首页 > 最新文献

Proceedings of machine learning research最新文献

英文 中文
Half-Hop: A graph upsampling approach for slowing down message passing 半跳:一种降低消息传递速度的图形上采样方法
Pub Date : 2023-07-01 DOI: 10.48550/arXiv.2308.09198
Mehdi Azabou, Venkataraman Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, M. Vaĺko, Petar Velickovic, Eva L. Dyer
Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding "slow nodes" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.
消息传递神经网络在图结构数据方面取得了很大的成功。然而,在许多情况下,当相邻节点属于不同的类时,消息传递可能会导致过度平滑或失败。在这项工作中,我们介绍了一个简单而通用的框架,用于改进消息传递神经网络的学习。我们的方法通过在每条边上添加“慢节点”来对原始图中的边进行上采样,这些节点可以调解源节点和目标节点之间的通信。我们的方法只修改输入图,使其即插即用,并且易于与现有模型一起使用。为了理解减缓信息传递的好处,我们提供了理论和实证分析。我们报告了几个监督和自监督基准的结果,并显示了全面的改进,特别是在相邻节点更有可能具有不同标签的异亲条件下。最后,我们展示了如何使用我们的方法来生成自监督学习的增强,其中将慢节点随机引入图中的不同边,以生成具有可变路径长度的多尺度视图。
{"title":"Half-Hop: A graph upsampling approach for slowing down message passing","authors":"Mehdi Azabou, Venkataraman Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, M. Vaĺko, Petar Velickovic, Eva L. Dyer","doi":"10.48550/arXiv.2308.09198","DOIUrl":"https://doi.org/10.48550/arXiv.2308.09198","url":null,"abstract":"Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding \"slow nodes\" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 1","pages":"1341-1360"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45894268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Effective Meaningful Way to Evaluate Survival Models. 一种评估生存模型的有效而有意义的方法。
Shi-Ang Qi, Neeraj Kumar, Mahtab Farrokh, Weijie Sun, Li-Hao Kuan, Rajesh Ranganath, Ricardo Henao, Russell Greiner

One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) - the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE - in particular, is better than several alternative methods.

评估生存预测模型的一个直接指标是基于平均绝对误差(MAE)——模型预测的时间与真实事件时间之间的绝对差的平均值,在所有受试者中。不幸的是,这是具有挑战性的,因为在实践中,测试集包括(右)被审查的个体,这意味着我们不知道被审查的个体何时真正经历了事件。在本文中,我们探索了各种指标来估计生存数据集的MAE,其中包括(许多)被审查的个体。此外,我们引入了一种新颖有效的方法来生成现实的半合成生存数据集,以促进指标的评估。我们的研究结果,基于对半合成数据集的分析,揭示了我们提出的度量(使用伪观测的MAE)能够根据模型的性能准确地对模型进行排名,并且通常与真实的MAE非常接近-特别是,比几种替代方法更好。
{"title":"An Effective Meaningful Way to Evaluate Survival Models.","authors":"Shi-Ang Qi, Neeraj Kumar, Mahtab Farrokh, Weijie Sun, Li-Hao Kuan, Rajesh Ranganath, Ricardo Henao, Russell Greiner","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) - the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE - in particular, is better than several alternative methods.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"28244-28276"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144981837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging. 用于加速多线圈磁共振成像的条件归一化流程
Jeffrey Wen, Rizwan Ahmad, Philip Schniter

Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf.

