Pub Date : 2023-04-03DOI: 10.3390/microplastics2020013
Stefania M. Manolaki, Dimitra Chatzivasileiou, Maria Lampa, Panagiotis D. Dimitriou, A. Philippidis, Ioannis Karakassis, N. Papageorgiou
Τhis study aims to measure the abundance of microplastic (MP) particles in the soft tissue of mussel (Mytilus galloprovincialis) and pearl oyster (Pinctada imbricata radiata) specimens. Samples were collected at four sites in Greece (Sagiada, Malesina, Elounda, Rhodes) from wild and farmed populations. The identification of MPs was accomplished by Raman spectroscopy. Comparisons were made between the two different species where the two species co-existed (Malesina), between the four study sites (five sampling stations) in relation to P. imbricata radiata individuals, and also in every station for the different MP types found. For the specimens from Malesina, M. galloprovincialis had more MPs in their soft tissue compared to P. imbricata radiata. Microfibers were found in abundance in M. galloprovincialis, while microfragments were found in P. imbricata radiata specimens. The main MP type found in P. imbricata radiata specimens was microfragments in all five sampling stations, and ranged between 1.54 ± 0.63 (Rhodes-baskets) and 3.56 ± 0.35 (Sagiada) MP particles/g. While the samples of mussels and pearl oysters were similar in age, the differences found in the concentrations of MPs appears to be due to their different farming methods and location characteristics concerning the five sampling stations of pearl oysters. This study indicates that the culturing system does not affect MP concentration in bivalves, and further investigation is needed to find the most appropriate method to limit and reduce MPs that end up in the farmed organisms.
{"title":"Microplastic Contamination in Cultured Mussels and Pearl Oysters in Greece","authors":"Stefania M. Manolaki, Dimitra Chatzivasileiou, Maria Lampa, Panagiotis D. Dimitriou, A. Philippidis, Ioannis Karakassis, N. Papageorgiou","doi":"10.3390/microplastics2020013","DOIUrl":"https://doi.org/10.3390/microplastics2020013","url":null,"abstract":"Τhis study aims to measure the abundance of microplastic (MP) particles in the soft tissue of mussel (Mytilus galloprovincialis) and pearl oyster (Pinctada imbricata radiata) specimens. Samples were collected at four sites in Greece (Sagiada, Malesina, Elounda, Rhodes) from wild and farmed populations. The identification of MPs was accomplished by Raman spectroscopy. Comparisons were made between the two different species where the two species co-existed (Malesina), between the four study sites (five sampling stations) in relation to P. imbricata radiata individuals, and also in every station for the different MP types found. For the specimens from Malesina, M. galloprovincialis had more MPs in their soft tissue compared to P. imbricata radiata. Microfibers were found in abundance in M. galloprovincialis, while microfragments were found in P. imbricata radiata specimens. The main MP type found in P. imbricata radiata specimens was microfragments in all five sampling stations, and ranged between 1.54 ± 0.63 (Rhodes-baskets) and 3.56 ± 0.35 (Sagiada) MP particles/g. While the samples of mussels and pearl oysters were similar in age, the differences found in the concentrations of MPs appears to be due to their different farming methods and location characteristics concerning the five sampling stations of pearl oysters. This study indicates that the culturing system does not affect MP concentration in bivalves, and further investigation is needed to find the most appropriate method to limit and reduce MPs that end up in the farmed organisms.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91367753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3390/microplastics2010012
Lyuyuan Wu, Kshiti Patel, Mohamad Zandieh, Juewen Liu
Microplastics can adsorb and spread a variety of pollutants in the ecosystem posing a threat to human health. One of the common pollution sources of environmental waters is metal ions, which not only adsorb on microplastics but can also promote the adsorption of other invasive species such as environmental DNA. Recently, we showed that environmentally abundant metal ions (Na+, Mg2+ and Ca2+) can promote the adsorption of single-stranded DNA (ssDNA) onto microplastics. Herein, we investigated the effect of transition metal ions including Zn2+ and Mn2+ and compared them with Mg2+ for promoting DNA adsorption. To better mimic environmental DNA, we also used a salmon sperm double-stranded DNA (dsDNA) (~2000 bp). For both ssDNA and dsDNA, the transition metals induced a higher adsorption capacity compared to Mg2+, and that correlated with the higher binding affinity of transition metals to DNA. Although metal-mediated interactions were vital for ssDNA adsorption, the dsDNA adsorbed on the microplastics even in the absence of metal ions, likely due to the abundance of binding sites of the 100-times longer dsDNA. Finally, desorption studies revealed that hydrophobic interactions were responsible for dsDNA adsorption in the absence of metal ions.
