RNA polymerase III (pol III) synthesizes short noncoding RNA (ncRNA) exclusively and is unique in having alternative paralogues of one of its subunits, POLR3G and POLR3GL. Although most pol III target loci can be transcribed by either isoform, exceptions have been found. For example, depletion of POLR3G curtails the production of BC200 and snaR ncRNAs that are implicated in cancer progression. Furthermore, POLR3G may protect pol III against repression by MAF1, a key physiological regulator. Expression of POLR3G is promoted selectively by MYC, NANOG and OCT4A, master regulators of stem cell pluripotency, resulting in its preferential accumulation in undifferentiated cells. Indeed, differentiation of prostate cancer cells is suppressed by a positive feedback mechanism between POLR3G and NANOG, involving the control of NANOG mRNA degradation by ncRNAs. Specific knockdown of POLR3G inhibits proliferation and induces differentiation of prostate cancer cells, but this response is not seen following comparable depletion of its POLR3GL paralogue. ML-60218 is a cell-permeable small molecule pol III inhibitor that triggers the replacement of POLR3G with POLR3GL. Proliferation and viability of primary prostate cancer cells are suppressed by ML-60218, whereas differentiation is induced, effects that mimic POLR3G depletion. Transient exposure to ML-60218 reduced tumour initiating activity in a xenograft model. Untransformed prostate cells are much less sensitive to these treatments, raising the possibility of therapeutic benefit.
{"title":"Alternative isoforms of RNA polymerase III impact the non-coding RNA transcriptome, viability, proliferation and differentiation of prostate cancer cells","authors":"Jodie R. Malcolm, R. J. White","doi":"10.20517/jtgg.2021.50","DOIUrl":"https://doi.org/10.20517/jtgg.2021.50","url":null,"abstract":"RNA polymerase III (pol III) synthesizes short noncoding RNA (ncRNA) exclusively and is unique in having alternative paralogues of one of its subunits, POLR3G and POLR3GL. Although most pol III target loci can be transcribed by either isoform, exceptions have been found. For example, depletion of POLR3G curtails the production of BC200 and snaR ncRNAs that are implicated in cancer progression. Furthermore, POLR3G may protect pol III against repression by MAF1, a key physiological regulator. Expression of POLR3G is promoted selectively by MYC, NANOG and OCT4A, master regulators of stem cell pluripotency, resulting in its preferential accumulation in undifferentiated cells. Indeed, differentiation of prostate cancer cells is suppressed by a positive feedback mechanism between POLR3G and NANOG, involving the control of NANOG mRNA degradation by ncRNAs. Specific knockdown of POLR3G inhibits proliferation and induces differentiation of prostate cancer cells, but this response is not seen following comparable depletion of its POLR3GL paralogue. ML-60218 is a cell-permeable small molecule pol III inhibitor that triggers the replacement of POLR3G with POLR3GL. Proliferation and viability of primary prostate cancer cells are suppressed by ML-60218, whereas differentiation is induced, effects that mimic POLR3G depletion. Transient exposure to ML-60218 reduced tumour initiating activity in a xenograft model. Untransformed prostate cells are much less sensitive to these treatments, raising the possibility of therapeutic benefit.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome-wide association studies (GWAS) have been successful in identifying genetic risk factors for a large number of complex diseases, including age-related macular degeneration (AMD), which is a highly heritable complex disease affecting millions of elderly individuals. However, the progress of elucidating the functional relevance of genetic findings in AMD has been slow, as most risk factors are non-coding, and we have little insight into the causal genes and disease mechanisms. In the last few years, gene expression regulation is emerging as a dominant mechanism through which GWAS risk variants lead to the disease. The purpose of this review is to provide an overview of how transcriptome studies can help in identifying the genes, pathways and therapeutic targets underlying GWAS discoveries in AMD. These approaches help pave the road for mechanistic understanding of GWAS findings and drive translational advances that will lead to improved AMD management and treatment.