加速磁共振(MR)成像试图通过收集低于奈奎斯特速率的数据来缩短采集时间。作为一个难解的逆问题,存在许多似是而非的解决方案,但大多数深度学习方法只能生成一个单一的解决方案。相反,我们专注于从后验分布中采样,为下游推理任务提供更全面的信息。为此,我们设计了一种新颖的条件归一化流(CNF),可以推断出测量算子空域中的信号分量,然后将其与测量数据相结合,形成完整的图像。通过使用 fastMRI 脑部和膝部数据,我们展示了快速推断和超越最新 MRI 后采样技术的准确性。代码见 https://github.com/jwen307/mri_cnf。
{"title":"A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging.","authors":"Jeffrey Wen, Rizwan Ahmad, Philip Schniter","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"36926-36939"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiology Reports Improve Visual Representations Learned from Radiographs. 放射学报告改进了从射线照片中学到的可视化表达。
Haoxu Huang, Samyak Rawlekar, Sumit Chopra, Cem M Deniz

Although human's ability to visually understand the structure of the World plays a crucial role in perceiving the World and making appropriate decisions, human perception does not solely rely on vision but amalgamates the information from acoustic, verbal, and visual stimuli. An active area of research has been revolving around designing an efficient framework that adapts to multiple modalities and ideally improves the performance of existing tasks. While numerous frameworks have proved effective on natural datasets like ImageNet, a limited number of studies have been carried out in the biomedical domain. In this work, we extend the available frameworks for natural data to biomedical data by leveraging the abundant, unstructured multi-modal data available as radiology images and reports. We attempt to answer the question, "For multi-modal learning, self-supervised learning and joint learning using both learning strategies, which one improves the visual representation for downstream chest radiographs classification tasks the most?". Our experiments indicated that in limited labeled data settings with 1% and 10% labeled data, the joint learning with multi-modal and self-supervised models outperforms self-supervised learning and is at par with multi-modal learning. Additionally, we found that multi-modal learning is generally more robust on out-of-distribution datasets. The code is publicly available online.

虽然人类通过视觉理解世界结构的能力在感知世界和做出适当决策方面起着至关重要的作用,但人类的感知并不完全依赖视觉,而是综合了来自声音、语言和视觉刺激的信息。一个活跃的研究领域一直围绕着设计一个能适应多种模式并能理想地提高现有任务性能的高效框架展开。虽然许多框架已在 ImageNet 等自然数据集上证明有效,但在生物医学领域开展的研究数量有限。在这项工作中,我们利用放射学图像和报告等丰富的非结构化多模态数据,将现有的自然数据框架扩展到生物医学数据。我们试图回答这样一个问题:"对于多模态学习、自我监督学习和同时使用两种学习策略的联合学习,哪种学习策略能最大程度地改善下游胸片分类任务的可视化表示?我们的实验表明,在 1%和 10%的有限标注数据设置中,多模态模型和自我监督模型的联合学习优于自我监督学习,与多模态学习相当。此外,我们还发现,多模态学习在非分布数据集上通常更稳健。代码可在线公开获取。
{"title":"Radiology Reports Improve Visual Representations Learned from Radiographs.","authors":"Haoxu Huang, Samyak Rawlekar, Sumit Chopra, Cem M Deniz","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Although human's ability to visually understand the structure of the World plays a crucial role in perceiving the World and making appropriate decisions, human perception does not solely rely on vision but amalgamates the information from acoustic, verbal, and visual stimuli. An active area of research has been revolving around designing an efficient framework that adapts to multiple modalities and ideally improves the performance of existing tasks. While numerous frameworks have proved effective on natural datasets like ImageNet, a limited number of studies have been carried out in the biomedical domain. In this work, we extend the available frameworks for natural data to biomedical data by leveraging the abundant, unstructured multi-modal data available as radiology images and reports. We attempt to answer the question, \"For multi-modal learning, self-supervised learning and joint learning using both learning strategies, which one improves the visual representation for downstream chest radiographs classification tasks the most?\". Our experiments indicated that in limited labeled data settings with 1% and 10% labeled data, the joint learning with multi-modal and self-supervised models outperforms self-supervised learning and is at par with multi-modal learning. Additionally, we found that multi-modal learning is generally more robust on out-of-distribution datasets. The code is publicly available online.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"1385-1405"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes. 具有潜在稀疏高斯过程的完全贝叶斯自动编码器。
Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone

We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion. This approach allows for flexible priors and posterior approximations while keeping the inference costs low. To achieve this, we introduce an amortized MCMC approach by utilizing an implicit stochastic network to learn sampling from the posterior over local latent variables. Furthermore, we extend the model by incorporating a Sparse Gaussian Process prior over the latent space, allowing for a fully Bayesian treatment of inducing points and kernel hyperparameters and leading to improved scalability. Additionally, we enable Deep Gaussian Process priors on the latent space and the handling of missing data. We evaluate our model on a range of experiments focusing on dynamic representation learning and generative modeling, demonstrating the strong performance of our approach in comparison to existing methods that combine Gaussian Processes and autoencoders.

我们提出了一种完全贝叶斯自动编码器模型,它以贝叶斯方式处理局部潜变量和全局解码器参数。这种方法允许灵活的先验和后验近似,同时保持较低的推理成本。为此,我们引入了一种摊销 MCMC 方法,利用隐式随机网络从局部潜变量的后验中学习采样。此外,我们还对模型进行了扩展,在潜变量空间中加入了稀疏高斯过程先验,允许对诱导点和内核超参数进行全贝叶斯处理,从而提高了可扩展性。此外,我们还启用了潜空间的深度高斯过程先验,并处理了缺失数据。我们在一系列侧重于动态表示学习和生成建模的实验中对我们的模型进行了评估,结果表明,与结合高斯过程和自动编码器的现有方法相比,我们的方法具有很强的性能。
{"title":"Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes.","authors":"Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion. This approach allows for flexible priors and posterior approximations while keeping the inference costs low. To achieve this, we introduce an amortized MCMC approach by utilizing an implicit stochastic network to learn sampling from the posterior over local latent variables. Furthermore, we extend the model by incorporating a Sparse Gaussian Process prior over the latent space, allowing for a fully Bayesian treatment of inducing points and kernel hyperparameters and leading to improved scalability. Additionally, we enable Deep Gaussian Process priors on the latent space and the handling of missing data. We evaluate our model on a range of experiments focusing on dynamic representation learning and generative modeling, demonstrating the strong performance of our approach in comparison to existing methods that combine Gaussian Processes and autoencoders.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"34409-34430"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Half-Hop: A graph upsampling approach for slowing down message passing. 半跳:一种用于减慢消息传递速度的图形上采样方法。
Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, Michal Valko, Petar Veličković, Eva L Dyer

Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding "slow nodes" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.

消息传递神经网络在图结构数据方面取得了很大的成功。然而,在许多情况下,当相邻节点属于不同的类时,消息传递可能会导致过度平滑或失败。在这项工作中,我们介绍了一个简单而通用的框架,用于改进消息传递神经网络的学习。我们的方法本质上是通过在每条边上添加“慢节点”来对原始图中的边进行上采样,这些节点可以调解源节点和目标节点之间的通信。我们的方法只修改输入图,使其即插即用,并且易于与现有模型一起使用。为了理解减缓信息传递的好处,我们提供了理论和实证分析。我们报告了几个监督和自监督基准的结果,并显示了全面的改进,特别是在相邻节点更有可能具有不同标签的异亲条件下。最后,我们展示了如何使用我们的方法来生成自监督学习的增强,其中将慢节点随机引入图中的不同边,以生成具有可变路径长度的多尺度视图。
{"title":"Half-Hop: A graph upsampling approach for slowing down message passing.","authors":"Mehdi Azabou,&nbsp;Venkataramana Ganesh,&nbsp;Shantanu Thakoor,&nbsp;Chi-Heng Lin,&nbsp;Lakshmi Sathidevi,&nbsp;Ran Liu,&nbsp;Michal Valko,&nbsp;Petar Veličković,&nbsp;Eva L Dyer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding \"slow nodes\" at each edge that can mediate communication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"1341-1360"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559225/pdf/nihms-1931959.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Differential Equations on Long Sequences via Non-standard Wavelets. 通过非标准小波控制长序列上的微分方程
Sourav Pal, Zhanpeng Zeng, Sathya N Ravi, Vikas Singh

