Pub Date : 2016-12-08eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1248735
Zhihui Huang, Wen-Cheng Xiong
Astrocytes, a major type of glial cells in the mammalian central nervous system (CNS), have a wide variety of physiological functions, including formation of the blood brain barrier, and modulation of synaptic transmission and information processing, and maintenance of CNS homeostasis. The signaling pathway initiated by bone morphogenetic protein (BMP) is critical for astrogliogenesis. However, exactly how this pathway regulates astrogliogenesis remains poorly understood. We have recently provided in vitro and in vivo evidence for neogenin's function in neural stem cells (NSCs) to promote neocortical astrogliogenesis. Neogenin in NSCs as well as astrocytes is required for BMP2 activation of RhoA that promotes YAP (yes-associated protein) nuclear translocation, consequently, YAP interaction with nuclear p-Smad1/5/8, and stabilization of Smad1/5/8 signaling. We have also provided evidence that YAP in NSCs is necessary for neocortical astrogliogenesis, and expression of YAP in neogenin deficient NSCs diminishes the astrogliogenesis deficit. These recent findings identify an unrecognized function of neogenin in promoting neocortical astrogliogenesis, and reveal a pathway of BMP2-neogenin-YAP-Smad1 underlying astrogliogenesis in developing mouse neocortex.
{"title":"Neogenin-YAP signaling in neocortical astrocytic differentiation.","authors":"Zhihui Huang, Wen-Cheng Xiong","doi":"10.1080/23262133.2016.1248735","DOIUrl":"https://doi.org/10.1080/23262133.2016.1248735","url":null,"abstract":"<p><p>Astrocytes, a major type of glial cells in the mammalian central nervous system (CNS), have a wide variety of physiological functions, including formation of the blood brain barrier, and modulation of synaptic transmission and information processing, and maintenance of CNS homeostasis. The signaling pathway initiated by bone morphogenetic protein (BMP) is critical for astrogliogenesis. However, exactly how this pathway regulates astrogliogenesis remains poorly understood. We have recently provided <i>in vitro</i> and <i>in vivo</i> evidence for neogenin's function in neural stem cells (NSCs) to promote neocortical astrogliogenesis. Neogenin in NSCs as well as astrocytes is required for BMP2 activation of RhoA that promotes YAP (yes-associated protein) nuclear translocation, consequently, YAP interaction with nuclear p-Smad1/5/8, and stabilization of Smad1/5/8 signaling. We have also provided evidence that YAP in NSCs is necessary for neocortical astrogliogenesis, and expression of YAP in neogenin deficient NSCs diminishes the astrogliogenesis deficit. These recent findings identify an unrecognized function of neogenin in promoting neocortical astrogliogenesis, and reveal a pathway of BMP2-neogenin-YAP-Smad1 underlying astrogliogenesis in developing mouse neocortex.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1248735"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1248735","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34909568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-05eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1251873
Jinju Han, Fred H Gage
The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse genomes, respectively.1 However, the biological roles of miRNAs in vivo remain largely unknown. In particular, the physiological and pathological roles of individual microRNAs in the brain have not been investigated extensively although expression profiles of microRNAs have been reported in many given conditions. In a recent study,2 we identified miR-19, which is enriched in adult hippocampal neural progenitor cells (NPCs), as a key regulator for adult hippocampal neurogenesis. miR-19 is an intrinsic factor regulating the migration of newborn neurons by modulating expression level of RAPGEF2. After observing the abnormal expression patterns of miR-19 and RAPGEF2 in NPCs derived from induced pluripotent stem cells of schizophrenic patients, which display aberrant cell migration, we proposed miR-19 as a molecule associated with schizophrenia. The results illustrate that a single microRNA has the potential to impact the functions of the brain. Identifying miRNA-mediated posttranscriptional gene regulation in the brain will expand our understanding of brain development and functions and the etiologies of several brain disorders.
{"title":"A role for miR-19 in the migration of adult-born neurons and schizophrenia.","authors":"Jinju Han, Fred H Gage","doi":"10.1080/23262133.2016.1251873","DOIUrl":"https://doi.org/10.1080/23262133.2016.1251873","url":null,"abstract":"<p><p>The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse genomes, respectively.<sup>1</sup> However, the biological roles of miRNAs <i>in vivo</i> remain largely unknown. In particular, the physiological and pathological roles of individual microRNAs in the brain have not been investigated extensively although expression profiles of microRNAs have been reported in many given conditions. In a recent study,<sup>2</sup> we identified miR-19, which is enriched in adult hippocampal neural progenitor cells (NPCs), as a key regulator for adult hippocampal neurogenesis. miR-19 is an intrinsic factor regulating the migration of newborn neurons by modulating expression level of RAPGEF2. After observing the abnormal expression patterns of miR-19 and RAPGEF2 in NPCs derived from induced pluripotent stem cells of schizophrenic patients, which display aberrant cell migration, we proposed miR-19 as a molecule associated with schizophrenia. The results illustrate that a single microRNA has the potential to impact the functions of the brain. Identifying miRNA-mediated posttranscriptional gene regulation in the brain will expand our understanding of brain development and functions and the etiologies of several brain disorders.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1251873"},"PeriodicalIF":0.0,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1251873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34909569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-22eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1256854
Yasuhiro Itoh
In the developing mammalian neocortex, newborn neurons produced deep in the brain from neural stem/progenitor cells set out for a long journey to reach their final destination at the brain surface. This process called radial neuronal migration is prerequisite for the formation of appropriate layers and networks in the cortex, and its dysregulation has been implicated in cortical malformation and neurological diseases. Considering a fine correlation between temporal order of cortical neuronal cell types and their spatial distribution, migration speed needs to be tightly controlled to achieve correct neocortical layering, although the underlying molecular mechanisms remain not fully understood. Recently, we discovered that the kinase Akt and its activator PDK1 regulate the migration speed of mouse neocortical neurons through the cortical plate. We further found that the PDK1-Akt pathway controls coordinated movement of the nucleus and the centrosome during migration. Our data also suggested that control of neuronal migration by the PDK1-Akt pathway is mediated at the level of microtubules, possibly through regulation of the cytoplasmic dynein/dynactin complex. Our findings thus identified a signaling pathway controlling neuronal migration speed as well as a novel link between Akt signaling and cytoplasmic dynein/dynactin complex.
{"title":"A balancing Akt: How to fine-tune neuronal migration speed.","authors":"Yasuhiro Itoh","doi":"10.1080/23262133.2016.1256854","DOIUrl":"https://doi.org/10.1080/23262133.2016.1256854","url":null,"abstract":"<p><p>In the developing mammalian neocortex, newborn neurons produced deep in the brain from neural stem/progenitor cells set out for a long journey to reach their final destination at the brain surface. This process called radial neuronal migration is prerequisite for the formation of appropriate layers and networks in the cortex, and its dysregulation has been implicated in cortical malformation and neurological diseases. Considering a fine correlation between temporal order of cortical neuronal cell types and their spatial distribution, migration speed needs to be tightly controlled to achieve correct neocortical layering, although the underlying molecular mechanisms remain not fully understood. Recently, we discovered that the kinase Akt and its activator PDK1 regulate the migration speed of mouse neocortical neurons through the cortical plate. We further found that the PDK1-Akt pathway controls coordinated movement of the nucleus and the centrosome during migration. Our data also suggested that control of neuronal migration by the PDK1-Akt pathway is mediated at the level of microtubules, possibly through regulation of the cytoplasmic dynein/dynactin complex. Our findings thus identified a signaling pathway controlling neuronal migration speed as well as a novel link between Akt signaling and cytoplasmic dynein/dynactin complex.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1256854"},"PeriodicalIF":0.0,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1256854","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34909571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson's disease (PD), a neurodegenerative disorder characterized by the selective degeneration of the nigrostriatal dopaminergic pathway, is a major socio-economic burden in modern society. While there is presently no cure for PD, enhancing the number of neural stem cells (NSCs) and/or stimulating their differentiation into new neurons are promising therapeutic strategies. Many proneurogenic factors have been implicated in controlling NSCs activity, including the microRNA (miR)-124. However, current strategies described for the intracellular delivery of miR involve mostly unspecific or inefficient platforms. In Saraiva et al. we developed miR-124 loaded nanoparticles (NPs) able to efficiently deliver miR-124 into neural stem/progenitor cells and boost neuronal differentiation and maturation in vitro. In vivo, the intracerebroventricular injection of miR-124 NPs increased the number of new neurons in the olfactory bulb of healthy and 6-hydroxidopamine (6-OHDA) lesioned mice, a model for PD. Importantly, miR-124 NPs enhanced the migration of new neurons into the 6-OHDA lesioned striatum, culminating in motor function improvement. Given the recent advent of clinical trials for miR-based therapies and the theranostic applications of our NPs, we expect to support the clinical translation of our delivery platform in the context of PD and other neurodegenerative diseases which may benefit from enhancing miR levels.
{"title":"Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease.","authors":"Cláudia Saraiva, Lino Ferreira, Liliana Bernardino","doi":"10.1080/23262133.2016.1256855","DOIUrl":"https://doi.org/10.1080/23262133.2016.1256855","url":null,"abstract":"<p><p>Parkinson's disease (PD), a neurodegenerative disorder characterized by the selective degeneration of the nigrostriatal dopaminergic pathway, is a major socio-economic burden in modern society. While there is presently no cure for PD, enhancing the number of neural stem cells (NSCs) and/or stimulating their differentiation into new neurons are promising therapeutic strategies. Many proneurogenic factors have been implicated in controlling NSCs activity, including the microRNA (miR)-124. However, current strategies described for the intracellular delivery of miR involve mostly unspecific or inefficient platforms. In Saraiva et al. we developed miR-124 loaded nanoparticles (NPs) able to efficiently deliver miR-124 into neural stem/progenitor cells and boost neuronal differentiation and maturation <i>in vitro. In vivo</i>, the intracerebroventricular injection of miR-124 NPs increased the number of new neurons in the olfactory bulb of healthy and 6-hydroxidopamine (6-OHDA) lesioned mice, a model for PD. Importantly, miR-124 NPs enhanced the migration of new neurons into the 6-OHDA lesioned striatum, culminating in motor function improvement. Given the recent advent of clinical trials for miR-based therapies and the theranostic applications of our NPs, we expect to support the clinical translation of our delivery platform in the context of PD and other neurodegenerative diseases which may benefit from enhancing miR levels.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1256855"},"PeriodicalIF":0.0,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1256855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34909572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-14eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1256853
Gabriel Rusanescu
Adult spinal cord neurogenesis occurs at low, constant rate under normal conditions and can be amplified by pathologic conditions such as injury or disease. The immature neurons produced through adult neurogenesis have increased excitability and migrate preferentially to the superficial dorsal horn layers responsible for nociceptive signaling. Under normal conditions, this process may be responsible for maintaining a steady-state, but adaptable level of nociceptive sensitivity, thus representing an experience-dependent mechanism of regulation similar to other neurogenic niches. Under pathologic conditions, adult spinal cord neurogenesis is greatly amplified and may therefore account for the observed changes in general spinal cord excitability and nociceptive sensitivity. This mechanism also explains many types of chronic pain present in the absence of injury or disease, which may be the result of impaired neuronal differentiation due to a variety of genetic variations. This suggests the possibility of using promoters of neuronal differentiation for the long-term treatment of the causes of chronic pain, unlike current medication which is palliative and effective only for the duration of treatment. The presence of this spinal cord neurogenic niche may also lead to new approaches in spinal cord regeneration.
{"title":"Adult spinal cord neurogenesis: A regulator of nociception.","authors":"Gabriel Rusanescu","doi":"10.1080/23262133.2016.1256853","DOIUrl":"https://doi.org/10.1080/23262133.2016.1256853","url":null,"abstract":"<p><p>Adult spinal cord neurogenesis occurs at low, constant rate under normal conditions and can be amplified by pathologic conditions such as injury or disease. The immature neurons produced through adult neurogenesis have increased excitability and migrate preferentially to the superficial dorsal horn layers responsible for nociceptive signaling. Under normal conditions, this process may be responsible for maintaining a steady-state, but adaptable level of nociceptive sensitivity, thus representing an experience-dependent mechanism of regulation similar to other neurogenic niches. Under pathologic conditions, adult spinal cord neurogenesis is greatly amplified and may therefore account for the observed changes in general spinal cord excitability and nociceptive sensitivity. This mechanism also explains many types of chronic pain present in the absence of injury or disease, which may be the result of impaired neuronal differentiation due to a variety of genetic variations. This suggests the possibility of using promoters of neuronal differentiation for the long-term treatment of the causes of chronic pain, unlike current medication which is palliative and effective only for the duration of treatment. The presence of this spinal cord neurogenic niche may also lead to new approaches in spinal cord regeneration.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1256853"},"PeriodicalIF":0.0,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1256853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34909570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-28eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1244439
Mariel G Kozberg, Elizabeth M C Hillman
In the adult brain, increases in local neural activity are accompanied by increases in regional blood flow. This relationship between neural activity and hemodynamics is termed neurovascular coupling and provides the blood flow-dependent contrast detected in functional magnetic resonance imaging (fMRI). Neurovascular coupling is commonly assumed to be consistent and reliable from birth; however, numerous studies have demonstrated markedly different hemodynamics in the early postnatal brain. Our recent study in J. Neuroscience examined whether different hemodynamics in the immature brain are driven by differences in the underlying spatiotemporal properties of neural activity during this period of robust neural circuit expansion. Using a novel wide-field optical imaging technique to visualize both neural activity and hemodynamics in the mouse brain, we observed longer duration and increasingly complex patterns of neural responses to stimulus as cortical connectivity developed over time. However, imaging of brain blood flow, oxygenation, and metabolism in the same mice demonstrated an absence of coupled blood flow responses in the newborn brain. This lack of blood flow coupling was shown to lead to oxygen depletions following neural activations - depletions that may affect the duration of sustained neural responses and could be important to the vascular patterning of the rapidly developing brain. These results are a step toward understanding the unique neurovascular and neurometabolic environment of the newborn brain, and provide new insights for interpretation of fMRI BOLD studies of early brain development.
{"title":"Neurovascular coupling develops alongside neural circuits in the postnatal brain.","authors":"Mariel G Kozberg, Elizabeth M C Hillman","doi":"10.1080/23262133.2016.1244439","DOIUrl":"10.1080/23262133.2016.1244439","url":null,"abstract":"<p><p>In the adult brain, increases in local neural activity are accompanied by increases in regional blood flow. This relationship between neural activity and hemodynamics is termed neurovascular coupling and provides the blood flow-dependent contrast detected in functional magnetic resonance imaging (fMRI). Neurovascular coupling is commonly assumed to be consistent and reliable from birth; however, numerous studies have demonstrated markedly different hemodynamics in the early postnatal brain. Our recent study in J. Neuroscience examined whether different hemodynamics in the immature brain are driven by differences in the underlying spatiotemporal properties of neural activity during this period of robust neural circuit expansion. Using a novel wide-field optical imaging technique to visualize both neural activity and hemodynamics in the mouse brain, we observed longer duration and increasingly complex patterns of neural responses to stimulus as cortical connectivity developed over time. However, imaging of brain blood flow, oxygenation, and metabolism in the same mice demonstrated an absence of coupled blood flow responses in the newborn brain. This lack of blood flow coupling was shown to lead to oxygen depletions following neural activations - depletions that may affect the duration of sustained neural responses and could be important to the vascular patterning of the rapidly developing brain. These results are a step toward understanding the unique neurovascular and neurometabolic environment of the newborn brain, and provide new insights for interpretation of fMRI BOLD studies of early brain development.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1244439"},"PeriodicalIF":0.0,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59994667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-30eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1242957
Young-Goo Han
The expansion of outer radial glia (oRGs, also called basal RGs) and intermediate progenitor cells (IPCs) has played a key role in the evolutionary expansion and folding of the neocortex, resulting in superior sensorimotor and cognitive abilities. In particular, oRGs, which are critical for both the increased production and lateral dispersion of neurons, are rare in lisencephalic species but vastly expanded in gyrencephalic species. However, the mechanisms that expand oRGs and IPCs are not well understood. We recently identified Sonic hedgehog (Shh) signaling as the first known signaling pathway necessary and sufficient to expand both oRGs and IPCs. Elevated Shh signaling in the embryonic neocortex leads to neocortical expansion and folding with normal cytoarchitecture in otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreases oRGs, IPCs, and neocortical size. We also showed that SHH signaling activity in fetal neocortex is stronger in humans than in mice and that blocking SHH signaling decreases oRGs in human cerebral organoids. Shh signaling may be a conserved mechanism that promotes oRG and IPC expansion, driving neocortical growth and folding in humans and other species. Understanding the mechanisms underlying species-specific differences in Shh signaling activity and how Shh signaling expands oRGs and IPCs will provide insights into the mechanisms of neocortical development and evolution.
{"title":"Sonic hedgehog signaling: A conserved mechanism for the expansion of outer radial glia and intermediate progenitor cells and for the growth and folding of the neocortex.","authors":"Young-Goo Han","doi":"10.1080/23262133.2016.1242957","DOIUrl":"https://doi.org/10.1080/23262133.2016.1242957","url":null,"abstract":"<p><p>The expansion of outer radial glia (oRGs, also called basal RGs) and intermediate progenitor cells (IPCs) has played a key role in the evolutionary expansion and folding of the neocortex, resulting in superior sensorimotor and cognitive abilities. In particular, oRGs, which are critical for both the increased production and lateral dispersion of neurons, are rare in lisencephalic species but vastly expanded in gyrencephalic species. However, the mechanisms that expand oRGs and IPCs are not well understood. We recently identified Sonic hedgehog (Shh) signaling as the first known signaling pathway necessary and sufficient to expand both oRGs and IPCs. Elevated Shh signaling in the embryonic neocortex leads to neocortical expansion and folding with normal cytoarchitecture in otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreases oRGs, IPCs, and neocortical size. We also showed that SHH signaling activity in fetal neocortex is stronger in humans than in mice and that blocking SHH signaling decreases oRGs in human cerebral organoids. Shh signaling may be a conserved mechanism that promotes oRG and IPC expansion, driving neocortical growth and folding in humans and other species. Understanding the mechanisms underlying species-specific differences in Shh signaling activity and how Shh signaling expands oRGs and IPCs will provide insights into the mechanisms of neocortical development and evolution.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1242957"},"PeriodicalIF":0.0,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1242957","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34779274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-29eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1242455
Xuejun Chai, Michael Frotscher
Neuronal migration is an essential step in the formation of laminated brain structures. In the developing cerebral cortex, pyramidal neurons migrate toward the Reelin-containing marginal zone. Reelin is an extracellular matrix protein synthesized by Cajal-Retzius cells. In this review, we summarize our recent results and hypotheses on how Reelin might regulate neuronal migration by acting on the actin and microtubule cytoskeleton. By binding to ApoER2 receptors on the migrating neurons, Reelin induces stabilization of the leading processes extending toward the marginal zone, which involves Dab1 phosphorylation, adhesion molecule expression, cofilin phosphorylation and inhibition of tau phosphorylation. By binding to VLDLR and integrin receptors, Reelin interacts with Lis1 and induces nuclear translocation, accompanied by the ubiquitination of phosphorylated Dab1. Eventually Reelin induces clustering of its receptors resulting in the endocytosis of a Reelin/receptor complex (particularly VLDLR). The resulting decrease in Reelin contributes to neuronal arrest at the marginal zone.
{"title":"How does Reelin signaling regulate the neuronal cytoskeleton during migration?","authors":"Xuejun Chai, Michael Frotscher","doi":"10.1080/23262133.2016.1242455","DOIUrl":"https://doi.org/10.1080/23262133.2016.1242455","url":null,"abstract":"<p><p>Neuronal migration is an essential step in the formation of laminated brain structures. In the developing cerebral cortex, pyramidal neurons migrate toward the Reelin-containing marginal zone. Reelin is an extracellular matrix protein synthesized by Cajal-Retzius cells. In this review, we summarize our recent results and hypotheses on how Reelin might regulate neuronal migration by acting on the actin and microtubule cytoskeleton. By binding to ApoER2 receptors on the migrating neurons, Reelin induces stabilization of the leading processes extending toward the marginal zone, which involves Dab1 phosphorylation, adhesion molecule expression, cofilin phosphorylation and inhibition of tau phosphorylation. By binding to VLDLR and integrin receptors, Reelin interacts with Lis1 and induces nuclear translocation, accompanied by the ubiquitination of phosphorylated Dab1. Eventually Reelin induces clustering of its receptors resulting in the endocytosis of a Reelin/receptor complex (particularly VLDLR). The resulting decrease in Reelin contributes to neuronal arrest at the marginal zone.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1242455"},"PeriodicalIF":0.0,"publicationDate":"2016-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1242455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34787274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-08eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1224453
Peng Jiang, Wenbin Deng
Astrocytes traditionally were thought to have merely a support function, but are now understood to be important regulators of neural development and function. The immature and mature astrocytes have stage-specific roles in neuronal development. However, it is largely unclear whether human astrocytes also serve stage-specific roles in oligodendroglial development. Owing to the broad and diverse roles of astroglia in the central nervous system, transplantation of astroglia also could be of therapeutic value in promoting regeneration after CNS injury or disease. Our recent study (Jiang et al., 2016) explores the developmental interactions between astroglia and oligodendroglia, using a human induced pluripotent stem cell (hiPSC) model. By generating immature and mature human astrocytes from hiPSCs, we reveal previously unrecognized effects of immature human astrocytes on oligodendrocyte development. Notably, tissue inhibitor of metalloproteinase-1 (TIMP-1) is differentially expressed in the immature and mature human astrocytes, and mediates at least in part the effects of immature human astrocytes on oligodendroglial differentiation. Furthermore, we demonstrate that hiPSC-derived astroglial transplants promote cerebral white matter regeneration and behavioral recovery in a neonatal mouse model of hypoxic-ischemic injury. Our study provides novel insights into the astro-oligodendroglial cell interaction and has important implications for possible therapeutic interventions for human white matter diseases.
