Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang
This research focuses on the properties of near-ground fine particles (PM 2.5 ), ultrafine particles (UFP), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs) in traffic area. The effects of street sweeping and washing on pollutant levels are evaluated. The X Road with sewage ditch was selected for the stationary samplings to determine the differences between the atmospheric PM 2.5 mass concentration, their composition, and potential sources before/after street cleaning processes, as well as the effect of the sewage existence. Results show that there were certain reductions of PM 2.5 after the street washing, especially for the road section with drainage ditch. The chemical mass balance model then pointed out the traffic contribution on PM 2.5 significantly reduced on the downwind site (from 25.7% to 16.5%). Besides, the spatial distribution of the near-ground PM 2.5 , UFP, BC, and PAHs were monitored by a mobile platform on an appropriate long, straight, and not heavily traffic Road Y. The monitoring took place at 1 h-before, during washing/sweeping, at 1 h-after, at 1 d-after, at 2 d-after three cleaning strategies, including only sweeping, washing-before-sweeping, and sweeping-before-washing. The monitoring then mapped out the hot spot distribution of pollutants. The PM 2.5 mass, UFP number, BC, and PAH concentrations before the street sweeping is 155 µ g m –3 , 1.2 × 104 # cm –3 , BC 3633 ng m –3 , and 36 ng m –3 . The UFP number concentration of suspended particles after street washing had a trend to reduce, avoided the deterioration of air quality. The strategy, “sweeping-before-washing”, was the best operation method among three to suppress the UFP number concentration by 42%, while all three strategies could effectively reduce the PAH levels. The primary pollutants are more easily reduced by the street-cleaning process, while the secondary one did not.
摘要
{"title":"Do the Street Sweeping and Washing Work for Reducing the Near-ground Levels of Fine Particulate Matter and Related Pollutants?","authors":"Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang","doi":"10.4209/aaqr.220338","DOIUrl":"https://doi.org/10.4209/aaqr.220338","url":null,"abstract":"This research focuses on the properties of near-ground fine particles (PM 2.5 ), ultrafine particles (UFP), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs) in traffic area. The effects of street sweeping and washing on pollutant levels are evaluated. The X Road with sewage ditch was selected for the stationary samplings to determine the differences between the atmospheric PM 2.5 mass concentration, their composition, and potential sources before/after street cleaning processes, as well as the effect of the sewage existence. Results show that there were certain reductions of PM 2.5 after the street washing, especially for the road section with drainage ditch. The chemical mass balance model then pointed out the traffic contribution on PM 2.5 significantly reduced on the downwind site (from 25.7% to 16.5%). Besides, the spatial distribution of the near-ground PM 2.5 , UFP, BC, and PAHs were monitored by a mobile platform on an appropriate long, straight, and not heavily traffic Road Y. The monitoring took place at 1 h-before, during washing/sweeping, at 1 h-after, at 1 d-after, at 2 d-after three cleaning strategies, including only sweeping, washing-before-sweeping, and sweeping-before-washing. The monitoring then mapped out the hot spot distribution of pollutants. The PM 2.5 mass, UFP number, BC, and PAH concentrations before the street sweeping is 155 µ g m –3 , 1.2 × 104 # cm –3 , BC 3633 ng m –3 , and 36 ng m –3 . The UFP number concentration of suspended particles after street washing had a trend to reduce, avoided the deterioration of air quality. The strategy, “sweeping-before-washing”, was the best operation method among three to suppress the UFP number concentration by 42%, while all three strategies could effectively reduce the PAH levels. The primary pollutants are more easily reduced by the street-cleaning process, while the secondary one did not.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Hini, Kexin Gao, Yi Zheng, Maimaiti Simayi, S. Xie
