首页 > 最新文献

Journal of the American College of Radiology : JACR最新文献

英文 中文
Recommendations From the Blue Ribbon Panel on Fluoroscopy Safety. 蓝带小组关于透视安全的建议。
Pub Date : 2026-02-05 DOI: 10.1016/j.jacr.2025.12.020
Dustin A Gress, M Mahesh, Kevin W Dickey, John F Angle, D Duane Baldwin, Stephen Balter, Wayne Batchelor, Lisa Bruedigan, Christopher Davis, Deirdre Elder, R Paul Guillerman, Maged N Guirguis, David Hardwick, Carrie M Hayes, Jeremy J Heit, A Kyle Jones, Melissa Kirkwood, Andrew Kuhls-Gilcrist, Bonnie Martin-Harris, William W Mayo-Smith, Sarah E McKenney, Richard Miguel, Donald L Miller, Eric Monroe, Kristi Moore, Thomas L Morgan, Kari J Nelson, Kathryn Petrovic, Shellie Pike, Carlos A Pino, Travis Prowant, Jonathan W Revels, Vinil Shah, Andrew Y Wang, David B Weiss, Darcy J Wolfman, Kevin A Wunderle, Jessica Zarzour, Michael E Zychowicz, Alan H Matsumoto

There are many challenges associated with the safe use of fluoroscopy. These challenges include but are not limited to highly variable regulatory requirements, scope of practice concerns, inconsistent education and training, and lack of staff empowerment. Challenges are further compounded by the increasing use of fluoroscopy across a wide range of medical specialties. To facilitate consensus on how to address the issues, the ACR convened the multidisciplinary Blue Ribbon Panel on Fluoroscopy Safety (BRP-FS), with 32 organizations represented. The goal of the BRP-FS is to establish multi- and interspecialty consensus standards for the safe use of fluoroscopy in health care, including minimum and uniform standards for the education and training of fluoroscopy users that apply across geographic and professional boundaries, for the benefit of all patients and health care providers. Recommendations are made for local practices, professional organizations, industry, regulatory agencies, and accreditation bodies. Foundational to the recommendations of the BRP-FS are the personnel training and procedure classification frameworks in National Council on Radiation Protection and Measurement Commentary No. 33.

