Pub Date : 2016-05-09eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1187321
Ryan N Delgado, Changqing Lu, Daniel A Lim
Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development.
{"title":"Maintenance of neural stem cell regional identity in culture.","authors":"Ryan N Delgado, Changqing Lu, Daniel A Lim","doi":"10.1080/23262133.2016.1187321","DOIUrl":"https://doi.org/10.1080/23262133.2016.1187321","url":null,"abstract":"<p><p>Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1187321"},"PeriodicalIF":0.0,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1187321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34426919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-05-02eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1148101
Joana S Barbosa, Jovica Ninkovic
Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals.
{"title":"Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish.","authors":"Joana S Barbosa, Jovica Ninkovic","doi":"10.1080/23262133.2016.1148101","DOIUrl":"https://doi.org/10.1080/23262133.2016.1148101","url":null,"abstract":"<p><p>Adult Neural Stem Cells (aNSCs) generate new neurons that integrate into the pre-existing networks in specific locations of the Vertebrate brain. Moreover, aNSCs contribute with new neurons to brain regeneration in some non-mammalian Vertebrates. The similarities and the differences in the cellular and molecular processes governing neurogenesis in the intact and regenerating brain are still to be assessed. Toward this end, we recently established a protocol for non-invasive imaging of aNSC behavior in their niche in vivo in the adult intact and regenerating zebrafish telencephalon. We observed different modes of aNSC division in the intact brain and a novel mode of neurogenesis by direct conversion, which contributes to stem cell depletion with age. After injury, the generation of neurons is increased both by the activation of additional aNSCs and a shift in the division mode of aNSCs, thereby contributing to the successful neuronal regeneration. The cellular behavior we observed opens new questions regarding long-term aNSC maintenance in homeostasis and in regeneration. In this commentary we discuss our data and new questions arising in the context of aNSC behavior, not only in zebrafish but also in other species, including mammals. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1148101"},"PeriodicalIF":0.0,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1148101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34426917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-27eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1172747
Christina Kyrousi, Maria-Eleni Lalioti, Eleni Skavatsou, Zoi Lygerou, Stavros Taraviras
Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1.
{"title":"Mcidas and GemC1/Lynkeas specify embryonic radial glial cells.","authors":"Christina Kyrousi, Maria-Eleni Lalioti, Eleni Skavatsou, Zoi Lygerou, Stavros Taraviras","doi":"10.1080/23262133.2016.1172747","DOIUrl":"https://doi.org/10.1080/23262133.2016.1172747","url":null,"abstract":"<p><p>Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1172747"},"PeriodicalIF":0.0,"publicationDate":"2016-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1172747","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34426918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-12eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1168504
Ania Dabrowski, Hisashi Umemori
Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis.
{"title":"Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network.","authors":"Ania Dabrowski, Hisashi Umemori","doi":"10.1080/23262133.2016.1168504","DOIUrl":"https://doi.org/10.1080/23262133.2016.1168504","url":null,"abstract":"<p><p>Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1168504"},"PeriodicalIF":0.0,"publicationDate":"2016-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1168504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34371911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-11eCollection Date: 2016-01-01DOI: 10.1080/23262133.2016.1161697
Amanda Miles, Vincent Tropepe
The proper development of the vertebrate retina relies heavily on producing the correct number and type of differentiated retinal cell types. To achieve this, proliferating retinal progenitor cells (RPCs) must exit the cell cycle at an appropriate time and correctly express a subset of differentiation markers that help specify retinal cell fate. Homeobox genes, which encode a family of transcription factors, have been accredited to both these processes, implicated in the transcriptional regulation of important cell cycle components, such as cyclins and cyclin-dependent kinases, and proneural genes. This dual regulation of homeobox genes allows these factors to help co-ordinate the transition from the proliferating RPC to postmitotic, differentiated cell. However, understanding the exact molecular targets of these factors remains a challenging task. This commentary highlights the current knowledge we have about how these factors regulate cell cycle progression and differentiation, with particular emphasis on a recent discovery from our lab demonstrating an antagonistic relationship between Vsx2 and Dmbx1 to control RPC proliferation. Future studies should aim to further understand the direct transcriptional targets of these genes, additional co-factors/interacting proteins and the possible recruitment of epigenetic machinery by these homeobox genes.