China's petroleum refining industry has set off another climax and has entered a new rapid development by building seven petrochemical bases. Sector-based volatile organic compound (VOC) emissions from the refining industry in seven petrochemical-developed provinces in China were estimated for 1990–2019 and projected for 2020–2030 under the business-as-usual (BAU), new policy control (NPC), and the highest control (HC) scenarios. Furthermore, speciated VOCs and their ozone formation potentials (OFP) were estimated in 2019. Total VOC emissions from existing refineries were 541.14 Gg in 2019, of which 43.9%, 31.3%, 18.3%, and 6.6% were from fugitive, end-of-pipe, tank storage, and wastewater treatment sources, respectively. Alkanes were the most dominant compound in refineries, accounting for 55.2% of total emissions, followed by alkenes (18.9%) and aromatics (12.5%). Alkenes were the highest contributor to OFP, accounting for 59.5% of total OFP, followed by alkanes (22.3%) and aromatics (13.7%). n-Butane, ethylene, cis-2-Butene, n-Decane, and n-Pentane were the top five species with the highest emissions, accounting for approximately 50% of total emissions. Whilst, ethylene, cis-2-Butene, n-Pentane, n-Butane, and m/p-Xylene were the top five species with the highest contribution to OFPs, accounting for approximately 78% of total OFPs. In 2030, 741.03 and 165.28 Gg more VOC will be released than in 2019 under a non-control condition and the BAU scenario. It is estimated that 75.05 and 228.67 Gg of VOC from all refineries can be reduced under the NPC 2030 and the HC 2030 scenarios. To effectively reduce VOC emissions from refining industries, priority should be given to fugitive emissions by improving and upgrading the production processes and implementing enhanced leak detection and Repair system. More efficient control technologies should be invented for end-of-pipe sources. Vapor recovery systems and secondary seals have great potential for VOC emission reduction from storage tanks.
{"title":"Emission Characteristics, OFPs, and Mitigation Perspectives of VOCs from Refining Industry in China's Petrochemical Bases","authors":"G. Hini, Kexin Gao, Yi Zheng, Maimaiti Simayi, S. Xie","doi":"10.4209/aaqr.220347","DOIUrl":"https://doi.org/10.4209/aaqr.220347","url":null,"abstract":"China's petroleum refining industry has set off another climax and has entered a new rapid development by building seven petrochemical bases. Sector-based volatile organic compound (VOC) emissions from the refining industry in seven petrochemical-developed provinces in China were estimated for 1990–2019 and projected for 2020–2030 under the business-as-usual (BAU), new policy control (NPC), and the highest control (HC) scenarios. Furthermore, speciated VOCs and their ozone formation potentials (OFP) were estimated in 2019. Total VOC emissions from existing refineries were 541.14 Gg in 2019, of which 43.9%, 31.3%, 18.3%, and 6.6% were from fugitive, end-of-pipe, tank storage, and wastewater treatment sources, respectively. Alkanes were the most dominant compound in refineries, accounting for 55.2% of total emissions, followed by alkenes (18.9%) and aromatics (12.5%). Alkenes were the highest contributor to OFP, accounting for 59.5% of total OFP, followed by alkanes (22.3%) and aromatics (13.7%). n-Butane, ethylene, cis-2-Butene, n-Decane, and n-Pentane were the top five species with the highest emissions, accounting for approximately 50% of total emissions. Whilst, ethylene, cis-2-Butene, n-Pentane, n-Butane, and m/p-Xylene were the top five species with the highest contribution to OFPs, accounting for approximately 78% of total OFPs. In 2030, 741.03 and 165.28 Gg more VOC will be released than in 2019 under a non-control condition and the BAU scenario. It is estimated that 75.05 and 228.67 Gg of VOC from all refineries can be reduced under the NPC 2030 and the HC 2030 scenarios. To effectively reduce VOC emissions from refining industries, priority should be given to fugitive emissions by improving and upgrading the production processes and implementing enhanced leak detection and Repair system. More efficient control technologies should be invented for end-of-pipe sources. Vapor recovery systems and secondary seals have great potential for VOC emission reduction from storage tanks.