{"title":"Promotion of DNA Adsorption onto Microplastics by Transition Metal Ions","authors":"Lyuyuan Wu, Kshiti Patel, Mohamad Zandieh, Juewen Liu","doi":"10.3390/microplastics2010012","DOIUrl":"https://doi.org/10.3390/microplastics2010012","url":null,"abstract":"Microplastics can adsorb and spread a variety of pollutants in the ecosystem posing a threat to human health. One of the common pollution sources of environmental waters is metal ions, which not only adsorb on microplastics but can also promote the adsorption of other invasive species such as environmental DNA. Recently, we showed that environmentally abundant metal ions (Na+, Mg2+ and Ca2+) can promote the adsorption of single-stranded DNA (ssDNA) onto microplastics. Herein, we investigated the effect of transition metal ions including Zn2+ and Mn2+ and compared them with Mg2+ for promoting DNA adsorption. To better mimic environmental DNA, we also used a salmon sperm double-stranded DNA (dsDNA) (~2000 bp). For both ssDNA and dsDNA, the transition metals induced a higher adsorption capacity compared to Mg2+, and that correlated with the higher binding affinity of transition metals to DNA. Although metal-mediated interactions were vital for ssDNA adsorption, the dsDNA adsorbed on the microplastics even in the absence of metal ions, likely due to the abundance of binding sites of the 100-times longer dsDNA. Finally, desorption studies revealed that hydrophobic interactions were responsible for dsDNA adsorption in the absence of metal ions.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77390298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-03DOI: 10.3390/microplastics2010011
L. Cozzarini, Joana Buoninsegni, C. Corbau, V. Lughi
The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about one-third of all the freshwater flowing into the Mediterranean, mainly via the river Po. This study investigated the type and composition of large microplastic debris collected in different sites in the Po Delta area. Visual classification was performed by relevant criteria, while chemical composition was assessed by infrared spectroscopy. The main plastic fraction is composed of polyolefin (76%), followed by polystyrene (19%). This proportion roughly matches global plastic production, rescaled after excluding plastics with negative buoyancy: all the identified compounds have a specific gravity lower than that of the seawater. Fragments (irregularly shaped debris) represent the most abundant category fraction (85%), followed by pellets, which represent roughly 10% of the total. Overall, the results provided an insight into large microplastic pollution in beach sediments in the Po delta area.
{"title":"Characterization of Large Microplastic Debris in Beach Sediments in the Po Delta Area","authors":"L. Cozzarini, Joana Buoninsegni, C. Corbau, V. Lughi","doi":"10.3390/microplastics2010011","DOIUrl":"https://doi.org/10.3390/microplastics2010011","url":null,"abstract":"The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about one-third of all the freshwater flowing into the Mediterranean, mainly via the river Po. This study investigated the type and composition of large microplastic debris collected in different sites in the Po Delta area. Visual classification was performed by relevant criteria, while chemical composition was assessed by infrared spectroscopy. The main plastic fraction is composed of polyolefin (76%), followed by polystyrene (19%). This proportion roughly matches global plastic production, rescaled after excluding plastics with negative buoyancy: all the identified compounds have a specific gravity lower than that of the seawater. Fragments (irregularly shaped debris) represent the most abundant category fraction (85%), followed by pellets, which represent roughly 10% of the total. Overall, the results provided an insight into large microplastic pollution in beach sediments in the Po delta area.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79211942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.3390/microplastics2010009
A. Pellegrino, Denise Danne, C. Weigel, H. Seitz
In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus become a threat to human health. To investigate the effects of internalized micro- and nano-plastics on human gene transcription, we used an in vitro assay to quantify CREB (cAMP response element binding protein) mediated transcription. Here we show that CREB mediated gene expression was mainly but not exclusively induced by phosphorylation. In addition, the amount of CREB affected transcription was also studied. We were also able to show that the strong CREB mediated stimulation of transcription was diminished by micro- and nano-plastics in any chosen setting. This indicates a threat to human health via the deregulation of transcription induced by internalized micro- and nano-plastics. However, this established quantifiable in vitro transcription test system could help to screen for toxic substances and non-toxic alternatives.