{"title":"Coordinating progenitor cell cycle exit and differentiation in the developing vertebrate retina.","authors":"Amanda Miles, Vincent Tropepe","doi":"10.1080/23262133.2016.1161697","DOIUrl":"https://doi.org/10.1080/23262133.2016.1161697","url":null,"abstract":"<p><p>The proper development of the vertebrate retina relies heavily on producing the correct number and type of differentiated retinal cell types. To achieve this, proliferating retinal progenitor cells (RPCs) must exit the cell cycle at an appropriate time and correctly express a subset of differentiation markers that help specify retinal cell fate. Homeobox genes, which encode a family of transcription factors, have been accredited to both these processes, implicated in the transcriptional regulation of important cell cycle components, such as cyclins and cyclin-dependent kinases, and proneural genes. This dual regulation of homeobox genes allows these factors to help co-ordinate the transition from the proliferating RPC to postmitotic, differentiated cell. However, understanding the exact molecular targets of these factors remains a challenging task. This commentary highlights the current knowledge we have about how these factors regulate cell cycle progression and differentiation, with particular emphasis on a recent discovery from our lab demonstrating an antagonistic relationship between Vsx2 and Dmbx1 to control RPC proliferation. Future studies should aim to further understand the direct transcriptional targets of these genes, additional co-factors/interacting proteins and the possible recruitment of epigenetic machinery by these homeobox genes. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1161697"},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1161697","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34425036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-13eCollection Date: 2016-01-01DOI: 10.1080/23262133.2015.1118177
Chelsea R Hutch, Colleen C Hegg
The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212-2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium.
{"title":"Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium.","authors":"Chelsea R Hutch, Colleen C Hegg","doi":"10.1080/23262133.2015.1118177","DOIUrl":"https://doi.org/10.1080/23262133.2015.1118177","url":null,"abstract":"<p><p>The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212-2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1118177"},"PeriodicalIF":0.0,"publicationDate":"2016-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2015.1118177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34372939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-11eCollection Date: 2016-01-01DOI: 10.1080/23262133.2015.1127311
Sophie V Precious, Claire M Kelly, Nicholas D Allen, Anne E Rosser
There is preliminary evidence that implantation of primary fetal striatal cells provides functional benefit in patients with Huntington's disease, a neurodegenerative condition resulting in loss of medium-sized spiny neurons (MSN) of the striatum. Scarcity of primary fetal tissue means it is important to identify a renewable source of cells from which to derive donor MSNs. Embryonic stem (ES) cells, which predominantly default to telencephalic-like precursors in chemically defined medium (CDM), offer a potentially inexhaustible supply of cells capable of generating the desired neurons. Using an ES cell line, with the forebrain marker FoxG1 tagged to the LacZ reporter, we assessed effects of known developmental factors on the yield of forebrain-like precursor cells in CDM suspension culture. Addition of FGF2, but not DKK1, increased the proportion of FoxG1-expressing cells at day 8 of neural induction. Oct4 was expressed at day 8, but was undetectable by day 16. Differentiation of day 16 precursors generated GABA-expressing neurons, with few DARPP32 positive MSNs. Transplantation of day 8 precursor cells into quinolinic acid-lesioned striata resulted in generation of teratomas. However, transplantation of day 16 precursors yielded grafts expressing neuronal markers including NeuN, calbindin and parvalbumin, but no DARPP32 6 weeks post-transplantation. Manipulation of fate of ES cells requires optimization of both concentration and timing of addition of factors to culture systems to generate the desired phenotypes. Furthermore, we highlight the value of increasing the precursor phase of ES cell suspension culture when directing differentiation toward forebrain fate, so as to dramatically reduce the risk of teratoma formation.
