Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics最新文献
Pub Date : 2008-10-19DOI: 10.1109/BIOROB.2008.4762833
Kyle B Reed, Vinutha Kallem, Ron Alterovitz, Ken Goldberg, Allison M Okamura, Noah J Cowan
Flexible, tip-steerable needles promise to enhance physicians' abilities to accurately reach targets and maneuver inside the human body while minimizing patient trauma. Here, we present a functional needle steering system that integrates two components: (1) a patient-specific 2D pre- and intra-operative planner that finds an achievable route to a target within a planar slice of tissue (Stochastic Motion Roadmap), and (2) a low-level image-guided feedback controller that keeps the needle tip within that slice. The planner generates a sequence of circular arcs that can be realized by interleaving pure insertions with 180° rotations of the needle shaft. This preplanned sequence is updated in realtime at regular intervals. Concurrently, the low-level image-based controller servos the needle to remain close to the desired plane between plan updates. Both planner and controller are predicated on a previously developed kinematic nonholonomic model of bevel-tip needle steering. We use slighly different needles here that have a small bend near the tip, so we extend the model to account for discontinuities of the tip position caused by 180° rotations. Further, during large rotations of the needle base, we maintain the desired tip angle by compensating for torsional compliance in the needle shaft, neglected in previous needle steering work. By integrating planning, control, and torsion compensation, we demonstrate both accurate targeting and obstacle avoidance.
{"title":"Integrated Planning and Image-Guided Control for Planar Needle Steering.","authors":"Kyle B Reed, Vinutha Kallem, Ron Alterovitz, Ken Goldberg, Allison M Okamura, Noah J Cowan","doi":"10.1109/BIOROB.2008.4762833","DOIUrl":"10.1109/BIOROB.2008.4762833","url":null,"abstract":"<p><p>Flexible, tip-steerable needles promise to enhance physicians' abilities to accurately reach targets and maneuver inside the human body while minimizing patient trauma. Here, we present a functional needle steering system that integrates two components: (1) a patient-specific 2D pre- and intra-operative planner that finds an achievable route to a target within a planar slice of tissue (Stochastic Motion Roadmap), and (2) a low-level image-guided feedback controller that keeps the needle tip within that slice. The planner generates a sequence of circular arcs that can be realized by interleaving pure insertions with 180° rotations of the needle shaft. This preplanned sequence is updated in realtime at regular intervals. Concurrently, the low-level image-based controller servos the needle to remain close to the desired plane between plan updates. Both planner and controller are predicated on a previously developed kinematic nonholonomic model of bevel-tip needle steering. We use slighly different needles here that have a small bend near the tip, so we extend the model to account for discontinuities of the tip position caused by 180° rotations. Further, during large rotations of the needle base, we maintain the desired tip angle by compensating for torsional compliance in the needle shaft, neglected in previous needle steering work. By integrating planning, control, and torsion compensation, we demonstrate both accurate targeting and obstacle avoidance.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2008 ","pages":"819-824"},"PeriodicalIF":0.0,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905598/pdf/nihms192995.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29131197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-10-19DOI: 10.1109/BIOROB.2008.4762872
Sarthak Misra, Kyle B Reed, Andrew S Douglas, K T Ramesh, Allison M Okamura
The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. As a first step toward modeling the mechanics of deflection of the needle, we determine the forces at the bevel tip. In order to find the forces acting at the needle tip, we measure rupture toughness and nonlinear material elasticity parameters of several soft tissue simulant gels and chicken tissue. We incorporate these physical parameters into a finite element model that includes both contact and cohesive zone models to simulate tissue cleavage. We investigate the sensitivity of the tip forces to tissue rupture toughness, linear and nonlinear tissue elasticity, and needle tip bevel angle. The model shows that the tip forces are sensitive to the rupture toughness. The results from these studies contribute to a mechanics-based model of bevel-tip needle steering, extending previous work on kinematic models.
{"title":"Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles.","authors":"Sarthak Misra, Kyle B Reed, Andrew S Douglas, K T Ramesh, Allison M Okamura","doi":"10.1109/BIOROB.2008.4762872","DOIUrl":"10.1109/BIOROB.2008.4762872","url":null,"abstract":"<p><p>The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. As a first step toward modeling the mechanics of deflection of the needle, we determine the forces at the bevel tip. In order to find the forces acting at the needle tip, we measure rupture toughness and nonlinear material elasticity parameters of several soft tissue simulant gels and chicken tissue. We incorporate these physical parameters into a finite element model that includes both contact and cohesive zone models to simulate tissue cleavage. We investigate the sensitivity of the tip forces to tissue rupture toughness, linear and nonlinear tissue elasticity, and needle tip bevel angle. The model shows that the tip forces are sensitive to the rupture toughness. The results from these studies contribute to a mechanics-based model of bevel-tip needle steering, extending previous work on kinematic models.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":" ","pages":"224-231"},"PeriodicalIF":0.0,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196639/pdf/nihms-115085.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30226447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-10-19DOI: 10.1109/BIOROB.2008.4762825
Kyle B Reed
Long, flexible, bevel-tip needles curve during insertion into tissue, and rotations of the needle base reorient the tip to steer subsequent insertions. Friction between the tissue and the needle shaft, however, can cause a severe discrepancy between the needle base and tip angles. In this paper, I demonstrate an algorithm to properly align the entire length of the needle using torque measured at the base. My algorithm uses several intermediate base rotations to align the orientation of points along the shaft with the desired angle, with minimal remaining torque exerted by the base. I performed an experimental validation with four angle sensors attached to the needle throughout the tissue. My compensation algorithm decreased the lag throughout the needle by up to 88%.
{"title":"Compensating for Torsion Windup in Steerable Needles.","authors":"Kyle B Reed","doi":"10.1109/BIOROB.2008.4762825","DOIUrl":"10.1109/BIOROB.2008.4762825","url":null,"abstract":"<p><p>Long, flexible, bevel-tip needles curve during insertion into tissue, and rotations of the needle base reorient the tip to steer subsequent insertions. Friction between the tissue and the needle shaft, however, can cause a severe discrepancy between the needle base and tip angles. In this paper, I demonstrate an algorithm to properly align the entire length of the needle using torque measured at the base. My algorithm uses several intermediate base rotations to align the orientation of points along the shaft with the desired angle, with minimal remaining torque exerted by the base. I performed an experimental validation with four angle sensors attached to the needle throughout the tissue. My compensation algorithm decreased the lag throughout the needle by up to 88%.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2008 ","pages":"936-941"},"PeriodicalIF":0.0,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905605/pdf/nihms192997.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29131198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-10-19DOI: 10.1109/BIOROB.2008.4762811
Frank Sup, Huseyin Atakan Varol, Jason Mitchell, Thomas Withrow, Michael Goldfarb
This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device's sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack.
{"title":"Design and Control of an Active Electrical Knee and Ankle Prosthesis.","authors":"Frank Sup, Huseyin Atakan Varol, Jason Mitchell, Thomas Withrow, Michael Goldfarb","doi":"10.1109/BIOROB.2008.4762811","DOIUrl":"10.1109/BIOROB.2008.4762811","url":null,"abstract":"<p><p>This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device's sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack.</p>","PeriodicalId":74522,"journal":{"name":"Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics","volume":"2008 ","pages":"523-528"},"PeriodicalIF":0.0,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906131/pdf/nihms151253.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29136043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics