Pub Date : 2022-08-29DOI: 10.3390/microplastics1030034
Valeria Jimenez-Cárdenas, A. Luna‐Acosta, L. D. Gómez-Méndez
This study aims to determine whether differences exist between the presence of microplastics and mesoplastics in fishes of coral reef and mangrove ecosystems, in Isla Grande, Colombian Caribbean. The collection of three species of coral reef (Centropomus undecimalis, Caranx hippos, and Lutjanus synagris) and three species of mangrove from coral reef (Centropomus undecimalis, Eugerres plumieri, and Archosargus rhomboidalis) were found to have ingested microplastics and mesoplastics, with a significantly higher in the mangrove species than in the coral reef species (1.9 vs. 1.6 items/individual). Furthermore, the average abundance and weight of microplastics and mesoplastics were significantly higher in females than in males (p < 0.05) and the abundance of microplastics and mesoplastics in the intestines was significantly higher than in the stomach (p < 0.05). PE, polyester, PVC, and PET were the most abundant polymers among common plastics found in species of the two habitats. Our findings highlight the importance of more rigorous plastic waste management strategies in areas nearby the coast and mangrove habitats.
{"title":"Differential Presence of Microplastics and Mesoplastics in Coral Reef and Mangrove Fishes in Isla Grande, Colombia","authors":"Valeria Jimenez-Cárdenas, A. Luna‐Acosta, L. D. Gómez-Méndez","doi":"10.3390/microplastics1030034","DOIUrl":"https://doi.org/10.3390/microplastics1030034","url":null,"abstract":"This study aims to determine whether differences exist between the presence of microplastics and mesoplastics in fishes of coral reef and mangrove ecosystems, in Isla Grande, Colombian Caribbean. The collection of three species of coral reef (Centropomus undecimalis, Caranx hippos, and Lutjanus synagris) and three species of mangrove from coral reef (Centropomus undecimalis, Eugerres plumieri, and Archosargus rhomboidalis) were found to have ingested microplastics and mesoplastics, with a significantly higher in the mangrove species than in the coral reef species (1.9 vs. 1.6 items/individual). Furthermore, the average abundance and weight of microplastics and mesoplastics were significantly higher in females than in males (p < 0.05) and the abundance of microplastics and mesoplastics in the intestines was significantly higher than in the stomach (p < 0.05). PE, polyester, PVC, and PET were the most abundant polymers among common plastics found in species of the two habitats. Our findings highlight the importance of more rigorous plastic waste management strategies in areas nearby the coast and mangrove habitats.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82237449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-17DOI: 10.3390/microplastics1030033
Wihann Conradie, C. Dorfling, A. Chimphango, A. Booth, Lisbet Sørensen, G. Akdogan
A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the degradation of clear polypropylene (CPP), black polypropylene (BPP), and polyethylene terephthalate (PET) packaging materials was investigated over a period of 6 weeks under dry air conditions representing the terrestrial environment. The exposure was conducted using differently sized and shaped samples at irradiation intensities of 65 W/m2 and 130 W/m2. Results indicated that UV irradiation led to changes in the properties of PET, BPP, and CPP that were proportional to the intensity delivered, leading to a higher level of mass loss, carbonyl indices, crystallinities, and microhardness in all polymer types at 130 W/m2 relative to 65 W/m2. However, material shape and size did not have a significant influence on any property for any of the test materials. Increased mass loss over time was accompanied by considerable increases in carbonyl index (CI) for both PPs. Clear PP (CPP) underwent the most severe degradation, resulting in the highest mass loss, increase in crystallinity, and CI. BPP was less degraded and modified by the UV irradiation than the CPP, indicating that the colorant, carbon black, provided some degree of protection to the bulk polymer material. PET was the least degraded of the three materials, suggesting this polymer type is more resistant to UV degradation. The differences in the degradation behaviours of the three test materials under dry environmental conditions indicate that the UV exposure history of plastic litter might play an important role in its potential for further degradation once it reaches the marine environment. Furthermore, analysis of samples exposed to UV in aqueous media reveals a more irregular set of trends for most material properties measured. Overall, the degree of degradation resulting from UV irradiation in dry environments was more pronounced than in aqueous environments, although the most significant property changes were observed for materials without previous UV exposure histories. Samples with previous UV histories showed higher resistance to further crystallinity changes, which appeared to be due to crosslinking in the pretreatment exposures inhibiting chain alignment into crystalline structures. The effect of solution medium was insignificant, although the presence of water allowed hydrolytic degradation to proceed simultaneously with UV degradation for PET. The reduction of CI in pretreated materials in the aqueous exposures, combined with the mass loss, suggest that the degraded surface layer erodes or products dissolve into surrounding solution medium, leaving a fresh surface of plastic exposed.