{"title":"An In Vitro Assay to Quantify Effects of Micro- and Nano-Plastics on Human Gene Transcription","authors":"A. Pellegrino, Denise Danne, C. Weigel, H. Seitz","doi":"10.3390/microplastics2010009","DOIUrl":"https://doi.org/10.3390/microplastics2010009","url":null,"abstract":"In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus become a threat to human health. To investigate the effects of internalized micro- and nano-plastics on human gene transcription, we used an in vitro assay to quantify CREB (cAMP response element binding protein) mediated transcription. Here we show that CREB mediated gene expression was mainly but not exclusively induced by phosphorylation. In addition, the amount of CREB affected transcription was also studied. We were also able to show that the strong CREB mediated stimulation of transcription was diminished by micro- and nano-plastics in any chosen setting. This indicates a threat to human health via the deregulation of transcription induced by internalized micro- and nano-plastics. However, this established quantifiable in vitro transcription test system could help to screen for toxic substances and non-toxic alternatives.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73811913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.3390/microplastics2010010
Natalja Čerkasova, K. Enders, Robin Lenz, S. Oberbeckmann, Josef Brandt, Dieter Fischer, Franziska Fischer, M. Labrenz, G. Schernewski
During recent years plastics became one of the focuses of EU policy. A harmonisation and comparability of microplastics monitoring results across Europe is needed. The complexity of microplastic data makes it necessary to develop a specific, tailor-made database rather than adapting and modifying one of the existing databases. To meet this demand, we present a publicly accessible, flexible, and extendable structured relational database for particle-based microplastic data. The developed relational database is adaptive and meets the specific demands of microplastics, e.g., a large variety of sampling, processing and analytical methods, many types of plastics, and a very wide size spectrum ranging from micrometres to millimetres. In this paper we discuss the development of the database, data entry specifics, sample analysis methods, microplastics data manipulation and quality assurance, and database integration and accessibility.
{"title":"A Public Database for Microplastics in the Environment","authors":"Natalja Čerkasova, K. Enders, Robin Lenz, S. Oberbeckmann, Josef Brandt, Dieter Fischer, Franziska Fischer, M. Labrenz, G. Schernewski","doi":"10.3390/microplastics2010010","DOIUrl":"https://doi.org/10.3390/microplastics2010010","url":null,"abstract":"During recent years plastics became one of the focuses of EU policy. A harmonisation and comparability of microplastics monitoring results across Europe is needed. The complexity of microplastic data makes it necessary to develop a specific, tailor-made database rather than adapting and modifying one of the existing databases. To meet this demand, we present a publicly accessible, flexible, and extendable structured relational database for particle-based microplastic data. The developed relational database is adaptive and meets the specific demands of microplastics, e.g., a large variety of sampling, processing and analytical methods, many types of plastics, and a very wide size spectrum ranging from micrometres to millimetres. In this paper we discuss the development of the database, data entry specifics, sample analysis methods, microplastics data manipulation and quality assurance, and database integration and accessibility.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82998676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.1186/s43591-023-00052-8
C. Walkinshaw, T. Tolhurst, P. Lindeque, Richard C. Thompson, M. Cole
{"title":"Impact of polyester and cotton microfibers on growth and sublethal biomarkers in juvenile mussels","authors":"C. Walkinshaw, T. Tolhurst, P. Lindeque, Richard C. Thompson, M. Cole","doi":"10.1186/s43591-023-00052-8","DOIUrl":"https://doi.org/10.1186/s43591-023-00052-8","url":null,"abstract":"","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44257314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.3390/microplastics2010008
M. Rani, S. Ducoli, S. Federici, L. Depero
The abundance of microplastics in the environment poses a constant threat to all parts of the ecosystem, and the scientific community is called upon to help solve the problem. Numerous studies have been published for microplastic analysis, especially in the last decade, with vibrational spectroscopy being the preferred method. According to recent literature, portable spectrometers operating in the near-infrared (NIR) range are being used for the analysis of different types of polymers, and this technique has recently found its way into the analysis of microplastics as a good alternative to expensive and complicated benchtop instruments, such as Fourier-transform infrared (FTIR) spectrometers. The aim of this study is to investigate and evaluate research trends, leading publications, authors, countries, and limitations of the use of NIR spectroscopy in microplastics research, with a comparison to the established FTIR technique.