{"title":"Transcriptomics insights into interpreting AMD-GWAS discoveries for biological and clinical applications","authors":"R. Ratnapriya","doi":"10.20517/jtgg.2021.54","DOIUrl":"https://doi.org/10.20517/jtgg.2021.54","url":null,"abstract":"Genome-wide association studies (GWAS) have been successful in identifying genetic risk factors for a large number of complex diseases, including age-related macular degeneration (AMD), which is a highly heritable complex disease affecting millions of elderly individuals. However, the progress of elucidating the functional relevance of genetic findings in AMD has been slow, as most risk factors are non-coding, and we have little insight into the causal genes and disease mechanisms. In the last few years, gene expression regulation is emerging as a dominant mechanism through which GWAS risk variants lead to the disease. The purpose of this review is to provide an overview of how transcriptome studies can help in identifying the genes, pathways and therapeutic targets underlying GWAS discoveries in AMD. These approaches help pave the road for mechanistic understanding of GWAS findings and drive translational advances that will lead to improved AMD management and treatment.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. A. Morales, C. Curry, Christina G. Tise, L. Kratz, G. Enns
Sterol C4-methyloxidase-like (SC4MOL) deficiency is an autosomal recessive condition caused by biallelic pathogenic variants in MSMO1, resulting in the accumulation of 4-monomethyl and 4,4′-dimethyl sterols due to an enzymatic block in the cholesterol synthesis pathway. SC4MOL deficiency was first reported in 2011, with only seven additional cases from five unrelated families described in the literature since. Based on these reports, the most characteristic clinical features include the triad of microcephaly, congenital cataracts, and psoriatic dermatitis, followed by delayed growth and puberty, and neurodevelopmental problems. Herein, we describe an 8-year-old boy who presented with congenital cataracts and developmental delay at age 6 months and was found to have biallelic variants in MSMO1 by trio exome sequencing. Initial total methylsterol levels were elevated but responsive to statin therapy, while total cholesterol levels remained normal throughout. Available clinical and biochemical data suggest this individual could represent the mildest case of SC4MOL deficiency to date.
{"title":"Clinical characterization of a new individual with mild SC4MOL deficiency: diagnostic and therapeutic implications","authors":"J. A. Morales, C. Curry, Christina G. Tise, L. Kratz, G. Enns","doi":"10.20517/jtgg.2022.01","DOIUrl":"https://doi.org/10.20517/jtgg.2022.01","url":null,"abstract":"Sterol C4-methyloxidase-like (SC4MOL) deficiency is an autosomal recessive condition caused by biallelic pathogenic variants in MSMO1, resulting in the accumulation of 4-monomethyl and 4,4′-dimethyl sterols due to an enzymatic block in the cholesterol synthesis pathway. SC4MOL deficiency was first reported in 2011, with only seven additional cases from five unrelated families described in the literature since. Based on these reports, the most characteristic clinical features include the triad of microcephaly, congenital cataracts, and psoriatic dermatitis, followed by delayed growth and puberty, and neurodevelopmental problems. Herein, we describe an 8-year-old boy who presented with congenital cataracts and developmental delay at age 6 months and was found to have biallelic variants in MSMO1 by trio exome sequencing. Initial total methylsterol levels were elevated but responsive to statin therapy, while total cholesterol levels remained normal throughout. Available clinical and biochemical data suggest this individual could represent the mildest case of SC4MOL deficiency to date.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder caused by mono-allelic loss of function variants of transcription factor 4 (TCF4), which plays a key role in early brain developmental and neuronal differentiation. Up to one-half of patients with PTHS will have epilepsy; however, little is known about the characteristic electroencephalogram (EEG) findings in this population. Because there is significant phenotypic overlap between PTHS and other neurodevelopmental disorders such as Angelman syndrome and Rett syndrome, which have characteristic EEG patterns, exploration of a potential EEG signature in patients with PTHS was warranted. Methods: We conducted a retrospective review of clinical EEGs in patients with PTHS. Results: In this cohort of patients with PTHS (n = 16), over half had abnormal EEGs; however, no characteristic EEG signature was identified. Further, all patients with epilepsy (5/16) had focal onset seizures with or without secondary generalization, and all five had focal abnormalities on EEG. There was no specific correlation between EEG results and developmental trajectories or age in our patient group, and there was no clear genotype-phenotype correlation. Conclusion: Although a distinctive EEG signature was not identified, all individuals with epilepsy in our cohort had focal onset seizures with corresponding focal epileptiform discharges or focal slowing on EEG. Future studies are needed to fully elucidate the spectrum of EEG findings in PTHS and explore the pathogenesis of focal seizures in a disorder of neuronal differentiation and development.
{"title":"Epilepsy and electroencephalography in Pitt-Hopkins syndrome","authors":"Megan Bone, Kimberly Goodspeed, Deepa Sirsi","doi":"10.20517/jtgg.2021.56","DOIUrl":"https://doi.org/10.20517/jtgg.2021.56","url":null,"abstract":"Aim: Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder caused by mono-allelic loss of function variants of transcription factor 4 (TCF4), which plays a key role in early brain developmental and neuronal differentiation. Up to one-half of patients with PTHS will have epilepsy; however, little is known about the characteristic electroencephalogram (EEG) findings in this population. Because there is significant phenotypic overlap between PTHS and other neurodevelopmental disorders such as Angelman syndrome and Rett syndrome, which have characteristic EEG patterns, exploration of a potential EEG signature in patients with PTHS was warranted. Methods: We conducted a retrospective review of clinical EEGs in patients with PTHS. Results: In this cohort of patients with PTHS (n = 16), over half had abnormal EEGs; however, no characteristic EEG signature was identified. Further, all patients with epilepsy (5/16) had focal onset seizures with or without secondary generalization, and all five had focal abnormalities on EEG. There was no specific correlation between EEG results and developmental trajectories or age in our patient group, and there was no clear genotype-phenotype correlation. Conclusion: Although a distinctive EEG signature was not identified, all individuals with epilepsy in our cohort had focal onset seizures with corresponding focal epileptiform discharges or focal slowing on EEG. Future studies are needed to fully elucidate the spectrum of EEG findings in PTHS and explore the pathogenesis of focal seizures in a disorder of neuronal differentiation and development.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Sadaf, Hanna Hong, M. Maqbool, Kylin A. Emhoff, Jianhong Lin, S. Yan, F. Anwer, Jianjun Zhao
Genomic aberrations comprise hallmarks of multiple myeloma (MM), a plasma cell malignancy with an overall poor prognosis. MM is heterogeneous and has different molecularly-defined subtypes according to varying clinical and pathological features. Hyperdiploidy or non-hyperdiploidy has usually been identified as early initiating genetic events that can be followed by secondary aberrations, including copy number changes, secondary translocations, and different epigenetic modifications, which cause immortalization of plasma cell and disease progression. Even though recent advances in drug discovery have offered new perspectives of treatment, MM remains incurable. However, understanding the molecular complexity of MM would allow patients to get precision treatment. Our review focuses on current evidence in myeloma biology with special attention to genomic and molecular variations.