{"title":"Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments","authors":"Wihann Conradie, C. Dorfling, A. Chimphango, A. Booth, Lisbet Sørensen, G. Akdogan","doi":"10.3390/microplastics1030033","DOIUrl":"https://doi.org/10.3390/microplastics1030033","url":null,"abstract":"A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the degradation of clear polypropylene (CPP), black polypropylene (BPP), and polyethylene terephthalate (PET) packaging materials was investigated over a period of 6 weeks under dry air conditions representing the terrestrial environment. The exposure was conducted using differently sized and shaped samples at irradiation intensities of 65 W/m2 and 130 W/m2. Results indicated that UV irradiation led to changes in the properties of PET, BPP, and CPP that were proportional to the intensity delivered, leading to a higher level of mass loss, carbonyl indices, crystallinities, and microhardness in all polymer types at 130 W/m2 relative to 65 W/m2. However, material shape and size did not have a significant influence on any property for any of the test materials. Increased mass loss over time was accompanied by considerable increases in carbonyl index (CI) for both PPs. Clear PP (CPP) underwent the most severe degradation, resulting in the highest mass loss, increase in crystallinity, and CI. BPP was less degraded and modified by the UV irradiation than the CPP, indicating that the colorant, carbon black, provided some degree of protection to the bulk polymer material. PET was the least degraded of the three materials, suggesting this polymer type is more resistant to UV degradation. The differences in the degradation behaviours of the three test materials under dry environmental conditions indicate that the UV exposure history of plastic litter might play an important role in its potential for further degradation once it reaches the marine environment. Furthermore, analysis of samples exposed to UV in aqueous media reveals a more irregular set of trends for most material properties measured. Overall, the degree of degradation resulting from UV irradiation in dry environments was more pronounced than in aqueous environments, although the most significant property changes were observed for materials without previous UV exposure histories. Samples with previous UV histories showed higher resistance to further crystallinity changes, which appeared to be due to crosslinking in the pretreatment exposures inhibiting chain alignment into crystalline structures. The effect of solution medium was insignificant, although the presence of water allowed hydrolytic degradation to proceed simultaneously with UV degradation for PET. The reduction of CI in pretreated materials in the aqueous exposures, combined with the mass loss, suggest that the degraded surface layer erodes or products dissolve into surrounding solution medium, leaving a fresh surface of plastic exposed.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84930812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-15DOI: 10.3390/microplastics1030032
Manuela Piccardo, Gabriele Salvatore Priami, S. Anselmi, S. Bevilacqua, M. Renzi
An intra-laboratory calibration to quantify microplastic in fine-grained marine sediments was performed with two objectives: (a) to determine the recovery rate of self-produced microplastics characterized by a size ranging from 220 µm to 5 mm and differing in color (pink, orange, gray, yellow, silver), shape (fragments, filaments, spheres, films), and chemical composition (polystyrene, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene, polypropylene, poly(methyl methacrylate)) artificially introduced into real samples; and (b) to analyze whether operator experience can be a key factor in the quality of the results. To answer this question, the same protocol was assigned to an experienced and an inexperienced operator. The results of this comparison are detailed in terms of root mean square and percent error. Possible strategies to increase the recovery rate are presented, and an ad hoc category, namely “glitter”, was created to adjust the results with respect to this unique type of microplastic usually ignored and excluded from the analysis.
