Pitakchon Ponsawansong, T. Prapamontol, K. Rerkasem, S. Chantara, Kraichat Tantrakarnapa, S. Kawichai, Guoxing Li, Cao Fang, Xiaochuan Pan, Yanlin Zhang
Dithiothreitol (DTT) assay is an acellular technique used to investigate the oxidative potential (OP) of chemical substances bound on PM, which may potentially lead to oxidative stress after exposure. In this study, the source contributions of 16 high priority polycyclic aromatic hydrocarbons (PAHs), designated by the United States Environmental Protection Agency (U.S. EPA), and 10 species of water-soluble inorganic ions bound on PM 2.5 and their OP were investigated using DTT assay. The 24-hr ambient PM 2.5 samples were collected throughout 2018–2019 and the analyzed OP was compared during haze episodes, which generally occurs in the dry season, and non-haze rainy season in the Chiang Mai-Lamphun basin. During haze episodes, DTTv activity was positively correlated with 4–5 rings PAHs including fluoranthene (Fla) pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF) with coefficient ranging from 0.327 to 0.545, p = 0.002 to 0.009 (Pearson’s correlation). Inorganic ions, particularly NH 4+ , SO 42– , and NO 3– , which are the tracers of secondary inorganic aerosol (SIA), were positively correlated with DTTv activity (r = 0.394 to 0.659. p = 0.000 to 0.047; Spearman’s correlation). Positive matrix factorization (PMF) indicated the biomass burning factor had the highest contribution (57.9%) to PM 2.5 during haze episodes, followed by SIA (26.2%), and vehicle exhausts (7.8%). Furthermore, multiple linear regression (MLR) showed that biomass burning was the highest contributor to DTTv (43.0%). These results suggest that during haze episodes, higher levels of PM 2.5 and its chemical compositions play a crucial role on OP, particularly DTTv activity, which may induce oxidative stress in human body.
{"title":"Sources of PM2.5 Oxidative Potential during Haze and Non-haze Seasons in Chiang Mai, Thailand","authors":"Pitakchon Ponsawansong, T. Prapamontol, K. Rerkasem, S. Chantara, Kraichat Tantrakarnapa, S. Kawichai, Guoxing Li, Cao Fang, Xiaochuan Pan, Yanlin Zhang","doi":"10.4209/aaqr.230030","DOIUrl":"https://doi.org/10.4209/aaqr.230030","url":null,"abstract":"Dithiothreitol (DTT) assay is an acellular technique used to investigate the oxidative potential (OP) of chemical substances bound on PM, which may potentially lead to oxidative stress after exposure. In this study, the source contributions of 16 high priority polycyclic aromatic hydrocarbons (PAHs), designated by the United States Environmental Protection Agency (U.S. EPA), and 10 species of water-soluble inorganic ions bound on PM 2.5 and their OP were investigated using DTT assay. The 24-hr ambient PM 2.5 samples were collected throughout 2018–2019 and the analyzed OP was compared during haze episodes, which generally occurs in the dry season, and non-haze rainy season in the Chiang Mai-Lamphun basin. During haze episodes, DTTv activity was positively correlated with 4–5 rings PAHs including fluoranthene (Fla) pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF) with coefficient ranging from 0.327 to 0.545, p = 0.002 to 0.009 (Pearson’s correlation). Inorganic ions, particularly NH 4+ , SO 42– , and NO 3– , which are the tracers of secondary inorganic aerosol (SIA), were positively correlated with DTTv activity (r = 0.394 to 0.659. p = 0.000 to 0.047; Spearman’s correlation). Positive matrix factorization (PMF) indicated the biomass burning factor had the highest contribution (57.9%) to PM 2.5 during haze episodes, followed by SIA (26.2%), and vehicle exhausts (7.8%). Furthermore, multiple linear regression (MLR) showed that biomass burning was the highest contributor to DTTv (43.0%). These results suggest that during haze episodes, higher levels of PM 2.5 and its chemical compositions play a crucial role on OP, particularly DTTv activity, which may induce oxidative stress in human body.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Performance of Sodium Tungsten Bronze Particles in Transparent Matrix: An Ensemble Particle Modeling Study","authors":"Hao Tu, Da-Ren Chen","doi":"10.4209/aaqr.230085","DOIUrl":"https://doi.org/10.4209/aaqr.230085","url":null,"abstract":"Abstract","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsrong-Yi Wen, S. Chantara, J. Jalaludin, Puji Lestari, A. D. Syafei, T. V. Pham, Y. Tsai