{"title":"Multiple myeloma etiology and treatment","authors":"H. Sadaf, Hanna Hong, M. Maqbool, Kylin A. Emhoff, Jianhong Lin, S. Yan, F. Anwer, Jianjun Zhao","doi":"10.20517/jtgg.2021.36","DOIUrl":"https://doi.org/10.20517/jtgg.2021.36","url":null,"abstract":"Genomic aberrations comprise hallmarks of multiple myeloma (MM), a plasma cell malignancy with an overall poor prognosis. MM is heterogeneous and has different molecularly-defined subtypes according to varying clinical and pathological features. Hyperdiploidy or non-hyperdiploidy has usually been identified as early initiating genetic events that can be followed by secondary aberrations, including copy number changes, secondary translocations, and different epigenetic modifications, which cause immortalization of plasma cell and disease progression. Even though recent advances in drug discovery have offered new perspectives of treatment, MM remains incurable. However, understanding the molecular complexity of MM would allow patients to get precision treatment. Our review focuses on current evidence in myeloma biology with special attention to genomic and molecular variations.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review analyzes the potential impact of milk-induced signal transduction on the pathogenesis of prostate cancer (PCa). Articles in PubMed until November 2021 reporting on milk intake and PCa were reviewed. Epidemiological studies identified commercial cow milk consumption as a potential risk factor of PCa. The potential impact of cow milk consumption on the pathogenesis of PCa may already begin during fetal and pubertal prostate growth, critical windows with increased vulnerability. Milk is a promotor of growth and anabolism via activating insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/AKT/mechanistic target of rapamycin complex 1 (mTORC1) signaling. Estrogens, major steroid hormone components of commercial milk of persistently pregnant dairy cows, activate IGF-1 and mTORC1. Milk-derived signaling synergizes with common driver mutations of the PI3K/AKT/mTORC1 signaling pathway that intersect with androgen receptor, MFG-E8, MAPK, RUNX2, MDM4, TP53, and WNT signaling, respectively. Potential exogenously induced drivers of PCa are milk-induced elevations of growth hormone, IGF-1, MFG-E8, estrogens, phytanic acid, and aflatoxins, as well as milk exosome-derived oncogenic microRNAs including miR-148a, miR-21, and miR-29b. Commercial cow milk intake, especially the consumption of pasteurized milk, which represents the closest replica of native milk, activates PI3K-AKT-mTORC1 signaling via cow milk’s endocrine and epigenetic modes of action. Vulnerable periods for adverse nutrigenomic impacts on prostate health appear to be the fetal and pubertal growth periods, potentially priming the initiation of PCa. Cow milk-mediated overactivation of PI3K-AKT-mTORC1 signaling synergizes with the most common genetic deviations in PCa, promoting PCa initiation, progression, and early recurrence.
{"title":"The endocrine and epigenetic impact of persistent cow milk consumption on prostate carcinogenesis","authors":"B. Melnik, S. John, R. Weiskirchen, G. Schmitz","doi":"10.20517/jtgg.2021.37","DOIUrl":"https://doi.org/10.20517/jtgg.2021.37","url":null,"abstract":"This review analyzes the potential impact of milk-induced signal transduction on the pathogenesis of prostate cancer (PCa). Articles in PubMed until November 2021 reporting on milk intake and PCa were reviewed. Epidemiological studies identified commercial cow milk consumption as a potential risk factor of PCa. The potential impact of cow milk consumption on the pathogenesis of PCa may already begin during fetal and pubertal prostate growth, critical windows with increased vulnerability. Milk is a promotor of growth and anabolism via activating insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/AKT/mechanistic target of rapamycin complex 1 (mTORC1) signaling. Estrogens, major steroid hormone components of commercial milk of persistently pregnant dairy cows, activate IGF-1 and mTORC1. Milk-derived signaling synergizes with common driver mutations of the PI3K/AKT/mTORC1 signaling pathway that intersect with androgen receptor, MFG-E8, MAPK, RUNX2, MDM4, TP53, and WNT signaling, respectively. Potential exogenously induced drivers of PCa are milk-induced elevations of growth hormone, IGF-1, MFG-E8, estrogens, phytanic acid, and aflatoxins, as well as milk exosome-derived oncogenic microRNAs including miR-148a, miR-21, and miR-29b. Commercial cow milk intake, especially the consumption of pasteurized milk, which represents the closest replica of native milk, activates PI3K-AKT-mTORC1 signaling via cow milk’s endocrine and epigenetic modes of action. Vulnerable periods for adverse nutrigenomic impacts on prostate health appear to be the fetal and pubertal growth periods, potentially priming the initiation of PCa. Cow milk-mediated overactivation of PI3K-AKT-mTORC1 signaling synergizes with the most common genetic deviations in PCa, promoting PCa initiation, progression, and early recurrence.