有许多挑战与安全使用的透视。这些挑战包括但不限于高度可变的监管要求、实践关注的范围、不一致的教育和培训以及缺乏员工授权。在广泛的医学专业中越来越多地使用透视检查,使挑战进一步复杂化。为了促进就如何解决这些问题达成共识,ACR召集了由32个组织代表参加的多学科透视安全蓝带小组(BRP-FS)。BRP-FS的目标是建立在卫生保健中安全使用透视检查的多专业共识标准,包括适用于跨地域和专业界限的透视检查用户教育和培训的最低和统一标准,以使所有患者和卫生保健提供者受益。为当地实践、专业组织、行业、监管机构和认证机构提出了建议。BRP-FS建议的基础是国家辐射防护和测量委员会第33号评论中的人员培训和程序分类框架。
{"title":"Recommendations From the Blue Ribbon Panel on Fluoroscopy Safety.","authors":"Dustin A Gress, M Mahesh, Kevin W Dickey, John F Angle, D Duane Baldwin, Stephen Balter, Wayne Batchelor, Lisa Bruedigan, Christopher Davis, Deirdre Elder, R Paul Guillerman, Maged N Guirguis, David Hardwick, Carrie M Hayes, Jeremy J Heit, A Kyle Jones, Melissa Kirkwood, Andrew Kuhls-Gilcrist, Bonnie Martin-Harris, William W Mayo-Smith, Sarah E McKenney, Richard Miguel, Donald L Miller, Eric Monroe, Kristi Moore, Thomas L Morgan, Kari J Nelson, Kathryn Petrovic, Shellie Pike, Carlos A Pino, Travis Prowant, Jonathan W Revels, Vinil Shah, Andrew Y Wang, David B Weiss, Darcy J Wolfman, Kevin A Wunderle, Jessica Zarzour, Michael E Zychowicz, Alan H Matsumoto","doi":"10.1016/j.jacr.2025.12.020","DOIUrl":"https://doi.org/10.1016/j.jacr.2025.12.020","url":null,"abstract":"<p><p>There are many challenges associated with the safe use of fluoroscopy. These challenges include but are not limited to highly variable regulatory requirements, scope of practice concerns, inconsistent education and training, and lack of staff empowerment. Challenges are further compounded by the increasing use of fluoroscopy across a wide range of medical specialties. To facilitate consensus on how to address the issues, the ACR convened the multidisciplinary Blue Ribbon Panel on Fluoroscopy Safety (BRP-FS), with 32 organizations represented. The goal of the BRP-FS is to establish multi- and interspecialty consensus standards for the safe use of fluoroscopy in health care, including minimum and uniform standards for the education and training of fluoroscopy users that apply across geographic and professional boundaries, for the benefit of all patients and health care providers. Recommendations are made for local practices, professional organizations, industry, regulatory agencies, and accreditation bodies. Foundational to the recommendations of the BRP-FS are the personnel training and procedure classification frameworks in National Council on Radiation Protection and Measurement Commentary No. 33.</p>","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146133813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergency department to outpatient oncology transitions of care through a cancer diagnostics program: Implementation and feasibility. 通过癌症诊断项目从急诊科到门诊肿瘤护理的转变:实施和可行性。
Pub Date : 2026-02-02 DOI: 10.1016/j.jacr.2026.01.028
Dena Rhinehart, Vivek Nimgaonkar, Chen Hu, Suqi Ke, Matthew Guo, Jacob Murphy, Mitchell Parma, Kristen Reeb, Josephine Feliciano
{"title":"Emergency department to outpatient oncology transitions of care through a cancer diagnostics program: Implementation and feasibility.","authors":"Dena Rhinehart, Vivek Nimgaonkar, Chen Hu, Suqi Ke, Matthew Guo, Jacob Murphy, Mitchell Parma, Kristen Reeb, Josephine Feliciano","doi":"10.1016/j.jacr.2026.01.028","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.028","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146121328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply. 回复。
Pub Date : 2026-02-02 DOI: 10.1016/j.jacr.2026.01.032
Elliot K Fishman, Daniel J Lee, Linda C Chu, Steven P Rowe
{"title":"Reply.","authors":"Elliot K Fishman, Daniel J Lee, Linda C Chu, Steven P Rowe","doi":"10.1016/j.jacr.2026.01.032","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.032","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146121322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dr. No: The Art of Saying "No" (and Feeling Good About It). 《诺博士:说“不”的艺术(并感觉良好)》
Pub Date : 2026-01-30 DOI: 10.1016/j.jacr.2026.01.016
Kirang Patel, Yasha Gupta, Alex Podlaski
{"title":"Dr. No: The Art of Saying \"No\" (and Feeling Good About It).","authors":"Kirang Patel, Yasha Gupta, Alex Podlaski","doi":"10.1016/j.jacr.2026.01.016","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.016","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146100965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Model with Nodule Indexing Tailored to Early-Stage Lung Cancer Detection. 面向早期肺癌检测的结节索引深度学习模型。
Pub Date : 2026-01-29 DOI: 10.1016/j.jacr.2026.01.025
Jamie L Schroeder, Mary G Cormier, ShihChung B Lo, Laura B Gillis, Matthew T Freedman, Seong K Mun

Objective: To evaluate whether a deep learning-based AI system with suspected nodule indexing and malignancy risk stratification improves radiologist performance in detecting pulmonary nodules on CT, using a dataset enriched with challenging early-stage lung cancers.

Methods: The study comprised a standalone AI sensitivity-specificity analysis and a two-arm crossover reader study with 16 American board-certified radiologists. Each reader interpreted 340 CT scans with and without AI, separated by a one-month washout. The dataset included 209 screening and 131 non-screening cases: 133 with lung cancer, 61 with benign non-calcified nodules ≥4 mm, and 146 normal. To enrich subtle lesions, 64 of 91 (70.3%) small cancer cases were drawn from early-round NLST CT scans. Localization-specific ROC (LROC) analysis was used to assess radiologist performance.