{"title":"Can manipulation of differentiation conditions eliminate proliferative cells from a population of ES cell-derived forebrain cells?","authors":"Sophie V Precious, Claire M Kelly, Nicholas D Allen, Anne E Rosser","doi":"10.1080/23262133.2015.1127311","DOIUrl":"https://doi.org/10.1080/23262133.2015.1127311","url":null,"abstract":"<p><p>There is preliminary evidence that implantation of primary fetal striatal cells provides functional benefit in patients with Huntington's disease, a neurodegenerative condition resulting in loss of medium-sized spiny neurons (MSN) of the striatum. Scarcity of primary fetal tissue means it is important to identify a renewable source of cells from which to derive donor MSNs. Embryonic stem (ES) cells, which predominantly default to telencephalic-like precursors in chemically defined medium (CDM), offer a potentially inexhaustible supply of cells capable of generating the desired neurons. Using an ES cell line, with the forebrain marker FoxG1 tagged to the LacZ reporter, we assessed effects of known developmental factors on the yield of forebrain-like precursor cells in CDM suspension culture. Addition of FGF2, but not DKK1, increased the proportion of FoxG1-expressing cells at day 8 of neural induction. Oct4 was expressed at day 8, but was undetectable by day 16. Differentiation of day 16 precursors generated GABA-expressing neurons, with few DARPP32 positive MSNs. Transplantation of day 8 precursor cells into quinolinic acid-lesioned striata resulted in generation of teratomas. However, transplantation of day 16 precursors yielded grafts expressing neuronal markers including NeuN, calbindin and parvalbumin, but no DARPP32 6 weeks post-transplantation. Manipulation of fate of ES cells requires optimization of both concentration and timing of addition of factors to culture systems to generate the desired phenotypes. Furthermore, we highlight the value of increasing the precursor phase of ES cell suspension culture when directing differentiation toward forebrain fate, so as to dramatically reduce the risk of teratoma formation. </p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":"e1127311"},"PeriodicalIF":0.0,"publicationDate":"2016-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2015.1127311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34372940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1080/23262133.2016.1232679
Hirofumi Noguchi, Ayaka Kimura, Naoya Murao, M. Namihira, K. Nakashima
ABSTRACT Despite recent advances in our understanding of epigenetic regulation of central nervous system development, little is known regarding the effects of epigenetic dysregulation on neurogenesis and brain function in adulthood. In the present study, we show that prenatal deletion of DNA methyltransferase 1 (Dnmt1) in neural stem cells results in impaired neurogenesis as well as increases in inflammatory features (e.g., elevated glial fibrillary acidic protein [GFAP] expression in astrocytes and increased numbers of microglia) in the adult mouse brain. Moreover, these mice exhibited anxiety-like behavior during an open-field test. These findings suggest that Dnmt1 plays a critical role in regulating neurogenesis and behavior in the developing brain and into adulthood.
{"title":"Prenatal deletion of DNA methyltransferase 1 in neural stem cells impairs neurogenesis and causes anxiety-like behavior in adulthood","authors":"Hirofumi Noguchi, Ayaka Kimura, Naoya Murao, M. Namihira, K. Nakashima","doi":"10.1080/23262133.2016.1232679","DOIUrl":"https://doi.org/10.1080/23262133.2016.1232679","url":null,"abstract":"ABSTRACT Despite recent advances in our understanding of epigenetic regulation of central nervous system development, little is known regarding the effects of epigenetic dysregulation on neurogenesis and brain function in adulthood. In the present study, we show that prenatal deletion of DNA methyltransferase 1 (Dnmt1) in neural stem cells results in impaired neurogenesis as well as increases in inflammatory features (e.g., elevated glial fibrillary acidic protein [GFAP] expression in astrocytes and increased numbers of microglia) in the adult mouse brain. Moreover, these mice exhibited anxiety-like behavior during an open-field test. These findings suggest that Dnmt1 plays a critical role in regulating neurogenesis and behavior in the developing brain and into adulthood.","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1232679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59994524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1080/23262133.2016.1235524
Sabrina Oishi, Oressia H. Zalucki, Susitha Premarathne, S. Wood, M. Piper
ABSTRACT Neural stem cells (NSCs) within the adult hippocampal dentate gyrus reside in the subgranular zone (SGZ). A dynamic network of signaling mechanisms controls the balance between the maintenance of NSC identity, and their subsequent differentiation into dentate granule neurons. Recently, the ubiquitin-specific protease 9 X-linked (USP9X) was shown to be important for hippocampal morphogenesis, as mice lacking this gene exhibited a higher proportion of proliferating NSCs, yet a decrease in neuronal numbers, within the postnatal dentate gyrus. Here we reveal that Usp9x-deficiency results in the upregulation of numerous oligodendrocytic and myelin-associated genes within the postnatal hippocampus. Moreover, cell counts reveal a significant increase in oligodendrocyte precursor cells and mature oligodendrocytes per unit volume of the mutant dentate gyrus. Collectively, these findings indicate that USP9X may regulate NSC lineage determination within the postnatal SGZ.