Neural Controlled Differential equations (NCDE) are a powerful mechanism to model the dynamics in temporal sequences, e.g., applications involving physiological measures, where apart from the initial condition, the dynamics also depend on subsequent measures or even a different "control" sequence. But NCDEs do not scale well to longer sequences. Existing strategies adapt rough path theory, and instead model the dynamics over summaries known as log signatures. While rigorous and elegant, invertibility of these summaries is difficult, and limits the scope of problems where these ideas can offer strong benefits (reconstruction, generative modeling). For tasks where it is sensible to assume that the (long) sequences in the training data are a fixed length of temporal measurements - this assumption holds in most experiments tackled in the literature - we describe an efficient simplification. First, we recast the regression/classification task as an integral transform. We then show how restricting the class of operators (permissible in the integral transform), allows the use of a known algorithm that leverages non-standard Wavelets to decompose the operator. Thereby, our task (learning the operator) radically simplifies. A neural variant of this idea yields consistent improvements across a wide gamut of use cases tackled in existing works. We also describe a novel application on modeling tasks involving coupled differential equations.

神经控制微分方程(NCDE)是一种强大的机制,可用于建立时间序列的动态模型,例如,在涉及生理测量的应用中,除了初始条件外,动态还取决于后续测量甚至不同的 "控制 "序列。但是,NCDE 不能很好地扩展到更长的序列。现有的策略采用了粗糙路径理论,并在称为对数特征的摘要上建立动态模型。虽然这种方法既严谨又优雅,但这些摘要的可逆性却很难实现,这就限制了这些想法能带来巨大优势的问题(重建、生成模型)的范围。对于假设训练数据中的(长)序列是固定长度的时间测量(这一假设在大多数文献中的实验中都成立)的任务,我们描述了一种有效的简化方法。首先,我们将回归/分类任务重塑为积分变换。然后,我们展示了如何限制算子类别(积分变换中允许的算子类别),从而利用非标准小波分解算子的已知算法。这样,我们的任务(学习算子)就从根本上简化了。这一想法的神经变体在现有工作中处理的各种用例中都取得了一致的改进。我们还介绍了在涉及耦合微分方程的建模任务中的新应用。
{"title":"Controlled Differential Equations on Long Sequences via Non-standard Wavelets.","authors":"Sourav Pal, Zhanpeng Zeng, Sathya N Ravi, Vikas Singh","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Neural Controlled Differential equations (NCDE) are a powerful mechanism to model the dynamics in temporal sequences, e.g., applications involving physiological measures, where apart from the initial condition, the dynamics also depend on subsequent measures or even a different \"control\" sequence. But NCDEs do not scale well to longer sequences. Existing strategies adapt rough path theory, and instead model the dynamics over summaries known as <i>log signatures</i>. While rigorous and elegant, invertibility of these summaries is difficult, and limits the scope of problems where these ideas can offer strong benefits (reconstruction, generative modeling). For tasks where it is sensible to assume that the (long) sequences in the training data are a <i>fixed</i> length of temporal measurements - this assumption holds in most experiments tackled in the literature - we describe an efficient simplification. First, we recast the regression/classification task as an integral transform. We then show how restricting the class of operators (permissible in the integral transform), allows the use of a known algorithm that leverages non-standard Wavelets to decompose the operator. Thereby, our task (learning the operator) radically simplifies. A neural variant of this idea yields consistent improvements across a wide gamut of use cases tackled in existing works. We also describe a novel application on modeling tasks involving coupled differential equations.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"26820-26836"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p -Regression in the Arbitrary Partition Model of Communication. 通信任意划分模型中的回归。
Yi Li, Honghao Lin, David P Woodruff