Results: Standalone AI achieved a sensitivity of 0.804 at 1.37 false positives per case. With AI assistance, radiologists' LROC AUC improved cancer detection (0.761 vs. 0.652; ΔAUC = 0.109, 95% CI: 0.067, 0.152) and for all nodules (0.830 vs. 0.734; ΔAUC = 0.096, 95% CI: 0.059, 0.133). Mean sensitivity increased from 0.585 to 0.727, while specificity remained essentially unchanged (0.918 vs. 0.913). Interpretation time decreased by 12.9%, from a mean of 133 to 115.9 seconds (Difference = -17.1 seconds (95% CI: -26.7, -9.0)). AI alerts enabled detection of early-stage cancer detection previously missed in NLST interpretations.

Discussion: The AI system significantly improved radiologist's performance in pulmonary nodule detection, with consistent benefits across nodule types, screening contexts, and experience levels; supporting its integration into routine chest CT interpretation workflows.

目的:利用具有挑战性的早期肺癌数据集,评估基于深度学习的疑似结节索引和恶性肿瘤风险分层的人工智能系统是否能提高放射科医生在CT上检测肺结节的能力。方法:该研究包括独立的人工智能敏感性-特异性分析和与16名美国委员会认证的放射科医生的双臂交叉阅读研究。每个读取器在有人工智能和没有人工智能的情况下解读340个CT扫描,间隔一个月的冲洗期。数据集包括209例筛查和131例非筛查病例:肺癌133例,≥4mm的良性非钙化结节61例,146例正常。为了丰富细微病变,91例小肿瘤中有64例(70.3%)来自早期NLST CT扫描。定位特异性ROC (LROC)分析用于评估放射科医生的表现。结果:独立人工智能的灵敏度为0.804,每例1.37例假阳性。在人工智能的帮助下,放射科医生的LROC AUC改善了癌症的检测(0.761比0.652;ΔAUC = 0.109, 95% CI: 0.067, 0.152)和所有结节的检测(0.830比0.734;ΔAUC = 0.096, 95% CI: 0.059, 0.133)。平均敏感性从0.585增加到0.727,而特异性基本保持不变(0.918比0.913)。口译时间减少了12.9%,从平均133秒减少到115.9秒(差异= -17.1秒(95% CI: -26.7, -9.0))。人工智能警报能够检测早期癌症,以前在NLST解释中无法检测到。讨论:人工智能系统显著提高了放射科医生在肺结节检测方面的表现,在不同的结节类型、筛查背景和经验水平上都有一致的好处;支持其融入常规胸部CT解读工作流程。
{"title":"Deep Learning Model with Nodule Indexing Tailored to Early-Stage Lung Cancer Detection.","authors":"Jamie L Schroeder, Mary G Cormier, ShihChung B Lo, Laura B Gillis, Matthew T Freedman, Seong K Mun","doi":"10.1016/j.jacr.2026.01.025","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.025","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate whether a deep learning-based AI system with suspected nodule indexing and malignancy risk stratification improves radiologist performance in detecting pulmonary nodules on CT, using a dataset enriched with challenging early-stage lung cancers.</p><p><strong>Methods: </strong>The study comprised a standalone AI sensitivity-specificity analysis and a two-arm crossover reader study with 16 American board-certified radiologists. Each reader interpreted 340 CT scans with and without AI, separated by a one-month washout. The dataset included 209 screening and 131 non-screening cases: 133 with lung cancer, 61 with benign non-calcified nodules ≥4 mm, and 146 normal. To enrich subtle lesions, 64 of 91 (70.3%) small cancer cases were drawn from early-round NLST CT scans. Localization-specific ROC (LROC) analysis was used to assess radiologist performance.</p><p><strong>Results: </strong>Standalone AI achieved a sensitivity of 0.804 at 1.37 false positives per case. With AI assistance, radiologists' LROC AUC improved cancer detection (0.761 vs. 0.652; ΔAUC = 0.109, 95% CI: 0.067, 0.152) and for all nodules (0.830 vs. 0.734; ΔAUC = 0.096, 95% CI: 0.059, 0.133). Mean sensitivity increased from 0.585 to 0.727, while specificity remained essentially unchanged (0.918 vs. 0.913). Interpretation time decreased by 12.9%, from a mean of 133 to 115.9 seconds (Difference = -17.1 seconds (95% CI: -26.7, -9.0)). AI alerts enabled detection of early-stage cancer detection previously missed in NLST interpretations.</p><p><strong>Discussion: </strong>The AI system significantly improved radiologist's performance in pulmonary nodule detection, with consistent benefits across nodule types, screening contexts, and experience levels; supporting its integration into routine chest CT interpretation workflows.</p>","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146097137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward safer tissue acquisition in peripheral lung nodule evaluation. 周边肺结节评估中更安全的组织获取。
Pub Date : 2026-01-29 DOI: 10.1016/j.jacr.2026.01.026
Jacob Schwartz, Irene Riestra, Uzair K Ghori, Otis B Rickman, Abesh Niroula
{"title":"Toward safer tissue acquisition in peripheral lung nodule evaluation.","authors":"Jacob Schwartz, Irene Riestra, Uzair K Ghori, Otis B Rickman, Abesh Niroula","doi":"10.1016/j.jacr.2026.01.026","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.026","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146097544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPANSION OF U.S. RESIDENCY PROGRAMS IN DIAGNOSTIC RADIOLOGY. 扩大美国放射诊断住院医师项目。
Pub Date : 2026-01-29 DOI: 10.1016/j.jacr.2026.01.015
Himi Begum, Hannah Short, Sara Pettey Sandifer, Ross Cottrill, Rebecca A Jordan, Michael A Bruno
{"title":"EXPANSION OF U.S. RESIDENCY PROGRAMS IN DIAGNOSTIC RADIOLOGY.","authors":"Himi Begum, Hannah Short, Sara Pettey Sandifer, Ross Cottrill, Rebecca A Jordan, Michael A Bruno","doi":"10.1016/j.jacr.2026.01.015","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.015","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146097611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiology board-style exams and LLMs: a scoping review of model performance. 放射学委员会式考试和法学硕士:模型性能的范围审查。
Pub Date : 2026-01-28 DOI: 10.1016/j.jacr.2026.01.017
Pilar López-Úbeda, Teodoro Martín-Noguerol, Antonio Luna