{"title":"USP9X deletion elevates the density of oligodendrocytes within the postnatal dentate gyrus","authors":"Sabrina Oishi, Oressia H. Zalucki, Susitha Premarathne, S. Wood, M. Piper","doi":"10.1080/23262133.2016.1235524","DOIUrl":"https://doi.org/10.1080/23262133.2016.1235524","url":null,"abstract":"ABSTRACT Neural stem cells (NSCs) within the adult hippocampal dentate gyrus reside in the subgranular zone (SGZ). A dynamic network of signaling mechanisms controls the balance between the maintenance of NSC identity, and their subsequent differentiation into dentate granule neurons. Recently, the ubiquitin-specific protease 9 X-linked (USP9X) was shown to be important for hippocampal morphogenesis, as mice lacking this gene exhibited a higher proportion of proliferating NSCs, yet a decrease in neuronal numbers, within the postnatal dentate gyrus. Here we reveal that Usp9x-deficiency results in the upregulation of numerous oligodendrocytic and myelin-associated genes within the postnatal hippocampus. Moreover, cell counts reveal a significant increase in oligodendrocyte precursor cells and mature oligodendrocytes per unit volume of the mutant dentate gyrus. Collectively, these findings indicate that USP9X may regulate NSC lineage determination within the postnatal SGZ.","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1235524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59994529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1080/23262133.2016.1232678
É. Samarut
ABSTRACT Zebrafish has become a model of choice for developmental studies in particular for studying neural development and related mechanisms involved in diseases. Indeed, zebrafish provides a fast, handy and accurate model to perform functional genomics on a gene or network of genes of interest. Recently, we successfully purified neural stem cells (NSCs) by fluorescence-activated cell sorting (FACS) from whole embryos in order to analyze cell-specific transcriptomic effects by RNA sequencing. As a result, our work sheds light on signaling pathways that are more likely to be involved in our morpholino-induced neurogenesis phenotype. This cell purification strategy brings zebrafish to a higher level since it now allows one to investigate cell-specific effects of a genetic condition of interest (knockout, knock-down, gain-of-function etc.) at the genomic, transcriptomic and proteomic levels in a genuine in vivo context. With this new potential, there is no doubt that zebrafish will be of a major model with which to unravel complex underlying molecular mechanisms of neurological disorders such as epilepsy, autism spectrum disorders and schizophrenia.
{"title":"Zebrafish embryos as in vivo test tubes to unravel cell-specific mechanisms of neurogenesis during neurodevelopment and in diseases","authors":"É. Samarut","doi":"10.1080/23262133.2016.1232678","DOIUrl":"https://doi.org/10.1080/23262133.2016.1232678","url":null,"abstract":"ABSTRACT Zebrafish has become a model of choice for developmental studies in particular for studying neural development and related mechanisms involved in diseases. Indeed, zebrafish provides a fast, handy and accurate model to perform functional genomics on a gene or network of genes of interest. Recently, we successfully purified neural stem cells (NSCs) by fluorescence-activated cell sorting (FACS) from whole embryos in order to analyze cell-specific transcriptomic effects by RNA sequencing. As a result, our work sheds light on signaling pathways that are more likely to be involved in our morpholino-induced neurogenesis phenotype. This cell purification strategy brings zebrafish to a higher level since it now allows one to investigate cell-specific effects of a genetic condition of interest (knockout, knock-down, gain-of-function etc.) at the genomic, transcriptomic and proteomic levels in a genuine in vivo context. With this new potential, there is no doubt that zebrafish will be of a major model with which to unravel complex underlying molecular mechanisms of neurological disorders such as epilepsy, autism spectrum disorders and schizophrenia.","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1232678","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59994518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}