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan F Baye, Amanda Massmann, Natasha J. Petry, J. Van Heukelom, Kristen De Berg, April Schultz, C. Hajek
Aim: Long QT syndrome (LQTS) is an inherited condition that predisposes individuals to prolongation of the QT interval and increased risk for Torsade de Pointes. Pathogenic variants in three genes - KCNH2, KCNQ1 and SCN5A - are responsible for most cases of LQTS, and recent advances in genetic testing have improved knowledge of the disease, increased access to follow-up, and reduced adverse cardiovascular outcomes. Methods: Based around our preemptive genetic screening platform which includes the three long QT genes listed above, we developed and implemented a clinical decision support (CDS) module that alerts prescribers whenever a QT-prolonging medication is ordered for patients with a genetic predisposition to LQTS. Results: Of the 13,777 individuals screened, twenty-seven tested positive for a pathogenic or likely pathogenic variant of KCNH2, KCNQ1 or SCN5A. In a subsequent early evaluation of the CDS and clinical processes, the number of QT-prolonging medications in this cohort decreased by 20% and new QT-prolonging medications were avoided in approximately 1/3 of new prescription orders. Conclusions: While long-term evaluation is needed, early data support the benefit of utilizing CDS in expanded roles, such as drug-gene-disease interactions where rare genetic variants intersect with everyday prescribing.
{"title":"Development and early evaluation of clinical decision support for long QT syndrome population screening","authors":"Jordan F Baye, Amanda Massmann, Natasha J. Petry, J. Van Heukelom, Kristen De Berg, April Schultz, C. Hajek","doi":"10.20517/jtgg.2022.12","DOIUrl":"https://doi.org/10.20517/jtgg.2022.12","url":null,"abstract":"Aim: Long QT syndrome (LQTS) is an inherited condition that predisposes individuals to prolongation of the QT interval and increased risk for Torsade de Pointes. Pathogenic variants in three genes - KCNH2, KCNQ1 and SCN5A - are responsible for most cases of LQTS, and recent advances in genetic testing have improved knowledge of the disease, increased access to follow-up, and reduced adverse cardiovascular outcomes. Methods: Based around our preemptive genetic screening platform which includes the three long QT genes listed above, we developed and implemented a clinical decision support (CDS) module that alerts prescribers whenever a QT-prolonging medication is ordered for patients with a genetic predisposition to LQTS. Results: Of the 13,777 individuals screened, twenty-seven tested positive for a pathogenic or likely pathogenic variant of KCNH2, KCNQ1 or SCN5A. In a subsequent early evaluation of the CDS and clinical processes, the number of QT-prolonging medications in this cohort decreased by 20% and new QT-prolonging medications were avoided in approximately 1/3 of new prescription orders. Conclusions: While long-term evaluation is needed, early data support the benefit of utilizing CDS in expanded roles, such as drug-gene-disease interactions where rare genetic variants intersect with everyday prescribing.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maintenance of DNA integrity is crucial for faithful transmission of the genetic code from generation to generation. Our genetic code is constantly under attack from both endogenous and exogenous sources of DNA damage. To ensure genome stability, cells have developed elegant DNA damage repair mechanisms. Defects in DNA damage repair have been linked to several human diseases including promoting oncogenesis, heritable neurodegenerative and neuromuscular diseases caused by unstable DNA repeats, neuropathies and myopathies caused by mutations and rearrangements in mitochondrial DNA, neuropsychiatric disorders, and heritable premature aging syndromes. This review will discuss our current understanding of how these underlying errors in DNA repair contribute to the clinical outcomes of patients who present with these diseases.