<p><p>We consider the randomized communication complexity of the distributed <math> <mrow><msub><mi>ℓ</mi> <mi>p</mi></msub> </mrow> </math> -regression problem in the coordinator model, for <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo></mrow> </math> . In this problem, there is a coordinator and <math><mi>s</mi></math> servers. The <math><mi>i</mi></math> -th server receives <math> <mrow><msup><mi>A</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mrow><mi>n</mi> <mo>×</mo> <mi>d</mi></mrow> </msup> </mrow> </math> and <math> <mrow><msup><mi>b</mi> <mi>i</mi></msup> <mo>∈</mo> <msup><mrow><mo>{</mo> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo></mrow> <mi>n</mi></msup> </mrow> </math> and the coordinator would like to find a <math><mrow><mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>ε</mi> <mo>)</mo></mrow> </math> -approximate solution to <math> <mrow> <msub> <mrow><msub><mtext>min</mtext> <mrow><mi>x</mi> <mo>∈</mo> <msup><mtext>R</mtext> <mi>n</mi></msup> </mrow> </msub> <mrow><mo>‖</mo> <mrow> <mrow> <mrow><mrow><mo>(</mo> <mrow><msub><mo>∑</mo> <mi>i</mi></msub> <msup><mi>A</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> <mi>x</mi> <mo>-</mo> <mrow><mo>(</mo> <mrow><munder><mo>∑</mo> <mi>i</mi></munder> <msup><mi>b</mi> <mi>i</mi></msup> </mrow> <mo>)</mo></mrow> </mrow> <mo>‖</mo></mrow> </mrow> </mrow> </mrow> <mi>p</mi></msub> </mrow> </math> . Here <math><mrow><mi>M</mi> <mo>≤</mo></mrow> </math> poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , i.e., least squares regression, we give the first optimal bound of <math> <mrow><mover><mtext>Θ</mtext> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mi>ϵ</mi></mrow> <mo>)</mo></mrow> </mrow> </math> ) bits. For <math><mrow><mi>p</mi> <mo>∈</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> , we obtain an <math> <mrow><mover><mi>O</mi> <mo>˜</mo></mover> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>2</mn></msup> <mo>/</mo> <mi>ε</mi> <mo>+</mo> <mi>s</mi> <mi>d</mi> <mo>/</mo> <mtext>poly</mtext> <mo>(</mo> <mi>ε</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> upper bound. Notably, for <math><mi>d</mi></math> sufficiently large, our leading order term only depends linearly on <math><mrow><mn>1</mn> <mo>/</mo> <mi>ϵ</mi></mrow> </math> rather than quadratically. We also show communication lower bounds of <math><mrow><mtext>Ω</mtext> <mrow><mo>(</mo> <mrow><mi>s</mi> <msup><mi>d</mi> <mn>
我们考虑的是协调器模型中分布式 ℓ p - 回归问题的随机通信复杂度,条件是 p∈ ( 0 , 2 ]。在这个问题中,有一个协调器和 s 个服务器。第 i 个服务器接收 A i∈ { - M , - M + 1 , ... , M } n × d 和 b i∈ { - M , - M + 1 , ... , M } n,协调者希望找到一个 ( 1 + ε ) 近似解,即 min x∈ R n ‖ ( ∑ i A i ) x - ( ∑ i b i ) ‖ p 。为方便起见,此处 M≤ poly(nd)。这种数据在不同服务器之间共享的模型通常被称为任意分区模型。我们在这个问题上得到了明显改善的边界。对于 p = 2,即最小二乘回归,我们首次给出了 Θ ˜ ( s d 2 + s d / ϵ ) 位的最优边界。对于 p∈ ( 1 , 2 ) ,我们得到 O ˜ ( s d 2 / ε + s d / poly ( ε ) ) 上限。值得注意的是,对于足够大的 d,我们的前导项仅线性地依赖于 1 / ϵ,而不是二次。我们还展示了 p∈ ( 0 , 1 ] 时的Ω ( s d 2 + s d / ε 2 ) 和 p∈ ( 1 , 2 ] 时的Ω ( s d 2 + s d / ε ) 的通信下界。我们的边界大大改进了之前的边界(Woodruff 等,COLT,2013 年)和(Vempala 等,SODA,2020 年)。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math> <ns0:mrow><ns0:msub><ns0:mi>ℓ</ns0:mi> <ns0:mi>p</ns0:mi></ns0:msub> </ns0:mrow> </ns0:math> -Regression in the Arbitrary Partition Model of Communication.","authors":"Yi Li, Honghao Lin, David P Woodruff","doi":"","DOIUrl":"","url":null,"abstract":"&lt;p&gt;&lt;p&gt;We consider the randomized communication complexity of the distributed &lt;math&gt; &lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;ℓ&lt;/mi&gt; &lt;mi&gt;p&lt;/mi&gt;&lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; -regression problem in the coordinator model, for &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mn&gt;0&lt;/mn&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mn&gt;2&lt;/mn&gt; &lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt; &lt;/math&gt; . In this problem, there is a coordinator and &lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/math&gt; servers. The &lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/math&gt; -th server receives &lt;math&gt; &lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/msup&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mo&gt;…&lt;/mo&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt; &lt;mo&gt;×&lt;/mo&gt; &lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt; &lt;/msup&gt; &lt;/mrow&gt; &lt;/math&gt; and &lt;math&gt; &lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;b&lt;/mi&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/msup&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mo&gt;…&lt;/mo&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt; &lt;mi&gt;n&lt;/mi&gt;&lt;/msup&gt; &lt;/mrow&gt; &lt;/math&gt; and the coordinator would like to find a &lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mi&gt;ε&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;/math&gt; -approximate solution to &lt;math&gt; &lt;mrow&gt; &lt;msub&gt; &lt;mrow&gt;&lt;msub&gt;&lt;mtext&gt;min&lt;/mtext&gt; &lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;msup&gt;&lt;mtext&gt;R&lt;/mtext&gt; &lt;mi&gt;n&lt;/mi&gt;&lt;/msup&gt; &lt;/mrow&gt; &lt;/msub&gt; &lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt; &lt;mrow&gt; &lt;mrow&gt; &lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt;&lt;msub&gt;&lt;mo&gt;∑&lt;/mo&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt; &lt;msup&gt;&lt;mi&gt;A&lt;/mi&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/msup&gt; &lt;/mrow&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;mi&gt;x&lt;/mi&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt;&lt;munder&gt;&lt;mo&gt;∑&lt;/mo&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/munder&gt; &lt;msup&gt;&lt;mi&gt;b&lt;/mi&gt; &lt;mi&gt;i&lt;/mi&gt;&lt;/msup&gt; &lt;/mrow&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;/mrow&gt; &lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt; &lt;/mrow&gt; &lt;/mrow&gt; &lt;/mrow&gt; &lt;mi&gt;p&lt;/mi&gt;&lt;/msub&gt; &lt;/mrow&gt; &lt;/math&gt; . Here &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt; &lt;mo&gt;≤&lt;/mo&gt;&lt;/mrow&gt; &lt;/math&gt; poly(nd) for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt; &lt;/math&gt; , i.e., least squares regression, we give the first optimal bound of &lt;math&gt; &lt;mrow&gt;&lt;mover&gt;&lt;mtext&gt;Θ&lt;/mtext&gt; &lt;mo&gt;˜&lt;/mo&gt;&lt;/mover&gt; &lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt; &lt;msup&gt;&lt;mi&gt;d&lt;/mi&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mi&gt;s&lt;/mi&gt; &lt;mi&gt;d&lt;/mi&gt; &lt;mo&gt;/&lt;/mo&gt; &lt;mi&gt;ϵ&lt;/mi&gt;&lt;/mrow&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;/mrow&gt; &lt;/math&gt; ) bits. For &lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mn&gt;2&lt;/mn&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;/math&gt; , we obtain an &lt;math&gt; &lt;mrow&gt;&lt;mover&gt;&lt;mi&gt;O&lt;/mi&gt; &lt;mo&gt;˜&lt;/mo&gt;&lt;/mover&gt; &lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt; &lt;msup&gt;&lt;mi&gt;d&lt;/mi&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt; &lt;mo&gt;/&lt;/mo&gt; &lt;mi&gt;ε&lt;/mi&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mi&gt;s&lt;/mi&gt; &lt;mi&gt;d&lt;/mi&gt; &lt;mo&gt;/&lt;/mo&gt; &lt;mtext&gt;poly&lt;/mtext&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;ε&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt; &lt;/mrow&gt; &lt;/math&gt; upper bound. Notably, for &lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt; sufficiently large, our leading order term only depends linearly on &lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;/&lt;/mo&gt; &lt;mi&gt;ϵ&lt;/mi&gt;&lt;/mrow&gt; &lt;/math&gt; rather than quadratically. We also show communication lower bounds of &lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;Ω&lt;/mtext&gt; &lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt; &lt;msup&gt;&lt;mi&gt;d&lt;/mi&gt; &lt;mn&gt;","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"195 ","pages":"4902-4928"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142839750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CODEIPPROMPT: Intellectual Property Infringement Assessment of Code Language Models. CODEIPPROMPT:代码语言模型的知识产权侵权评估。
Zhiyuan Yu, Yuhao Wu, Ning Zhang, Chenguang Wang, Yevgeniy Vorobeychik, Chaowei Xiao