{"title":"Intra-Laboratory Calibration Exercise for Quantification of Microplastic Particles in Fine-Grained Sediment Samples: Special Focus on the Influence of User Experience","authors":"Manuela Piccardo, Gabriele Salvatore Priami, S. Anselmi, S. Bevilacqua, M. Renzi","doi":"10.3390/microplastics1030032","DOIUrl":"https://doi.org/10.3390/microplastics1030032","url":null,"abstract":"An intra-laboratory calibration to quantify microplastic in fine-grained marine sediments was performed with two objectives: (a) to determine the recovery rate of self-produced microplastics characterized by a size ranging from 220 µm to 5 mm and differing in color (pink, orange, gray, yellow, silver), shape (fragments, filaments, spheres, films), and chemical composition (polystyrene, polyethylene, polyvinyl chloride, acrylonitrile-butadiene-styrene, polypropylene, poly(methyl methacrylate)) artificially introduced into real samples; and (b) to analyze whether operator experience can be a key factor in the quality of the results. To answer this question, the same protocol was assigned to an experienced and an inexperienced operator. The results of this comparison are detailed in terms of root mean square and percent error. Possible strategies to increase the recovery rate are presented, and an ad hoc category, namely “glitter”, was created to adjust the results with respect to this unique type of microplastic usually ignored and excluded from the analysis.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88135508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-12DOI: 10.3390/microplastics1030031
Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis
Food packaging has been demonstrated as a crucial issue for the migration of microplastics (MPs) into foodstuffs, concerning human health risk factors. Polymeric materials called plastics are continuously utilized in food packaging. Polyethylene (PE) is commonly used as a food packaging material, because it offers easy handling during transportation and optimal storage conditions for food preservation. In this work, three types of cured meat products of different fat compositions and meat processing methods—bacon, mortadella, and salami—were studied using spectroscopic methods (Raman and FT–IR/ATR) to determine the migration of low-density polyethylene (LDPE) from plastic packaging to the surface of the meat samples. The experimental duration of this study was set to be 28 days owing to the selected meat samples’ degradation, which started to become visible to the human eye after 10 days of storage in vacuum LDPE packaging, under refrigerated conditions at 4 °C. Spectroscopic measurements were performed at 0, 3, 9, 12, 15, and 28 days of storage to obtain comparative results. We demonstrated that the Raman spectral peaks of LDPE firstly appeared as a result of polymeric migration on day 9 in Bacon, on day 15 in Salami, and finally on day 28 in Mortadella. On day 28, all meat samples were tainted, with a layer of bacterial outgrowth developed, as proven by bright–field microscopic observation. Food packaging migration to the surface of cured meat samples was validated using Raman vibrational spectroscopy. To ensure minimal consumption of MPs in cured meat products stored in plastic packaging, while at the same time maintaining good food quality, they should be kept in refrigerated conditions and consumed within a short period of time. In this work, the migration of MPs from food packaging to the surface of cured meat samples was observed using micro-Raman spectroscopy.
