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10540460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-08-18DOI: 10.1186/s43065-023-00085-6
Alysha Helmrich, Amanda Kuhn, Anaís Roque, Ameyalli Santibanez, Yeowon Kim, Nancy B Grimm, Mikhail Chester
Complex adaptive systems - such as critical infrastructures (CI) - are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure's capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.
Supplementary information: The online version contains supplementary material available at 10.1186/s43065-023-00085-6.
{"title":"Interdependence of social-ecological-technological systems in Phoenix, Arizona: consequences of an extreme precipitation event.","authors":"Alysha Helmrich, Amanda Kuhn, Anaís Roque, Ameyalli Santibanez, Yeowon Kim, Nancy B Grimm, Mikhail Chester","doi":"10.1186/s43065-023-00085-6","DOIUrl":"10.1186/s43065-023-00085-6","url":null,"abstract":"<p><p>Complex adaptive systems - such as critical infrastructures (CI) - are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure's capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s43065-023-00085-6.</p>","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"4 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10050606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-05-06DOI: 10.1186/s43065-023-00078-5
Daniel Thompson, Gianluca Pescaroli
Disruptions to key lifelines, especially electrical power, can cause outsized impacts on human functioning. The state of the art on developed countries has focused on enhancing resilience to electrical grid infrastructure but has neglected to track changes regarding how the private market has developed electricity continuity measures over time. Backup generators are among the most accessible tools to maintain electricity continuity in case of power failure, but their role as a buffer remains understudied outside the technical domain, along with the humanitarian and emergency response sectors. This paper analyzes generator sales across the U.S. to understand some underlying trends that may have influenced changes in consumer preference for electricity resilience. Reports from major backup generator sellers and import data of backup generators reveal an increase in backup generators across the U.S. and find that private demand for energy resilience is likely increasing due to consumers' perceived risk and rising levels of intolerance to power disruptions. The discussion finds that an increase in private demand and use of backup generators may be impacting electricity resilience at a communal and societal level, which seems to be underexamined by studies focusing on private generator usage in the U.S..
{"title":"Buying electricity resilience: using backup generator sales in the United States to understand the role of the private market in resilience.","authors":"Daniel Thompson, Gianluca Pescaroli","doi":"10.1186/s43065-023-00078-5","DOIUrl":"10.1186/s43065-023-00078-5","url":null,"abstract":"<p><p>Disruptions to key lifelines, especially electrical power, can cause outsized impacts on human functioning. The state of the art on developed countries has focused on enhancing resilience to electrical grid infrastructure but has neglected to track changes regarding how the private market has developed electricity continuity measures over time. Backup generators are among the most accessible tools to maintain electricity continuity in case of power failure, but their role as a buffer remains understudied outside the technical domain, along with the humanitarian and emergency response sectors. This paper analyzes generator sales across the U.S. to understand some underlying trends that may have influenced changes in consumer preference for electricity resilience. Reports from major backup generator sellers and import data of backup generators reveal an increase in backup generators across the U.S. and find that private demand for energy resilience is likely increasing due to consumers' perceived risk and rising levels of intolerance to power disruptions. The discussion finds that an increase in private demand and use of backup generators may be impacting electricity resilience at a communal and societal level, which seems to be underexamined by studies focusing on private generator usage in the U.S..</p>","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"4 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-23DOI: 10.1186/s43065-022-00067-0
Tan, Xiao, Mahjoubi, Soroush, Zhang, Qinghua, Dong, Daren, Bao, Yi
High-performance fiber-reinforced cementitious composites (HPFRCC) have shown benefits in improving infrastructure resilience but often compromises sustainability due to the higher upfront cost and carbon footprint compared with conventional concrete. This paper presents a framework to optimize HPFRCC for improving bridge resilience and sustainability. This research considers ultra-high-performance concrete and strain-hardening cementitious composite featuring high mechanical properties, ductility, and damage tolerance. This paper establishes links between resilience, sustainability, mechanical properties of HPFRCC, and HPFRCC mixtures. The investigated mechanical properties include the first crack stress, ultimate tensile strength, and ultimate tensile strain. With the established links, sustainability is maximized while resilience is retained by optimizing HPFRCC mixtures. The framework is implemented into a case study of a bridge that collapsed during construction. Results show that use of HPFRCC enhances resilience, and HPFRCC mixtures can be engineered to minimize the material cost and carbon footprint while retaining high resilience. ● A practical framework is presented to improve bridge resilience and sustainability. ● High-performance fiber-reinforced cementitious composites are tailored in the framework. ● Effects of mechanical strength and ductility of materials on bridge resilience are evaluated. ● Material cost and carbon footprint are minimized while bridge resilience is improved.
{"title":"Optimizing high-performance fiber-reinforced cementitious composites for improving bridge resilience and sustainability","authors":"Tan, Xiao, Mahjoubi, Soroush, Zhang, Qinghua, Dong, Daren, Bao, Yi","doi":"10.1186/s43065-022-00067-0","DOIUrl":"https://doi.org/10.1186/s43065-022-00067-0","url":null,"abstract":"High-performance fiber-reinforced cementitious composites (HPFRCC) have shown benefits in improving infrastructure resilience but often compromises sustainability due to the higher upfront cost and carbon footprint compared with conventional concrete. This paper presents a framework to optimize HPFRCC for improving bridge resilience and sustainability. This research considers ultra-high-performance concrete and strain-hardening cementitious composite featuring high mechanical properties, ductility, and damage tolerance. This paper establishes links between resilience, sustainability, mechanical properties of HPFRCC, and HPFRCC mixtures. The investigated mechanical properties include the first crack stress, ultimate tensile strength, and ultimate tensile strain. With the established links, sustainability is maximized while resilience is retained by optimizing HPFRCC mixtures. The framework is implemented into a case study of a bridge that collapsed during construction. Results show that use of HPFRCC enhances resilience, and HPFRCC mixtures can be engineered to minimize the material cost and carbon footprint while retaining high resilience. ● A practical framework is presented to improve bridge resilience and sustainability. ● High-performance fiber-reinforced cementitious composites are tailored in the framework. ● Effects of mechanical strength and ductility of materials on bridge resilience are evaluated. ● Material cost and carbon footprint are minimized while bridge resilience is improved.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"413 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138514259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.1186/s43065-022-00064-3
P. Pfändler, Lukas Bircher, U. Angst
{"title":"Inspecting the corrosion state of underground reinforced concrete structures","authors":"P. Pfändler, Lukas Bircher, U. Angst","doi":"10.1186/s43065-022-00064-3","DOIUrl":"https://doi.org/10.1186/s43065-022-00064-3","url":null,"abstract":"","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"3 1","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1186/s43065-022-00063-4
Y. Huo, Huayang Sun, Dong Lu, Zhitao Chen, Yingzi Yang
{"title":"Mechanical properties of concrete at low and ultra-low temperatures- a review","authors":"Y. Huo, Huayang Sun, Dong Lu, Zhitao Chen, Yingzi Yang","doi":"10.1186/s43065-022-00063-4","DOIUrl":"https://doi.org/10.1186/s43065-022-00063-4","url":null,"abstract":"","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"3 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43495066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-21DOI: 10.1186/s43065-022-00060-7
Shaoyang Dong, Yusheng Jiang, X. Yu
{"title":"A novel random finite element model for holistically modeling of the frost effects on soils and cold region pavements","authors":"Shaoyang Dong, Yusheng Jiang, X. Yu","doi":"10.1186/s43065-022-00060-7","DOIUrl":"https://doi.org/10.1186/s43065-022-00060-7","url":null,"abstract":"","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"3 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45478257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}