This paper consists of several topics on aerosol and air pollution in South Eastern Asia countries, including exposure and health effects of aerosol in Malaysia, characteristics/sources of particulate matter (PM) in Surabaya, Indonesia, size fraction of polycyclic aromatic hydrocarbons (PAHs) in Chiang Mai, Thailand, and removal of PMs using sodium hydroxyl and electrostatic precipitator (ESP) in Vietnam. Findings in Malaysia indicated that exposure to PM was associated with respiratory symptoms such as phlegm, coughing, wheezing and chest tightness among children in urban areas. Characterization of PM 2.5 and PM 2.5-10 samples collected in an industrial area in Surabaya, Indonesia showed that the highest levels of individual elements in PM 2.5 were S, Na, Si and K, and in PM 2.5-10 were Si, Ca, Cl, Na, and Mg. The main potential sources of PM 2.5 were diesel vehicle emission, a mixture of Cu industry and biomass combustion, metal industries using Ni, and construction, with contributions of 33%, 24.1%, 11.4%, and 7.9%, respectively. Meanwhile, main sources of PM 2.5-10 were soil dust and port industry, construction, road dust, and sea salt, with contributions of 32%, 28.8%, 14%, and 10%, respectively. In Chiang Mai, the highest PM mass and PAHs concentrations were found in the finest particle sizes (0.65 µ m – 0.43 µ m) in periods of intensive open burning (IOB) and low open burning (LOB), in both urban and rural areas, and the PAHs concentration (5.10 ng m – 3 ) in the fine fraction accounted for 45% to 47% and 32% to 37% during IOB and LOB periods, respectively. The study of particle removal from a charcoal kiln in Vietnam using a water and sodium hydroxyl solution sprayed in a top-down direction with fine droplets showed a removal efficiency of total dust of about 47.5% on average, while an ESP removed PM with high collection efficiency and low-pressure drop.
{"title":"Overview of Aerosol and Air Pollution in South Eastern Asia Countries","authors":"Tsrong-Yi Wen, S. Chantara, J. Jalaludin, Puji Lestari, A. D. Syafei, T. V. Pham, Y. Tsai","doi":"10.4209/aaqr.230055","DOIUrl":"https://doi.org/10.4209/aaqr.230055","url":null,"abstract":"This paper consists of several topics on aerosol and air pollution in South Eastern Asia countries, including exposure and health effects of aerosol in Malaysia, characteristics/sources of particulate matter (PM) in Surabaya, Indonesia, size fraction of polycyclic aromatic hydrocarbons (PAHs) in Chiang Mai, Thailand, and removal of PMs using sodium hydroxyl and electrostatic precipitator (ESP) in Vietnam. Findings in Malaysia indicated that exposure to PM was associated with respiratory symptoms such as phlegm, coughing, wheezing and chest tightness among children in urban areas. Characterization of PM 2.5 and PM 2.5-10 samples collected in an industrial area in Surabaya, Indonesia showed that the highest levels of individual elements in PM 2.5 were S, Na, Si and K, and in PM 2.5-10 were Si, Ca, Cl, Na, and Mg. The main potential sources of PM 2.5 were diesel vehicle emission, a mixture of Cu industry and biomass combustion, metal industries using Ni, and construction, with contributions of 33%, 24.1%, 11.4%, and 7.9%, respectively. Meanwhile, main sources of PM 2.5-10 were soil dust and port industry, construction, road dust, and sea salt, with contributions of 32%, 28.8%, 14%, and 10%, respectively. In Chiang Mai, the highest PM mass and PAHs concentrations were found in the finest particle sizes (0.65 µ m – 0.43 µ m) in periods of intensive open burning (IOB) and low open burning (LOB), in both urban and rural areas, and the PAHs concentration (5.10 ng m – 3 ) in the fine fraction accounted for 45% to 47% and 32% to 37% during IOB and LOB periods, respectively. The study of particle removal from a charcoal kiln in Vietnam using a water and sodium hydroxyl solution sprayed in a top-down direction with fine droplets showed a removal efficiency of total dust of about 47.5% on average, while an ESP removed PM with high collection efficiency and low-pressure drop.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine A Fitton, B. Cox, M. Stewart, James Chalmers, J. Belch
This study, from the Tayside Pollution Research Programme (TPRP), aims to investigate the effects of air pollution on respiratory hospital admissions in adults and children < 16 y of age, over a 14-year period, in Dundee, Scotland (population circa 148,270). We conducted a case-crossover study using routinely collected healthcare records from Ninewells Hospital, Dundee, Scotland from 2004 to 2017. Respiratory hospitalisation events were linked to daily nitric oxide gases (NO x , NO 2 , NO) extracted from publicly available data over this period. We used distributed lag models to allow for delayed effects of air pollutants up to 14 days. A total of 34,192 hospital admissions for a respiratory condition were included in this study (children = 9,501; adults = 24,691). Respiratory admissions in children were significantly associated with cumulative 14-day exposure to NO x (RR for a 10 µ g m –3 increase in concentration 1.020; 95% confidence interval 1.010–1.031), NO 2 (RR 1.086; 95% CI 1.036–1.139) and NO (RR 1.033; 95% CI 1.016–1.052). Similar estimates were observed for acute respiratory infection categories in children. Effects appeared to be somewhat delayed, with the largest estimates mostly observed around lag 6. No significant association was seen for respiratory admissions in adults. This study shows that both NO and NO 2 are associated with increased respiratory hospital admissions in children < 16 y of age, and that much more should be done to improve and enforce the established legal NO x pollution limits in cities for the sake of our children’s health.