Background: Large Language Models (LLMs) are increasingly being evaluated for their ability to answer official radiology board-style examination questions. Understanding their accuracy, limitations, and potential applications in education is essential for assessing their utility in the field.

Material and methods: A scoping review was conducted in October 2025 across PubMed, Scopus, and Web of Science, following PRISMA guidelines. Studies were included if they evaluated LLMs on official radiology board-style examination questions. After screening 205 unique records, 29 studies met the inclusion criteria. Data were extracted on study characteristics, including LLM type and version, input modality, language, examination type, answer format, comparison with humans, and reported outcomes.

Results: The reviewed studies evaluated multiple LLMs, predominantly GPT-based models (GPT-3.5, GPT-4, GPT-4 Turbo, GPT-4o), as well as Claude, Gemini, LLaMA 3, and Mixtral. Text-only evaluations generally yielded higher accuracy (≈65-90%) compared to multimodal tasks (45-89%). GPT-4 and its variants consistently outperformed earlier versions, occasionally exceeding average human performance. Open-source models such as LLaMA 3 70B and Mixtral achieved comparable results to proprietary models, offering advantages in local deployment and privacy. Few studies directly compared LLM performance with human radiologists.

Conclusions: LLMs demonstrate promising performance in answering text-based radiology board-style exam questions, particularly GPT-4-based models. Nevertheless, significant limitations persist in multimodal tasks and complex reasoning scenarios.