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rendering plants treat dead livestock and produce grease and bone meal. In a rendering plant, the cooking and drying processes are the main sources of odor emissions. Non-fresh dead livestock reduce the performance of odor control devices, and in Taiwan, the treatment facilities in a rendering plant mostly are operated in a batch feeding, which causes volatile organic compound (VOC) emissions in the exhausted gas, that always caused complaints from the nearby neighborhood. This study used respectively ozone and hydrogen peroxide to evaluate the removal efficiencies of pentanal, hexanal and toluene those are common VOCs in the rendering exhaustion. Experimental results indicated that ozone could not effectively reduce aldehydes and toluene, and the residual ozone remaining in the exhaust gas is a secondary air pollutant and irritate the human respiratory tracts. Oppositely, hydrogen peroxide effectively removed pentanal as a feasible VOC treatment oxidant by adding into a contact reactor. When the pentanal exhaustion concentration from the rendering process was around 36.23 ppm in the flue with the flow rates from 100 to 250 Nm 3 min –1 , the reaction rate constant of pentanal for the first-order reaction by aqueous hydrogen peroxide of 1,000 mg L –1 was obtained as 0.536 1 s –1 , and then the pentanal reduced to 0.68 to 2 ppm. Based on the simulation using the Gaussian dispersion model, the concentration ranges of pentanal in the exhausted stream resulted in the pentanal emission rate lower than 0.01 g s –1 , which no longer causes surrounding residents’ complaints.
{"title":"VOC Emissions from a Rendering Plant and Evaluation for Removal of Pentanal by Oxidization Using Hydrogen Peroxide","authors":"W. Cheng, Chun-Hung Lin, C. Yuan, K.L. Chang","doi":"10.4209/aaqr.220440","DOIUrl":"https://doi.org/10.4209/aaqr.220440","url":null,"abstract":"Rendering plants treat dead livestock and produce grease and bone meal. In a rendering plant, the cooking and drying processes are the main sources of odor emissions. Non-fresh dead livestock reduce the performance of odor control devices, and in Taiwan, the treatment facilities in a rendering plant mostly are operated in a batch feeding, which causes volatile organic compound (VOC) emissions in the exhausted gas, that always caused complaints from the nearby neighborhood. This study used respectively ozone and hydrogen peroxide to evaluate the removal efficiencies of pentanal, hexanal and toluene those are common VOCs in the rendering exhaustion. Experimental results indicated that ozone could not effectively reduce aldehydes and toluene, and the residual ozone remaining in the exhaust gas is a secondary air pollutant and irritate the human respiratory tracts. Oppositely, hydrogen peroxide effectively removed pentanal as a feasible VOC treatment oxidant by adding into a contact reactor. When the pentanal exhaustion concentration from the rendering process was around 36.23 ppm in the flue with the flow rates from 100 to 250 Nm 3 min –1 , the reaction rate constant of pentanal for the first-order reaction by aqueous hydrogen peroxide of 1,000 mg L –1 was obtained as 0.536 1 s –1 , and then the pentanal reduced to 0.68 to 2 ppm. Based on the simulation using the Gaussian dispersion model, the concentration ranges of pentanal in the exhausted stream resulted in the pentanal emission rate lower than 0.01 g s –1 , which no longer causes surrounding residents’ complaints.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar
This study presents levels of volatile organic compounds (VOCs) measured indoors for the first time in Ulaanbaatar, Mongolia, and quantifies the health risk for children emphasizing the urgent need to improve control for indoor VOCs sources. The 583 samples collected at 144 sites, including new buildings, old apartments, schools, workplaces, kindergartens, baishin, and Mongolian traditional gers , hospitals, schools, and shopping centers are analyzed. Formaldehyde was detected in 95.7% of the samples, while benzene was in 24.2%. The levels of benzene, toluene, and xylene in new and old buildings and apartments exceed the recommended values of AGÖF for volatile organic compounds in indoor air. The probabilistic Monte Carlo simulation method was used to estimate the risk exposure of four types of VOCs (benzene, formaldehyde, toluene, and m,p-xylene) to the health of the study population. The risk of cancer for benzene and formaldehyde is high in the age group of 7 months–4 years, m,p-xylene, and toluene show non-cancer risk in this age group.