这项研究来自泰赛德污染研究计划(TPRP),旨在调查空气污染对苏格兰邓迪(人口约148,270)14年期间成人和16岁以下儿童呼吸系统住院的影响。我们使用2004年至2017年从苏格兰邓迪的Ninewells医院常规收集的医疗记录进行了病例交叉研究。从这一时期的公开数据中提取的每日一氧化氮气体(nox, NO 2, NO)与呼吸道住院事件有关。我们使用分布式滞后模型来考虑空气污染物长达14天的延迟效应。该研究共纳入34192例因呼吸系统疾病入院的患者(儿童= 9501;成人= 24,691)。儿童呼吸道入院与14天累积暴露于nox(浓度增加10 μ g -3时的RR为1.020)显著相关;95%可信区间1.010-1.031),NO 2 (RR 1.086;95% CI 1.036-1.139)和NO (RR 1.033;95% ci 1.016-1.052)。在儿童急性呼吸道感染类别中也观察到类似的估计。效果似乎有些延迟,最大的估计大多在延迟6左右观察到。成人呼吸道入院未见显著相关性。这项研究表明,一氧化氮和二氧化氮都与16岁以下儿童因呼吸道疾病住院的人数增加有关,为了我们孩子的健康,我们应该做更多的工作来改善和执行城市中既定的法定一氧化氮污染限制。
{"title":"Respiratory Admissions Linked to Air Pollution in a Medium Sized City of the UK: A Case-crossover Study","authors":"Catherine A Fitton, B. Cox, M. Stewart, James Chalmers, J. Belch","doi":"10.4209/aaqr.230062","DOIUrl":"https://doi.org/10.4209/aaqr.230062","url":null,"abstract":"This study, from the Tayside Pollution Research Programme (TPRP), aims to investigate the effects of air pollution on respiratory hospital admissions in adults and children < 16 y of age, over a 14-year period, in Dundee, Scotland (population circa 148,270). We conducted a case-crossover study using routinely collected healthcare records from Ninewells Hospital, Dundee, Scotland from 2004 to 2017. Respiratory hospitalisation events were linked to daily nitric oxide gases (NO x , NO 2 , NO) extracted from publicly available data over this period. We used distributed lag models to allow for delayed effects of air pollutants up to 14 days. A total of 34,192 hospital admissions for a respiratory condition were included in this study (children = 9,501; adults = 24,691). Respiratory admissions in children were significantly associated with cumulative 14-day exposure to NO x (RR for a 10 µ g m –3 increase in concentration 1.020; 95% confidence interval 1.010–1.031), NO 2 (RR 1.086; 95% CI 1.036–1.139) and NO (RR 1.033; 95% CI 1.016–1.052). Similar estimates were observed for acute respiratory infection categories in children. Effects appeared to be somewhat delayed, with the largest estimates mostly observed around lag 6. No significant association was seen for respiratory admissions in adults. This study shows that both NO and NO 2 are associated with increased respiratory hospital admissions in children < 16 y of age, and that much more should be done to improve and enforce the established legal NO x pollution limits in cities for the sake of our children’s health.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Positive Matrix Factorization (PMF) is a commonly used receptor model for source apportionment of PM2.5. However, PMF results often retrieve an individual factor mainly composed of secondary aerosols, making it difficult to link with primary emission sources and formulate effective air pollution control strategies. To overcome this limitation, we employed a two-stage PMF modeling approach with adjustments of the species weighting, which was fused with a robust regression model to better characterize the sources of PM2.5 secondary aerosols. Additionally, organic molecular tracers were incorporated into PMF for source identification. A field campaign was conducted between May and December 2021 in Taichung, Taiwan. An improved PMF model was utilized to resolve the multiple time resolution data of 3-h online and 24-h offline measurements of PM2.5 compositions. Retrieved factors from PMF were averaged over 24-h intervals and then applied in robust regression analysis to re-apportion the contributions. Comparing with conventional PMF, downweighting the secondary aerosol-related species in the model was more effective in linking them to primary emission sources. The results from fusion models showed that the majority of secondary aerosols (sum of secondary aerosol-related species = 2.67 μg m-3) within three hours were mainly contributed by oil combustion, while the largest contributor of secondary aerosols (1.65 μg m-3) over 24 hours was industry, highlighting the need for regulation of these two sources based on various temporal scales. The developed fusion strategy of two-stage PMF and robust regression provided refined results and can aid in the management of PM2.5.