传统上认为星形胶质细胞仅具有支持功能,但现在认为它是神经发育和功能的重要调节因子。未成熟和成熟的星形胶质细胞在神经元发育中具有阶段特异性作用。然而,人类星形胶质细胞是否在少突胶质发育中也起着特定阶段的作用还不清楚。由于星形胶质细胞在中枢神经系统中广泛而多样的作用,星形胶质细胞移植在促进中枢神经系统损伤或疾病后的再生方面也具有治疗价值。我们最近的研究(Jiang et al., 2016)利用人类诱导多能干细胞(hiPSC)模型探讨了星形胶质细胞和少突胶质细胞之间的发育相互作用。通过从hipsc中生成未成熟和成熟的人类星形胶质细胞,我们揭示了未成熟的人类星形胶质细胞对少突胶质细胞发育的作用。值得注意的是,组织金属蛋白酶抑制剂1 (TIMP-1)在未成熟和成熟的人星形胶质细胞中存在差异表达,并且至少部分介导了未成熟的人星形胶质细胞对少突胶质细胞分化的影响。此外,我们证明hipsc来源的星形胶质细胞移植促进了新生小鼠缺氧缺血性损伤模型中的脑白质再生和行为恢复。我们的研究为星状少突胶质细胞相互作用提供了新的见解,并对人类白质疾病的可能治疗干预具有重要意义。
{"title":"Regenerating white matter using human iPSC-derived immature astroglia.","authors":"Peng Jiang, Wenbin Deng","doi":"10.1080/23262133.2016.1224453","DOIUrl":"https://doi.org/10.1080/23262133.2016.1224453","url":null,"abstract":"<p><p>Astrocytes traditionally were thought to have merely a support function, but are now understood to be important regulators of neural development and function. The immature and mature astrocytes have stage-specific roles in neuronal development. However, it is largely unclear whether human astrocytes also serve stage-specific roles in oligodendroglial development. Owing to the broad and diverse roles of astroglia in the central nervous system, transplantation of astroglia also could be of therapeutic value in promoting regeneration after CNS injury or disease. Our recent study (Jiang et al., 2016) explores the developmental interactions between astroglia and oligodendroglia, using a human induced pluripotent stem cell (hiPSC) model. By generating immature and mature human astrocytes from hiPSCs, we reveal previously unrecognized effects of immature human astrocytes on oligodendrocyte development. Notably, tissue inhibitor of metalloproteinase-1 (TIMP-1) is differentially expressed in the immature and mature human astrocytes, and mediates at least in part the effects of immature human astrocytes on oligodendroglial differentiation. Furthermore, we demonstrate that hiPSC-derived astroglial transplants promote cerebral white matter regeneration and behavioral recovery in a neonatal mouse model of hypoxic-ischemic injury. Our study provides novel insights into the astro-oligodendroglial cell interaction and has important implications for possible therapeutic interventions for human white matter diseases. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":" ","pages":"e1224453"},"PeriodicalIF":0.0,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1224453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39978293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-23eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1204844
Ana Fiszbein, Alberto R Kornblihtt
Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs.
选择性剪接,以及染色质结构,极大地促进了促进神经元分化的特定转录程序。G9a是哺乳动物常染色质中负责赖氨酸9在组蛋白H3 (H3K9me1和H3K9me2)上的单甲基化和二甲基化的酶,其活性与多种细胞类型和组织的分化有广泛的关系。在我们小组最近的一项工作中(Fiszbein et al., 2016),我们已经表明G9a的选择性剪接调节其核定位,从而调节H3K9甲基化的效率,从而促进神经元分化。我们在此根据另一组(Laurent et al. 2015)的报告讨论我们的结果,该报告证明了组蛋白去甲基酶LSD1的选择性剪接在控制神经元中特定基因表达中的关键作用。总之,这些结果说明了选择性剪接在组蛋白甲基化和去甲基化之间产生适当平衡的重要性,以调节神经元特异性转录程序。
{"title":"Histone methylation, alternative splicing and neuronal differentiation.","authors":"Ana Fiszbein, Alberto R Kornblihtt","doi":"10.1080/23262133.2016.1204844","DOIUrl":"https://doi.org/10.1080/23262133.2016.1204844","url":null,"abstract":"<p><p>Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1204844"},"PeriodicalIF":0.0,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1204844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34426920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}