{"title":"Influx of Near-Infrared Technology in Microplastic Community: A Bibliometric Analysis","authors":"M. Rani, S. Ducoli, S. Federici, L. Depero","doi":"10.3390/microplastics2010008","DOIUrl":"https://doi.org/10.3390/microplastics2010008","url":null,"abstract":"The abundance of microplastics in the environment poses a constant threat to all parts of the ecosystem, and the scientific community is called upon to help solve the problem. Numerous studies have been published for microplastic analysis, especially in the last decade, with vibrational spectroscopy being the preferred method. According to recent literature, portable spectrometers operating in the near-infrared (NIR) range are being used for the analysis of different types of polymers, and this technique has recently found its way into the analysis of microplastics as a good alternative to expensive and complicated benchtop instruments, such as Fourier-transform infrared (FTIR) spectrometers. The aim of this study is to investigate and evaluate research trends, leading publications, authors, countries, and limitations of the use of NIR spectroscopy in microplastics research, with a comparison to the established FTIR technique.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87799415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-11DOI: 10.1186/s43591-023-00053-7
Moritz Lehmann, Fabian Häusl, S. Gekle
{"title":"Modeling of vertical microplastic transport by rising bubbles","authors":"Moritz Lehmann, Fabian Häusl, S. Gekle","doi":"10.1186/s43591-023-00053-7","DOIUrl":"https://doi.org/10.1186/s43591-023-00053-7","url":null,"abstract":"","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49556793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.3390/microplastics2010007
L. Ledieu, N. Phuong, B. Flahaut, Pauline Radigois, Julya Papin, C. Le Guern, Batrice Béchet, J. Gaspéri
Municipal landfills receive a high amount of plastic waste and due to the occurring physical and biochemical degradation processes, could be significant sources of microplastics (MP). Evaluating the threat to groundwater through the transfer of MP via landfill leachates require more research. The former “Prairie de Mauves” landfill, operated from 1963 to 1987 by the municipality of Nantes (France), and located above the alluvial groundwater of the Loire River, represents a good candidate for such investigations. Leachates and groundwater were sampled along a transect line from upstream to downstream of the landfill, in March and June 2022. MP (>25 µm) were quantified and characterized using µFTIR imaging in transmission mode. MP were observed in every sample with concentrations ranging from 0.71 to 106.7 MP/L. Concentrations in the leachates and the alluvial groundwater illustrate a migration of MP. Twelve polymers were identified and polyethylene (PE) and polypropylene (PP) were predominant. After a conventional rainfall event (14.3 mm), higher concentrations, diversity, and size ranges of MP were observed. Water infiltration through the heterogeneous geological substratum therefore enhanced the migration of larger MP towards the alluvial groundwater of the Loire River.