{"title":"Characterizing PM2.5 Secondary Aerosols via a Fusion Strategy of Two-stage Positive Matrix Factorization and Robust Regression","authors":"Chun-Sheng Huang, Ho-Tang Liao, Chia-Yang Chen, Li-Hao Young, Ta-Chih Hsiao, Tsung-I Chou, Jyun-Min Chang, Kuan-Lin Lai, Chang-Fu Wu","doi":"10.4209/aaqr.230121","DOIUrl":"https://doi.org/10.4209/aaqr.230121","url":null,"abstract":"Positive Matrix Factorization (PMF) is a commonly used receptor model for source apportionment of PM2.5. However, PMF results often retrieve an individual factor mainly composed of secondary aerosols, making it difficult to link with primary emission sources and formulate effective air pollution control strategies. To overcome this limitation, we employed a two-stage PMF modeling approach with adjustments of the species weighting, which was fused with a robust regression model to better characterize the sources of PM2.5 secondary aerosols. Additionally, organic molecular tracers were incorporated into PMF for source identification. A field campaign was conducted between May and December 2021 in Taichung, Taiwan. An improved PMF model was utilized to resolve the multiple time resolution data of 3-h online and 24-h offline measurements of PM2.5 compositions. Retrieved factors from PMF were averaged over 24-h intervals and then applied in robust regression analysis to re-apportion the contributions. Comparing with conventional PMF, downweighting the secondary aerosol-related species in the model was more effective in linking them to primary emission sources. The results from fusion models showed that the majority of secondary aerosols (sum of secondary aerosol-related species = 2.67 μg m-3) within three hours were mainly contributed by oil combustion, while the largest contributor of secondary aerosols (1.65 μg m-3) over 24 hours was industry, highlighting the need for regulation of these two sources based on various temporal scales. The developed fusion strategy of two-stage PMF and robust regression provided refined results and can aid in the management of PM2.5.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135909757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Didem Han Yekdeş, Ali Cem Yekdeş, Ülfiye Çelikkalp, Pelin Sarı Serin, Miraç Çağlayan, Galip Ekuklu
Approximately seven million premature deaths occured due to several health problems caused by air pollution. In this study, we aimed to calculate the mortality rates of lung cancer and Chronic Obstructive Pulmonary Disease (COPD) attributed to PM2.5 in Türkiye in 2019. The universe of the research consists of the entire Türkiye region. Air quality data was obtained from the official website of the Ministry of Environment, Urbanization and Climate Change of the Republic of Türkiye. Lung cancer and COPD mortality data were collected from the official website of the Turkish Statistical Institute by a special request. Mortality rates attributed to PM2.5 were calculated with the WHO AIRQ+ program, and the monthly percent change (MPC) in air pollution level was computed by the JP regression method. The annual average values of PM2.5 and PM10 for 2019 in Türkiye were calculated to be 28.82 µg m-3 and 48.08 µg m-3, respectively. The mortality rate attributed to PM2.5 for lung cancer is 15% whereas the mortality rate attributed to PM2.5 for COPD is 22%. Except two Nomenclature d'Unités Territoriales Statistiques (NUTS) regions (TR1, TR7) all other regions have statisitcally significant one joinpoint. As a conclusion, the PM2.5 average values for 2019 in Türkiye are over the limits for both the national legislation and the World Health Organization (WHO). Taking precautions to control air pollution sources and determination of legitinate national PM2.5 limits should be prioritized. Thus, one out of every six deaths from lung cancer and one out of every five deaths from COPD can be prevented.