{"title":"The DNA damage response - from cell biology to human disease","authors":"F. Lam","doi":"10.20517/jtgg.2021.61","DOIUrl":"https://doi.org/10.20517/jtgg.2021.61","url":null,"abstract":"Maintenance of DNA integrity is crucial for faithful transmission of the genetic code from generation to generation. Our genetic code is constantly under attack from both endogenous and exogenous sources of DNA damage. To ensure genome stability, cells have developed elegant DNA damage repair mechanisms. Defects in DNA damage repair have been linked to several human diseases including promoting oncogenesis, heritable neurodegenerative and neuromuscular diseases caused by unstable DNA repeats, neuropathies and myopathies caused by mutations and rearrangements in mitochondrial DNA, neuropsychiatric disorders, and heritable premature aging syndromes. This review will discuss our current understanding of how these underlying errors in DNA repair contribute to the clinical outcomes of patients who present with these diseases.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Frost, E. Serra, D. Viskochil, B. Korf, Michelle K. Mattson-Hoss, G. Croston, Herbert Sarnoff
Neurofibromatosis type 1 (NF1) is a genetic disorder with a wide range of manifestations and severity. Currently, the few available NF1 treatments target specific manifestations, with no available therapies targeted to correct the underlying driver of all NF1 manifestations. Evidence supports that haploinsufficiency in NF1 caused by a decreased amount of wild-type (WT) neurofibromin in all Nf1+/- cells directly causes or facilitates a range of NF1 manifestations. Consequently, NF1 haploinsufficiency correction therapy (NF1-HCT) represents a potentially effective approach to treat some NF1 manifestations. NF1-HCT would normalize the level of WT neurofibromin in all NF1-haploinsufficient cells, including those integral to the NF1 phenotype such as Schwann cells (SCs), melanocytes, neurons, bone cells, and cells of the tumor microenvironment. This would correct altered cellular signaling pathways and, in turn, restore normal function to cells with a retained WT allele. NF1-HCT will not restore WT neurofibromin in NF1-/- cells; however, by restoring function in the surrounding Nf1+/- microenvironment cells, NF1-HCT is predicted to have a beneficial effect on NF1-/- cells. NF1-HCT is expected to have a clinical effect in some NF1 manifestations, as follows: (i) prevention, or delay of onset, of potential manifestations; and (ii) reversal, or halting/slowing progression, of established manifestations. This review describes the rationale for NF1-HCT, including specific NF1 considerations (e.g., NF1 clinical phenotype, neurofibromin function/regulation, NF1 mutational spectrum, genotype-phenotype correlation, and the impact of haploinsufficiency in NF1), HCT in other haploinsufficient diseases, potential NF1-HCT drug treatment strategies, and the potential advantages/challenges of NF1-HCT.
{"title":"Rationale for haploinsufficiency correction therapy in neurofibromatosis type 1","authors":"M. Frost, E. Serra, D. Viskochil, B. Korf, Michelle K. Mattson-Hoss, G. Croston, Herbert Sarnoff","doi":"10.20517/jtgg.2022.14","DOIUrl":"https://doi.org/10.20517/jtgg.2022.14","url":null,"abstract":"Neurofibromatosis type 1 (NF1) is a genetic disorder with a wide range of manifestations and severity. Currently, the few available NF1 treatments target specific manifestations, with no available therapies targeted to correct the underlying driver of all NF1 manifestations. Evidence supports that haploinsufficiency in NF1 caused by a decreased amount of wild-type (WT) neurofibromin in all Nf1+/- cells directly causes or facilitates a range of NF1 manifestations. Consequently, NF1 haploinsufficiency correction therapy (NF1-HCT) represents a potentially effective approach to treat some NF1 manifestations. NF1-HCT would normalize the level of WT neurofibromin in all NF1-haploinsufficient cells, including those integral to the NF1 phenotype such as Schwann cells (SCs), melanocytes, neurons, bone cells, and cells of the tumor microenvironment. This would correct altered cellular signaling pathways and, in turn, restore normal function to cells with a retained WT allele. NF1-HCT will not restore WT neurofibromin in NF1-/- cells; however, by restoring function in the surrounding Nf1+/- microenvironment cells, NF1-HCT is predicted to have a beneficial effect on NF1-/- cells. NF1-HCT is expected to have a clinical effect in some NF1 manifestations, as follows: (i) prevention, or delay of onset, of potential manifestations; and (ii) reversal, or halting/slowing progression, of established manifestations. This review describes the rationale for NF1-HCT, including specific NF1 considerations (e.g., NF1 clinical phenotype, neurofibromin function/regulation, NF1 mutational spectrum, genotype-phenotype correlation, and the impact of haploinsufficiency in NF1), HCT in other haploinsufficient diseases, potential NF1-HCT drug treatment strategies, and the potential advantages/challenges of NF1-HCT.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haruka Sawamura, Kurumi Taniguchi, Yuka Ikeda, Ai Tsuji, Y. Kitagishi, S. Matsuda