{"title":"Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy","authors":"Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis","doi":"10.3390/microplastics1030031","DOIUrl":"https://doi.org/10.3390/microplastics1030031","url":null,"abstract":"Food packaging has been demonstrated as a crucial issue for the migration of microplastics (MPs) into foodstuffs, concerning human health risk factors. Polymeric materials called plastics are continuously utilized in food packaging. Polyethylene (PE) is commonly used as a food packaging material, because it offers easy handling during transportation and optimal storage conditions for food preservation. In this work, three types of cured meat products of different fat compositions and meat processing methods—bacon, mortadella, and salami—were studied using spectroscopic methods (Raman and FT–IR/ATR) to determine the migration of low-density polyethylene (LDPE) from plastic packaging to the surface of the meat samples. The experimental duration of this study was set to be 28 days owing to the selected meat samples’ degradation, which started to become visible to the human eye after 10 days of storage in vacuum LDPE packaging, under refrigerated conditions at 4 °C. Spectroscopic measurements were performed at 0, 3, 9, 12, 15, and 28 days of storage to obtain comparative results. We demonstrated that the Raman spectral peaks of LDPE firstly appeared as a result of polymeric migration on day 9 in Bacon, on day 15 in Salami, and finally on day 28 in Mortadella. On day 28, all meat samples were tainted, with a layer of bacterial outgrowth developed, as proven by bright–field microscopic observation. Food packaging migration to the surface of cured meat samples was validated using Raman vibrational spectroscopy. To ensure minimal consumption of MPs in cured meat products stored in plastic packaging, while at the same time maintaining good food quality, they should be kept in refrigerated conditions and consumed within a short period of time. In this work, the migration of MPs from food packaging to the surface of cured meat samples was observed using micro-Raman spectroscopy.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86256768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-08DOI: 10.3390/microplastics1030030
Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis
In ancient Greece, people said that “honey is the Food of the Gods”, and they were right. They believed that honey fell from the sky, with the morning dew, on the flowers and leaves, and from this point, the bees collected it. Honey is one of the most nutritious food products, which can be found in most homes. A lot of honey products are stored in different types of packaging materials, including plastics. Plastic packaging has been studied for the migration of plasticizers, chemical compounds, and MPs and NPs in foodstuffs. Most of them have been achieved through food simulations, while some studies managed to detect and isolate MPs/NPs. Recent studies presented evidence for the presence of MPs/NPs in honey products but not directly connected to food packaging or to the different types of honey and their properties (viscosity, pH value, and moisture content) or their storing conditions (temperature, humidity, light, and time). Spectroscopic and analytical techniques like Raman, FTIR, HPLC, and GC-MS are in the foreground for MP/NP detection and identification, but a universal way of isolation, detection, characterization, and quantification has not yet been found. This leaves an open field for more work to be done to clarify the factors affecting the migration of plastic packaging material in honey.
{"title":"Honey Quality and Microplastic Migration from Food Packaging: A Potential Threat for Consumer Health?","authors":"Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis","doi":"10.3390/microplastics1030030","DOIUrl":"https://doi.org/10.3390/microplastics1030030","url":null,"abstract":"In ancient Greece, people said that “honey is the Food of the Gods”, and they were right. They believed that honey fell from the sky, with the morning dew, on the flowers and leaves, and from this point, the bees collected it. Honey is one of the most nutritious food products, which can be found in most homes. A lot of honey products are stored in different types of packaging materials, including plastics. Plastic packaging has been studied for the migration of plasticizers, chemical compounds, and MPs and NPs in foodstuffs. Most of them have been achieved through food simulations, while some studies managed to detect and isolate MPs/NPs. Recent studies presented evidence for the presence of MPs/NPs in honey products but not directly connected to food packaging or to the different types of honey and their properties (viscosity, pH value, and moisture content) or their storing conditions (temperature, humidity, light, and time). Spectroscopic and analytical techniques like Raman, FTIR, HPLC, and GC-MS are in the foreground for MP/NP detection and identification, but a universal way of isolation, detection, characterization, and quantification has not yet been found. This leaves an open field for more work to be done to clarify the factors affecting the migration of plastic packaging material in honey.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83094440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-06DOI: 10.1186/s43591-022-00040-4