{"title":"May a Former Municipal Landfill Contaminate Groundwater in Microplastics? First Investigations from the “Prairie de Mauves Site” (Nantes, France)","authors":"L. Ledieu, N. Phuong, B. Flahaut, Pauline Radigois, Julya Papin, C. Le Guern, Batrice Béchet, J. Gaspéri","doi":"10.3390/microplastics2010007","DOIUrl":"https://doi.org/10.3390/microplastics2010007","url":null,"abstract":"Municipal landfills receive a high amount of plastic waste and due to the occurring physical and biochemical degradation processes, could be significant sources of microplastics (MP). Evaluating the threat to groundwater through the transfer of MP via landfill leachates require more research. The former “Prairie de Mauves” landfill, operated from 1963 to 1987 by the municipality of Nantes (France), and located above the alluvial groundwater of the Loire River, represents a good candidate for such investigations. Leachates and groundwater were sampled along a transect line from upstream to downstream of the landfill, in March and June 2022. MP (>25 µm) were quantified and characterized using µFTIR imaging in transmission mode. MP were observed in every sample with concentrations ranging from 0.71 to 106.7 MP/L. Concentrations in the leachates and the alluvial groundwater illustrate a migration of MP. Twelve polymers were identified and polyethylene (PE) and polypropylene (PP) were predominant. After a conventional rainfall event (14.3 mm), higher concentrations, diversity, and size ranges of MP were observed. Water infiltration through the heterogeneous geological substratum therefore enhanced the migration of larger MP towards the alluvial groundwater of the Loire River.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"240 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80465065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.3390/microplastics2010006
G. Casillas, B. Hubbard, J. Telfer, M. Zarate-Bermudez, C. Muianga, G. Zarus, Y. Carroll, April Ellis, Candis M. Hunter
Scientific studies of microplastics have expanded since 2015, propelling the topic to the forefront of scientific inquiry. Microplastics are ubiquitous in the environment and pose a potential risk to human health. The purpose of this review is to organize microplastics literature into areas of scientific research, summarize the state of the literature and identify the current data gaps in knowledge to promote a better understanding of human exposure to microplastics and their potential health effects. We searched for published literature from eight databases. Our search focused on three categories: (1) microplastics in the environment, (2) adsorption and absorption of chemicals to microplastics, and (3) human exposure to microplastics in the environment. We screened all abstracts to select articles that focused on microplastics. We then screened the remaining articles using criteria outlined in a questionnaire to identify and assign articles to the three scoping review categories. After screening abstracts, we selected 1186 articles (19%) to thoroughly assess their appropriateness for inclusion in the final review. Of the 1186 articles, 903 (76.1%) belonged to the environmental category, 268 (22.6%) to the adsorption and absorption category, and 16 (1.3%) to the human exposure category. Water was the most frequently studied environmental medium (440 articles). Our assessment resulted in 572 articles selected for the final review. Of the 572 publications, 268 (48.2%) included a geographic component and 110 (19.2%) were the product of literature reviews. We also show that relatively few publications have investigated human health effects associated with exposures to microplastics.
{"title":"Microplastics Scoping Review of Environmental and Human Exposure Data","authors":"G. Casillas, B. Hubbard, J. Telfer, M. Zarate-Bermudez, C. Muianga, G. Zarus, Y. Carroll, April Ellis, Candis M. Hunter","doi":"10.3390/microplastics2010006","DOIUrl":"https://doi.org/10.3390/microplastics2010006","url":null,"abstract":"Scientific studies of microplastics have expanded since 2015, propelling the topic to the forefront of scientific inquiry. Microplastics are ubiquitous in the environment and pose a potential risk to human health. The purpose of this review is to organize microplastics literature into areas of scientific research, summarize the state of the literature and identify the current data gaps in knowledge to promote a better understanding of human exposure to microplastics and their potential health effects. We searched for published literature from eight databases. Our search focused on three categories: (1) microplastics in the environment, (2) adsorption and absorption of chemicals to microplastics, and (3) human exposure to microplastics in the environment. We screened all abstracts to select articles that focused on microplastics. We then screened the remaining articles using criteria outlined in a questionnaire to identify and assign articles to the three scoping review categories. After screening abstracts, we selected 1186 articles (19%) to thoroughly assess their appropriateness for inclusion in the final review. Of the 1186 articles, 903 (76.1%) belonged to the environmental category, 268 (22.6%) to the adsorption and absorption category, and 16 (1.3%) to the human exposure category. Water was the most frequently studied environmental medium (440 articles). Our assessment resulted in 572 articles selected for the final review. Of the 572 publications, 268 (48.2%) included a geographic component and 110 (19.2%) were the product of literature reviews. We also show that relatively few publications have investigated human health effects associated with exposures to microplastics.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81981443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}