{"title":"Chronic Obstructive Pulmonary Disease and Lung Cancer Mortality Attributed to Air Pollution in Turkey in 2019","authors":"Didem Han Yekdeş, Ali Cem Yekdeş, Ülfiye Çelikkalp, Pelin Sarı Serin, Miraç Çağlayan, Galip Ekuklu","doi":"10.4209/aaqr.230144","DOIUrl":"https://doi.org/10.4209/aaqr.230144","url":null,"abstract":"Approximately seven million premature deaths occured due to several health problems caused by air pollution. In this study, we aimed to calculate the mortality rates of lung cancer and Chronic Obstructive Pulmonary Disease (COPD) attributed to PM2.5 in Türkiye in 2019. The universe of the research consists of the entire Türkiye region. Air quality data was obtained from the official website of the Ministry of Environment, Urbanization and Climate Change of the Republic of Türkiye. Lung cancer and COPD mortality data were collected from the official website of the Turkish Statistical Institute by a special request. Mortality rates attributed to PM2.5 were calculated with the WHO AIRQ+ program, and the monthly percent change (MPC) in air pollution level was computed by the JP regression method. The annual average values of PM2.5 and PM10 for 2019 in Türkiye were calculated to be 28.82 µg m-3 and 48.08 µg m-3, respectively. The mortality rate attributed to PM2.5 for lung cancer is 15% whereas the mortality rate attributed to PM2.5 for COPD is 22%. Except two Nomenclature d'Unités Territoriales Statistiques (NUTS) regions (TR1, TR7) all other regions have statisitcally significant one joinpoint. As a conclusion, the PM2.5 average values for 2019 in Türkiye are over the limits for both the national legislation and the World Health Organization (WHO). Taking precautions to control air pollution sources and determination of legitinate national PM2.5 limits should be prioritized. Thus, one out of every six deaths from lung cancer and one out of every five deaths from COPD can be prevented.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136303710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Kung, Chien-Hsing Wu, N. Cheruiyot, Justus Kavita Mutuku, B. Huang, G. Chang-Chien
23 Atmospheric plastic debris (microplastic and nanoplastic) research is
大气塑料碎片(微塑料和纳米塑料)的研究是
{"title":"The Current Status of Atmospheric Micro/Nanoplastics Research: Characterization, Analytical methods, Fate, and Human Health Risk","authors":"H. Kung, Chien-Hsing Wu, N. Cheruiyot, Justus Kavita Mutuku, B. Huang, G. Chang-Chien","doi":"10.4209/aaqr.220362","DOIUrl":"https://doi.org/10.4209/aaqr.220362","url":null,"abstract":"23 Atmospheric plastic debris (microplastic and nanoplastic) research is","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minh-Thuan Pham, T. T. Nguyen, S. You, Ya-Fen Wang
Air pollution is one of the most concerning issues today because of its adverse effects on living organisms and the environment. Therein, nitric oxide (NO) is the leading cause of the greenhouse effect, acid rain, and respiratory diseases. Therefore, discovering a low-cost, environmentally friendly, highly efficient photocatalysis technique to remove NO is necessary and urgent. In this work, the ZnSn(OH) 6 microcubes (cZHS) catalyst was decorated with golden nanoparticles (Au:cZHS) to enhance the photoredox-catalyzed degradation of NO under solar light by surface plasmon resonance (SPR). This work demonstrated the contribution of SPR to the photoredox performance of the ZHS. Herein, the photoredox efficiency of the cZHS increased dramatically under the effecting of SPR from the golden nanoparticles, the photoredox efficiency of the Au:cZHS reached 75%, about four times higher than that of cZHS. In addition, the generation of other nitrogen species, nitrogen dioxide (NO 2 ) conversion, and the reusability of the materials are calculated and discussed carefully by theory and experiment. On the other hand, the contribution and lifespan of radicals are also investigated clearly with trapping experiments and time-dependent electron spin resonance (ESR). This study provided the reader with a clear understanding of the SPR effect on the photocatalytic performance of cZHS, which may be necessary for future related studies.