L. T. Thornton Hampton, S. Brander, Scott Coffin, M. Cole, Ludovic Hermabessiere, A. Koelmans, C. Rochman
{"title":"Characterizing microplastic hazards: which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms?","authors":"L. T. Thornton Hampton, S. Brander, Scott Coffin, M. Cole, Ludovic Hermabessiere, A. Koelmans, C. Rochman","doi":"10.1186/s43591-022-00040-4","DOIUrl":"https://doi.org/10.1186/s43591-022-00040-4","url":null,"abstract":"","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43045328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-22DOI: 10.3390/microplastics1030029
Beatrice Malchiodi, E. I. Cedillo-González, C. Siligardi, P. Pozzi
Microplastic (MP) contamination is an urgent environmental issue to address. Fibrous microplastics (FMPs) are the principal MP type in the air and have already been found in human stool and lung tissues. FMPs are generated from the lifecycle of synthetic and blended textiles and are expected to increase due to fast fashion. Among textile processes, the finishing of fabrics is estimated to generate 5000 t/year of textile waste fibers in Italy, including FMPs. To limit FMPs spread, this paper suggests, for the first time, the direct collection of blended finishing textile waste microfibers and reuse in designing thermal-insulating and mechanical-performing fiber-reinforced cementitious composites (FRCs). The microfibers were thoroughly characterized (size, morphology, composition, and density), and their use in FRCs was additionally evaluated by considering water absorption and release capacity. Untreated, water-saturated, and NaOH-treated microfibers were considered in FRCs up to 4 wt%. Up to a +320% maximum bending load, +715% toughness, −80% linear shrinkage, and double-insulating power of Portland cement were observed by increasing microfiber contents. NaOH-treated and water-saturated microfibers better enhanced toughness and linear shrinkage reduction. Therefore, green and performant composite construction materials were obtained, allowing for the mitigation of more than 4 kg FMPs per ton of cement paste. This is a great result considering the FMP contamination (i.e., 2–8 kg/day fallout in Paris), and that FRCs are promising and shortly-widely used construction materials.
{"title":"A Practical Valorization Approach for Mitigating Textile Fibrous Microplastics in the Environment: Collection of Textile-Processing Waste Microfibers and Direct Reuse in Green Thermal-Insulating and Mechanical-Performing Composite Construction Materials","authors":"Beatrice Malchiodi, E. I. Cedillo-González, C. Siligardi, P. Pozzi","doi":"10.3390/microplastics1030029","DOIUrl":"https://doi.org/10.3390/microplastics1030029","url":null,"abstract":"Microplastic (MP) contamination is an urgent environmental issue to address. Fibrous microplastics (FMPs) are the principal MP type in the air and have already been found in human stool and lung tissues. FMPs are generated from the lifecycle of synthetic and blended textiles and are expected to increase due to fast fashion. Among textile processes, the finishing of fabrics is estimated to generate 5000 t/year of textile waste fibers in Italy, including FMPs. To limit FMPs spread, this paper suggests, for the first time, the direct collection of blended finishing textile waste microfibers and reuse in designing thermal-insulating and mechanical-performing fiber-reinforced cementitious composites (FRCs). The microfibers were thoroughly characterized (size, morphology, composition, and density), and their use in FRCs was additionally evaluated by considering water absorption and release capacity. Untreated, water-saturated, and NaOH-treated microfibers were considered in FRCs up to 4 wt%. Up to a +320% maximum bending load, +715% toughness, −80% linear shrinkage, and double-insulating power of Portland cement were observed by increasing microfiber contents. NaOH-treated and water-saturated microfibers better enhanced toughness and linear shrinkage reduction. Therefore, green and performant composite construction materials were obtained, allowing for the mitigation of more than 4 kg FMPs per ton of cement paste. This is a great result considering the FMP contamination (i.e., 2–8 kg/day fallout in Paris), and that FRCs are promising and shortly-widely used construction materials.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72610240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.3390/microplastics1030028
G. Chatziparaskeva, I. Papamichael, I. Voukkali, P. Loizia, G. Sourkouni, C. Argirusis, A. Zorpas
Composite materials constitute an appealing choice in many industrial sectors, due to their unique composition and characteristics, such as low maintenance requirements, light weight, corrosion resistance, and durability. However, the sustainable management of end-of-life composite materials remains a challenge. Recovery strategies, design aspects, and their interconnection are currently largely unexplored, while technologies involved in the circular economy (reuse, reduce, recycle, refurbish, etc.) could be improved. The current paper provides an overview of the existing methods of composite material waste management, while presenting new circular economy prospects for end-of-life strategies and providing a brief roadmap towards circularity for industries. Finally, existing circular economy practices in regard to composites are presented in different European countries to present the applicability of composite material end-of-life waste management.