{"title":"Health Risk Assessment of Volatile Organic Compounds for Children in Indoor Air, Ulaanbaatar, Mongolia","authors":"Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar","doi":"10.4209/aaqr.230028","DOIUrl":"https://doi.org/10.4209/aaqr.230028","url":null,"abstract":"This study presents levels of volatile organic compounds (VOCs) measured indoors for the first time in Ulaanbaatar, Mongolia, and quantifies the health risk for children emphasizing the urgent need to improve control for indoor VOCs sources. The 583 samples collected at 144 sites, including new buildings, old apartments, schools, workplaces, kindergartens, baishin, and Mongolian traditional gers , hospitals, schools, and shopping centers are analyzed. Formaldehyde was detected in 95.7% of the samples, while benzene was in 24.2%. The levels of benzene, toluene, and xylene in new and old buildings and apartments exceed the recommended values of AGÖF for volatile organic compounds in indoor air. The probabilistic Monte Carlo simulation method was used to estimate the risk exposure of four types of VOCs (benzene, formaldehyde, toluene, and m,p-xylene) to the health of the study population. The risk of cancer for benzene and formaldehyde is high in the age group of 7 months–4 years, m,p-xylene, and toluene show non-cancer risk in this age group.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical remote sensing of PM2.5 concentration complements ground-based in situ sampler observations and depends on aerosol extinction-to-mass conversion and meteorological factors. Based on Mie scattering theory, we derived a non-linear analytical expression among the PM2.5 mass concentration, aerosol extinction coefficient, and hygroscopic factor. We analyzed 1-year data of aerosol size distribution, PM2.5, visibility, and relative humidity (RH) and refined the exponential factors for improving PM2.5 estimated from the aerosol extinction coefficient in Hefei, China. Aerosol size distribution data on adjacent days were used to approximate the hygroscopic factors of the aerosols. The measured PM2.5 in 2020 was used to refine the exponential factors relevant to the large aerosol extinction coefficient and RH in the analytical function. Next, we evaluated the derived PM2.5 from aerosol extinction with the tapered element oscillating microbalance (TEOM), which independently observed PM2.5 in January 2021; their comparisons indicated good consistency and strong correlation with a linear correlation coefficient of R2=0.76. Finally, by applying the analytical function of PM2.5 and aerosol extinction, we obtained the spatial and vertical distribution of PM2.5 from the NASA/CALIPSO-observed aerosol extinction profiles, which showed reasonable agreement and good correlation with the TEOM-measured PM2.5 in several major cities in Anhui Province, China.
{"title":"Analysis of Non-linear Relationship of PM2.5 Mass Concentration with Aerosol Extinction Coefficient and RH in Hefei, China","authors":"Yinan Chen, Shiguo Zhang, Yonghua Wu, Kee Yuan, Jian Huang, Dongfeng Shi, Shunxing Hu","doi":"10.4209/aaqr.230139","DOIUrl":"https://doi.org/10.4209/aaqr.230139","url":null,"abstract":"Optical remote sensing of PM2.5 concentration complements ground-based in situ sampler observations and depends on aerosol extinction-to-mass conversion and meteorological factors. Based on Mie scattering theory, we derived a non-linear analytical expression among the PM2.5 mass concentration, aerosol extinction coefficient, and hygroscopic factor. We analyzed 1-year data of aerosol size distribution, PM2.5, visibility, and relative humidity (RH) and refined the exponential factors for improving PM2.5 estimated from the aerosol extinction coefficient in Hefei, China. Aerosol size distribution data on adjacent days were used to approximate the hygroscopic factors of the aerosols. The measured PM2.5 in 2020 was used to refine the exponential factors relevant to the large aerosol extinction coefficient and RH in the analytical function. Next, we evaluated the derived PM2.5 from aerosol extinction with the tapered element oscillating microbalance (TEOM), which independently observed PM2.5 in January 2021; their comparisons indicated good consistency and strong correlation with a linear correlation coefficient of R2=0.76. Finally, by applying the analytical function of PM2.5 and aerosol extinction, we obtained the spatial and vertical distribution of PM2.5 from the NASA/CALIPSO-observed aerosol extinction profiles, which showed reasonable agreement and good correlation with the TEOM-measured PM2.5 in several major cities in Anhui Province, China.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"318 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.