{"title":"Photoredox-Catalyzed Decomposition of Nitric oxide over Au-Enhanced Surface Plasmon Resonance ZnSn(OH)6 Microcubes","authors":"Minh-Thuan Pham, T. T. Nguyen, S. You, Ya-Fen Wang","doi":"10.4209/aaqr.220355","DOIUrl":"https://doi.org/10.4209/aaqr.220355","url":null,"abstract":"Air pollution is one of the most concerning issues today because of its adverse effects on living organisms and the environment. Therein, nitric oxide (NO) is the leading cause of the greenhouse effect, acid rain, and respiratory diseases. Therefore, discovering a low-cost, environmentally friendly, highly efficient photocatalysis technique to remove NO is necessary and urgent. In this work, the ZnSn(OH) 6 microcubes (cZHS) catalyst was decorated with golden nanoparticles (Au:cZHS) to enhance the photoredox-catalyzed degradation of NO under solar light by surface plasmon resonance (SPR). This work demonstrated the contribution of SPR to the photoredox performance of the ZHS. Herein, the photoredox efficiency of the cZHS increased dramatically under the effecting of SPR from the golden nanoparticles, the photoredox efficiency of the Au:cZHS reached 75%, about four times higher than that of cZHS. In addition, the generation of other nitrogen species, nitrogen dioxide (NO 2 ) conversion, and the reusability of the materials are calculated and discussed carefully by theory and experiment. On the other hand, the contribution and lifespan of radicals are also investigated clearly with trapping experiments and time-dependent electron spin resonance (ESR). This study provided the reader with a clear understanding of the SPR effect on the photocatalytic performance of cZHS, which may be necessary for future related studies.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingfeng Cao, S. Kim, Qisheng Ou, Hoo Young Chung, Weiqi Chen, W. Durfee, Susan L. Arnold, M. Hillmyer, Linsey Griffin, D. Pui
Wearing respirators and face masks is effective for protecting the public from COVID-19 infection. Thus, there is a need to evaluate the performance of the commonly used respirators and face masks. Two experimental systems were developed to investigate seven different mask materials, which have a fiber size range from 0.1 µ m (100 nm) to 20 µ m (20,000 nm). One of the systems is a computer-controlled setup for measuring the filtration performance, including size-dependent filtration efficiency and pressure drop, while the other system is for testing the fiber shedding behavior of the materials. The technique of scanning electron microscope (SEM) was applied to observe the dimensions and structures of those materials, which are made of nonwoven-fabrics electret-treated media, cotton woven fabrics, or nanofiber media. The study indicated that the 3M N95 respirator has the best overall filtration performance with over 95% efficiency and low pressure drop of 74.1 Pa. The two commercial cotton face masks have the worst filtration performance in general, with a filtration efficiency of around 25%. No broken fibers from by the seven tested respirator and face mask materials were discovered; however, dendrite structures likely shed by the SHEMA97 face mask with a size comparable to its nanoscale fibers were identified. The reason for this phenomena is presented.
{"title":"Filtration Performance and Fiber Shedding Behavior in Common Respirator and Face Mask Materials","authors":"Qingfeng Cao, S. Kim, Qisheng Ou, Hoo Young Chung, Weiqi Chen, W. Durfee, Susan L. Arnold, M. Hillmyer, Linsey Griffin, D. Pui","doi":"10.4209/aaqr.220387","DOIUrl":"https://doi.org/10.4209/aaqr.220387","url":null,"abstract":"Wearing respirators and face masks is effective for protecting the public from COVID-19 infection. Thus, there is a need to evaluate the performance of the commonly used respirators and face masks. Two experimental systems were developed to investigate seven different mask materials, which have a fiber size range from 0.1 µ m (100 nm) to 20 µ m (20,000 nm). One of the systems is a computer-controlled setup for measuring the filtration performance, including size-dependent filtration efficiency and pressure drop, while the other system is for testing the fiber shedding behavior of the materials. The technique of scanning electron microscope (SEM) was applied to observe the dimensions and structures of those materials, which are made of nonwoven-fabrics electret-treated media, cotton woven fabrics, or nanofiber media. The study indicated that the 3M N95 respirator has the best overall filtration performance with over 95% efficiency and low pressure drop of 74.1 Pa. The two commercial cotton face masks have the worst filtration performance in general, with a filtration efficiency of around 25%. No broken fibers from by the seven tested respirator and face mask materials were discovered; however, dendrite structures likely shed by the SHEMA97 face mask with a size comparable to its nanoscale fibers were identified. The reason for this phenomena is presented.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}