Recent advances in large language models (LMs) have facilitated their ability to synthesize programming code. However, they have also raised concerns about intellectual property (IP) rights violations. Despite the significance of this issue, it has been relatively less explored. In this paper, we aim to bridge the gap by presenting CODEIPPROMPT, a platform for automatic evaluation of the extent to which code language models may reproduce licensed programs. It comprises two key components: prompts constructed from a licensed code database to elicit LMs to generate IP-violating code, and a measurement tool to evaluate the extent of IP violation of code LMs. We conducted an extensive evaluation of existing open-source code LMs and commercial products, and revealed the prevalence of IP violations in all these models. We further identified that the root cause is the substantial proportion of training corpus subject to restrictive licenses, resulting from both intentional inclusion and inconsistent license practice in the real world. To address this issue, we also explored potential mitigation strategies, including fine-tuning and dynamic token filtering. Our study provides a testbed for evaluating the IP violation issues of the existing code generation platforms and stresses the need for a better mitigation strategy.

大型语言模型(LMs)的最新进展促进了它们合成编程代码的能力。然而,它们也引起了对侵犯知识产权(IP)权利的担忧。尽管这个问题很重要,但人们对它的探索相对较少。在本文中,我们的目标是通过提供CODEIPPROMPT来弥合差距,CODEIPPROMPT是一个自动评估代码语言模型可以复制许可程序的程度的平台。它包括两个关键组件:从许可代码数据库构建提示符,以诱导LMs生成侵犯IP的代码,以及评估代码LMs侵犯IP的程度的测量工具。我们对现有的开源代码lm和商业产品进行了广泛的评估,并揭示了所有这些模型中普遍存在的知识产权侵权行为。我们进一步发现,根本原因是很大一部分训练语料库受制于限制性许可,这是由于在现实世界中有意包含和不一致的许可实践造成的。为了解决这个问题,我们还探索了潜在的缓解策略,包括微调和动态令牌过滤。我们的研究为评估现有代码生成平台的知识产权侵权问题提供了一个测试平台,并强调需要更好的缓解策略。
{"title":"CODEIPPROMPT: Intellectual Property Infringement Assessment of Code Language Models.","authors":"Zhiyuan Yu, Yuhao Wu, Ning Zhang, Chenguang Wang, Yevgeniy Vorobeychik, Chaowei Xiao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recent advances in large language models (LMs) have facilitated their ability to synthesize programming code. However, they have also raised concerns about intellectual property (IP) rights violations. Despite the significance of this issue, it has been relatively less explored. In this paper, we aim to bridge the gap by presenting CODEIPPROMPT, a platform for automatic evaluation of the extent to which code language models may reproduce licensed programs. It comprises two key components: prompts constructed from a licensed code database to elicit LMs to generate IP-violating code, and a measurement tool to evaluate the extent of IP violation of code LMs. We conducted an extensive evaluation of existing open-source code LMs and commercial products, and revealed the prevalence of IP violations in all these models. We further identified that the root cause is the substantial proportion of training corpus subject to restrictive licenses, resulting from both intentional inclusion and inconsistent license practice in the real world. To address this issue, we also explored potential mitigation strategies, including fine-tuning and dynamic token filtering. Our study provides a testbed for evaluating the IP violation issues of the existing code generation platforms and stresses the need for a better mitigation strategy.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"23 ","pages":"40373-40389"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144981792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Unintended Consequences of Discount Regularization: Improving Regularization in Certainty Equivalence Reinforcement Learning. 折扣正则化的意外后果:改进确定性等价强化学习中的正则化。
Sarah Rathnam, Sonali Parbhoo, Weiwei Pan, Susan A Murphy, Finale Doshi-Velez

Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to restrict planning to a less complex set of policies when estimating an MDP from sparse or noisy data (Jiang et al., 2015). It is commonly understood that discount regularization functions by de-emphasizing or ignoring delayed effects. In this paper, we reveal an alternate view of discount regularization that exposes unintended consequences. We demonstrate that planning under a lower discount factor produces an identical optimal policy to planning using any prior on the transition matrix that has the same distribution for all states and actions. In fact, it functions like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. Our equivalence theorem leads to an explicit formula to set regularization parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific method across simple empirical examples as well as a medical cancer simulator.

贴现正则化是指在计算最优策略时使用较短的规划期限,它是一种常用的选择,可以在根据稀疏或噪声数据估计 MDP 时,将规划限制在不太复杂的策略集上(Jiang 等人,2015 年)。一般认为,折扣正则化功能是通过去强调或忽略延迟效应来实现的。在本文中,我们揭示了折扣正则化的另一种观点,它暴露了意想不到的后果。我们证明,在较低的贴现因子下进行规划,与在过渡矩阵上使用任何对所有状态和行动具有相同分布的先验进行规划,都能产生相同的最优策略。事实上,它的功能类似于对具有更多过渡数据的状态-行动对进行更强正则化的先验。当过渡矩阵是通过状态-行动对数据量不均的数据集估算出来时,这就会导致性能不佳。我们的等价定理提供了一个明确的公式,可以为单个状态-行动对局部而不是全局设置正则化参数。我们通过简单的经验示例和医疗癌症模拟器,展示了折扣正则化的失败,以及我们如何使用针对特定状态行动的方法来弥补这些失败。
{"title":"The Unintended Consequences of Discount Regularization: Improving Regularization in Certainty Equivalence Reinforcement Learning.","authors":"Sarah Rathnam, Sonali Parbhoo, Weiwei Pan, Susan A Murphy, Finale Doshi-Velez","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to restrict planning to a less complex set of policies when estimating an MDP from sparse or noisy data (Jiang et al., 2015). It is commonly understood that discount regularization functions by de-emphasizing or ignoring delayed effects. In this paper, we reveal an alternate view of discount regularization that exposes unintended consequences. We demonstrate that planning under a lower discount factor produces an identical optimal policy to planning using any prior on the transition matrix that has the same distribution for all states and actions. In fact, it functions like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. Our equivalence theorem leads to an explicit formula to set regularization parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific method across simple empirical examples as well as a medical cancer simulator.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"28746-28767"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472113/pdf/nihms-1926341.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of machine learning research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1