{"title":"Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model","authors":"Qinping Song, Kazuo Osada","doi":"10.4209/aaqr.230096","DOIUrl":"https://doi.org/10.4209/aaqr.230096","url":null,"abstract":"Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135653426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emissions of total particulate matter (TPM) from stationary combustion sources consist of both filterable particulate matter (FPM) and condensable particulate matter (CPM). According to the study's findings, CPM emissions contributed significantly to the overall concentration of TPM. Therefore, there has been a growing focus on the physicochemical properties and control strategy of CPM. Firstly, this paper systematically reviewed the formation, composition, characteristics, and methods of removing CPM. Secondly, integrating the current removal methods, a cold electrode electrostatic precipitator (CE-ESP) based on the synergistic effect of multi-field coupled force on CPM coagulation and removal was put forward and installed. Thirdly, case studies of CE-ESP on CPM removal were conducted in a municipal solid waste incineration plant and a coal-fired power plant. The results showed that the removal efficiency of CPM could reach as high as 93%. The CE-ESP had a significant removal effect on both organic and inorganic substances in CPM.
{"title":"New Insights into the Synergistic Effect on Condensable Particulate Matter Based on the Formation, Characteristics and Removal","authors":"Wenting Liu, Xin Wang, Bowen Zhao, Jianyi Lu","doi":"10.4209/aaqr.230145","DOIUrl":"https://doi.org/10.4209/aaqr.230145","url":null,"abstract":"Emissions of total particulate matter (TPM) from stationary combustion sources consist of both filterable particulate matter (FPM) and condensable particulate matter (CPM). According to the study's findings, CPM emissions contributed significantly to the overall concentration of TPM. Therefore, there has been a growing focus on the physicochemical properties and control strategy of CPM. Firstly, this paper systematically reviewed the formation, composition, characteristics, and methods of removing CPM. Secondly, integrating the current removal methods, a cold electrode electrostatic precipitator (CE-ESP) based on the synergistic effect of multi-field coupled force on CPM coagulation and removal was put forward and installed. Thirdly, case studies of CE-ESP on CPM removal were conducted in a municipal solid waste incineration plant and a coal-fired power plant. The results showed that the removal efficiency of CPM could reach as high as 93%. The CE-ESP had a significant removal effect on both organic and inorganic substances in CPM.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136005101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Airborne microorganisms are associated with human health and awareness of the important influence of nano-sized extracellular vesicles (EVs) on health has risen. Thus, we analyzed the micro-sized microbes (m-MBs) and nano-sized microbial EVs (n-MEVs) of outdoor and indoor air through a field study in Seoul, Korea. We conducted 16S rDNA-based metagenomic analysis of m-MBs and n-MEVs in outdoor airborne dust (OAD), indoor airborne dust (IAD), and indoor dust from carpets (IDC). The dominant taxa in OAD were altered depending upon the outside environment, such as sunny, haze, and rainy. Also, dominant taxa in IAD and IDC were changed depending on the outside environment. In addition, there were differences of microbiome composition and diversity between the m-MB and n-MEV in OAD, IAD, and IDC. m-MB in OAD were more correlated with that of IDC, whereas n-MEVs in OAD were more related to those in IAD. Thus, indoor bioaerosols can be affected by different source according to bioaerosol size. Additionally, risk of bioaerosols can be different according to dominant taxa, and therefore we suggested that further study for risk of dominant taxa according to environments is necessary. We suggested that nano-sized microbial EVs should be included as parameters to manage air quality