背景:大型语言模型(llm)越来越多地被评估其回答官方放射学委员会式考试问题的能力。了解它们的准确性、局限性和在教育中的潜在应用对于评估它们在该领域的效用至关重要。材料和方法:根据PRISMA指南,于2025年10月对PubMed、Scopus和Web of Science进行了范围审查。如果研究评估llm的官方放射学委员会式考试问题,则纳入研究。在筛选205个独特记录后,29个研究符合纳入标准。提取研究特征的数据,包括LLM类型和版本、输入方式、语言、考试类型、答案格式、与人类的比较以及报告的结果。结果:回顾的研究评估了多种llm,主要是基于gpt的模型(GPT-3.5, GPT-4, GPT-4 Turbo, gpt - 40),以及Claude, Gemini, LLaMA 3和Mixtral。与多模态任务(45-89%)相比,纯文本评估通常产生更高的准确率(≈65-90%)。GPT-4及其变体的表现一直优于早期版本,有时甚至超过人类的平均表现。开源模型(如LLaMA 370b和Mixtral)取得了与专有模型相当的结果,在本地部署和隐私方面提供了优势。很少有研究直接比较LLM与人类放射科医生的表现。结论:法学硕士在回答基于文本的放射学委员会式考试问题方面表现出良好的表现,特别是基于gpt -4的模型。然而,在多模态任务和复杂的推理场景中,仍然存在显著的局限性。
{"title":"Radiology board-style exams and LLMs: a scoping review of model performance.","authors":"Pilar López-Úbeda, Teodoro Martín-Noguerol, Antonio Luna","doi":"10.1016/j.jacr.2026.01.017","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.017","url":null,"abstract":"<p><strong>Background: </strong>Large Language Models (LLMs) are increasingly being evaluated for their ability to answer official radiology board-style examination questions. Understanding their accuracy, limitations, and potential applications in education is essential for assessing their utility in the field.</p><p><strong>Material and methods: </strong>A scoping review was conducted in October 2025 across PubMed, Scopus, and Web of Science, following PRISMA guidelines. Studies were included if they evaluated LLMs on official radiology board-style examination questions. After screening 205 unique records, 29 studies met the inclusion criteria. Data were extracted on study characteristics, including LLM type and version, input modality, language, examination type, answer format, comparison with humans, and reported outcomes.</p><p><strong>Results: </strong>The reviewed studies evaluated multiple LLMs, predominantly GPT-based models (GPT-3.5, GPT-4, GPT-4 Turbo, GPT-4o), as well as Claude, Gemini, LLaMA 3, and Mixtral. Text-only evaluations generally yielded higher accuracy (≈65-90%) compared to multimodal tasks (45-89%). GPT-4 and its variants consistently outperformed earlier versions, occasionally exceeding average human performance. Open-source models such as LLaMA 3 70B and Mixtral achieved comparable results to proprietary models, offering advantages in local deployment and privacy. Few studies directly compared LLM performance with human radiologists.</p><p><strong>Conclusions: </strong>LLMs demonstrate promising performance in answering text-based radiology board-style exam questions, particularly GPT-4-based models. Nevertheless, significant limitations persist in multimodal tasks and complex reasoning scenarios.</p>","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146094985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standardizing the Standard of Care: The Blue Ribbon Panel on Fluoroscopy Safety's Vision for Fluoroscopy Safety Across Medicine. 标准化护理标准:透视安全蓝带小组对整个医学透视安全的愿景。
Pub Date : 2026-01-28 DOI: 10.1016/j.jacr.2026.01.024
Javad R Azadi
{"title":"Standardizing the Standard of Care: The Blue Ribbon Panel on Fluoroscopy Safety's Vision for Fluoroscopy Safety Across Medicine.","authors":"Javad R Azadi","doi":"10.1016/j.jacr.2026.01.024","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.024","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in Pediatric Imaging Utilization Between Children's and Non-Children's Hospital: Is it Time to Move on from the focus on CT and Radiation? 儿童医院和非儿童医院在儿童影像利用上的差异:是时候不再关注CT和放疗了吗?
Pub Date : 2026-01-27 DOI: 10.1016/j.jacr.2026.01.011
Hansel J Otero, Taisa Guarilha
{"title":"Differences in Pediatric Imaging Utilization Between Children's and Non-Children's Hospital: Is it Time to Move on from the focus on CT and Radiation?","authors":"Hansel J Otero, Taisa Guarilha","doi":"10.1016/j.jacr.2026.01.011","DOIUrl":"https://doi.org/10.1016/j.jacr.2026.01.011","url":null,"abstract":"","PeriodicalId":73968,"journal":{"name":"Journal of the American College of Radiology : JACR","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146088154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American College of Radiology : JACR
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1