{"title":"End-of-Life of Composite Materials in the Framework of the Circular Economy","authors":"G. Chatziparaskeva, I. Papamichael, I. Voukkali, P. Loizia, G. Sourkouni, C. Argirusis, A. Zorpas","doi":"10.3390/microplastics1030028","DOIUrl":"https://doi.org/10.3390/microplastics1030028","url":null,"abstract":"Composite materials constitute an appealing choice in many industrial sectors, due to their unique composition and characteristics, such as low maintenance requirements, light weight, corrosion resistance, and durability. However, the sustainable management of end-of-life composite materials remains a challenge. Recovery strategies, design aspects, and their interconnection are currently largely unexplored, while technologies involved in the circular economy (reuse, reduce, recycle, refurbish, etc.) could be improved. The current paper provides an overview of the existing methods of composite material waste management, while presenting new circular economy prospects for end-of-life strategies and providing a brief roadmap towards circularity for industries. Finally, existing circular economy practices in regard to composites are presented in different European countries to present the applicability of composite material end-of-life waste management.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"123 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73648581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-14DOI: 10.3390/microplastics1030027
Jana Weisser, Teresa Pohl, N. Ivleva, T. Hofmann, K. Glas
Assessing data analysis routines (DARs) for microplastics (MP) identification in Fourier-transform infrared (FTIR) images left the question ‘Do we overlook any MP particles in our sample?’ widely unanswered. Here, a reference image of microplastics, RefIMP, is presented to answer this question. RefIMP contains over 1200 MP and non-MP particles that serve as a ground truth that a DAR’s result can be compared to. Together with our MatLab® script for MP validation, MPVal, DARs can be evaluated on a particle level instead of isolated spectra. This prevents over-optimistic performance expectations, as testing of three hypotheses illustrates: (I) excessive background masking can cause overlooking of particles, (II) random decision forest models benefit from high-diversity training data, (III) among the model hyperparameters, the classification threshold influences the performance most. A minimum of 7.99% overlooked particles was achieved, most of which were polyethylene and varnish-like. Cellulose was the class most susceptible to over-segmentation. Most false assignments were attributed to confusion of polylactic acid for polymethyl methacrylate and of polypropylene for polyethylene. Moreover, a set of over 9000 transmission FTIR spectra is provided with this work, that can be used to set up DARs or as standard test set.
{"title":"Know What You Don’t Know: Assessment of Overlooked Microplastic Particles in FTIR Images","authors":"Jana Weisser, Teresa Pohl, N. Ivleva, T. Hofmann, K. Glas","doi":"10.3390/microplastics1030027","DOIUrl":"https://doi.org/10.3390/microplastics1030027","url":null,"abstract":"Assessing data analysis routines (DARs) for microplastics (MP) identification in Fourier-transform infrared (FTIR) images left the question ‘Do we overlook any MP particles in our sample?’ widely unanswered. Here, a reference image of microplastics, RefIMP, is presented to answer this question. RefIMP contains over 1200 MP and non-MP particles that serve as a ground truth that a DAR’s result can be compared to. Together with our MatLab® script for MP validation, MPVal, DARs can be evaluated on a particle level instead of isolated spectra. This prevents over-optimistic performance expectations, as testing of three hypotheses illustrates: (I) excessive background masking can cause overlooking of particles, (II) random decision forest models benefit from high-diversity training data, (III) among the model hyperparameters, the classification threshold influences the performance most. A minimum of 7.99% overlooked particles was achieved, most of which were polyethylene and varnish-like. Cellulose was the class most susceptible to over-segmentation. Most false assignments were attributed to confusion of polylactic acid for polymethyl methacrylate and of polypropylene for polyethylene. Moreover, a set of over 9000 transmission FTIR spectra is provided with this work, that can be used to set up DARs or as standard test set.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77351840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}