The potentially powerful impact of microbiota has attracted much attention. For example, dysbiosis of the gut microbiota could be linked to various cancers. It is probable that DNA damage and DNA repair impairment due to inflammation from gut dysbiosis would be of importance in carcinogenesis and/or preventing carcinogenesis. In fact, the signature of the gut microbiome has been shown to be associated with responses and/or successful survival rate to certain immune-blockade therapy in several cancers. Conversely, living cells have to cope with the danger of reactive oxygen species (ROS) disturbing the integrity of biomolecules, which can eventually lead to carcinogenesis if otherwise untreated. Gut microbiota could modulate considerable levels of ROS and oxidative damage. Interestingly, an anti-proliferative family (APRO) characterized by several immediate early responsive gene products might be deeply involved in the mechanism of carcinogenesis. It has been described that APRO proteins also participate in a variety of cellular processes including cell division, DNA repair, and mRNA stability. The biological function of APRO proteins seems to be quite complicated; however, they might be a key modulator of microRNAs (miRNAs) for post-transcriptional regulation. The next generation of therapy would likely contain strategies for modifying the redox background as well as the regulation of ROS in cells and/or for better DNA repair machinery with the APRO proteins via the modulation of miRNA-derived post-transcriptional regulation in a sustainable manner. Given the important function of the gut microbiota in balancing the immune network, carcinogenesis could therefore be prevented by suitable gut microbiota via the roles of APRO proteins. Consequently, probiotics might play a key role in the modulation of gut immune system in keeping healthy and/or preventing cancers.
{"title":"Roles of gut dysbiosis, anti-proliferative proteins, and post-transcriptional regulation in carcinogenesis","authors":"Haruka Sawamura, Kurumi Taniguchi, Yuka Ikeda, Ai Tsuji, Y. Kitagishi, S. Matsuda","doi":"10.20517/jtgg.2021.57","DOIUrl":"https://doi.org/10.20517/jtgg.2021.57","url":null,"abstract":"The potentially powerful impact of microbiota has attracted much attention. For example, dysbiosis of the gut microbiota could be linked to various cancers. It is probable that DNA damage and DNA repair impairment due to inflammation from gut dysbiosis would be of importance in carcinogenesis and/or preventing carcinogenesis. In fact, the signature of the gut microbiome has been shown to be associated with responses and/or successful survival rate to certain immune-blockade therapy in several cancers. Conversely, living cells have to cope with the danger of reactive oxygen species (ROS) disturbing the integrity of biomolecules, which can eventually lead to carcinogenesis if otherwise untreated. Gut microbiota could modulate considerable levels of ROS and oxidative damage. Interestingly, an anti-proliferative family (APRO) characterized by several immediate early responsive gene products might be deeply involved in the mechanism of carcinogenesis. It has been described that APRO proteins also participate in a variety of cellular processes including cell division, DNA repair, and mRNA stability. The biological function of APRO proteins seems to be quite complicated; however, they might be a key modulator of microRNAs (miRNAs) for post-transcriptional regulation. The next generation of therapy would likely contain strategies for modifying the redox background as well as the regulation of ROS in cells and/or for better DNA repair machinery with the APRO proteins via the modulation of miRNA-derived post-transcriptional regulation in a sustainable manner. Given the important function of the gut microbiota in balancing the immune network, carcinogenesis could therefore be prevented by suitable gut microbiota via the roles of APRO proteins. Consequently, probiotics might play a key role in the modulation of gut immune system in keeping healthy and/or preventing cancers.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}