{"title":"Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized","authors":"Jinho Yang, J. Seo, Y. Jee, Yoon Kim, J. Sohn","doi":"10.4209/aaqr.210231","DOIUrl":"https://doi.org/10.4209/aaqr.210231","url":null,"abstract":"Airborne microorganisms are associated with human health and awareness of the important influence of nano-sized extracellular vesicles (EVs) on health has risen. Thus, we analyzed the micro-sized microbes (m-MBs) and nano-sized microbial EVs (n-MEVs) of outdoor and indoor air through a field study in Seoul, Korea. We conducted 16S rDNA-based metagenomic analysis of m-MBs and n-MEVs in outdoor airborne dust (OAD), indoor airborne dust (IAD), and indoor dust from carpets (IDC). The dominant taxa in OAD were altered depending upon the outside environment, such as sunny, haze, and rainy. Also, dominant taxa in IAD and IDC were changed depending on the outside environment. In addition, there were differences of microbiome composition and diversity between the m-MB and n-MEV in OAD, IAD, and IDC. m-MB in OAD were more correlated with that of IDC, whereas n-MEVs in OAD were more related to those in IAD. Thus, indoor bioaerosols can be affected by different source according to bioaerosol size. Additionally, risk of bioaerosols can be different according to dominant taxa, and therefore we suggested that further study for risk of dominant taxa according to environments is necessary. We suggested that nano-sized microbial EVs should be included as parameters to manage air quality","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"40 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70290545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.
{"title":"Implications of the Improvement in Atmospheric Fine Particles: A Case Study of COVID-19 Pandemic in Northern Taiwan","authors":"Chuanqun Huang, Yi-Ru Ko, Tzu-Chi Lin, Yu-Hsiang Cheng, Yu-Cheng Chen, Y. Ting","doi":"10.4209/aaqr.220329","DOIUrl":"https://doi.org/10.4209/aaqr.220329","url":null,"abstract":"The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Liu, Da-Ren Chen, Q. Niu, Desmond Asiedu Mensah, Z. Ji
Electret media have the advantage of enhancing the particle collection efficiency while keeping/reducing the media pressure drop by the electrostatic mechanisms in addition to the mechanical ones. This study investigated the effect of operational pressure on the filtration performance of electret filter media. Experiments was conducted at the pressures in the range of 0.33–3 atm and using DMA-classified particles ranging in electrical mobility sizes of 10–600 nm. The penetration of particles in the neutral, singly charged and Fuchs’ bipolar charge states of two electret media (both charged and discharged) were measured. The single fiber efficiency due to the induced and Coulombic forces, i.e., η In and η C , were obtained. It is found that both efficiencies are a function of the filtration pressure (i
{"title":"Particle Collection of Electret Media under Different Filtration Pressures","authors":"Zhen Liu, Da-Ren Chen, Q. Niu, Desmond Asiedu Mensah, Z. Ji","doi":"10.4209/aaqr.220405","DOIUrl":"https://doi.org/10.4209/aaqr.220405","url":null,"abstract":"Electret media have the advantage of enhancing the particle collection efficiency while keeping/reducing the media pressure drop by the electrostatic mechanisms in addition to the mechanical ones. This study investigated the effect of operational pressure on the filtration performance of electret filter media. Experiments was conducted at the pressures in the range of 0.33–3 atm and using DMA-classified particles ranging in electrical mobility sizes of 10–600 nm. The penetration of particles in the neutral, singly charged and Fuchs’ bipolar charge states of two electret media (both charged and discharged) were measured. The single fiber efficiency due to the induced and Coulombic forces, i.e., η In and η C , were obtained. It is found that both efficiencies are a function of the filtration pressure (i","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}