Correction for ‘Enhanced mechanical strength of polypropylene bionanocomposites through spray-dried nanocrystalline cellulose reinforcement’ by Fatimah Athiyah Sabaruddin et al., RSC Sustain., 2024, https://doi.org/10.1039/d4su00295d.
Correction for ‘Enhanced mechanical strength of polypropylene bionanocomposites through spray-dried nanocrystalline cellulose reinforcement’ by Fatimah Athiyah Sabaruddin et al., RSC Sustain., 2024, https://doi.org/10.1039/d4su00295d.
To meet global decarbonization goals, the chemical industry faces the challenge of dramatically reducing greenhouse gas emissions even as demand for chemical products continues to grow. This challenge is amplified by the sector's reliance on petroleum-based hydrocarbons as both fuel and feedstock. Electrochemical synthesis is widely viewed as an attractive method to decarbonize chemical manufacturing through the use of low-carbon electricity to drive redox reactions. Presently, much of the work in this area is focused on electrochemical strategies to produce commodity chemicals. In this work, we make the case that developing electrosynthetic methods for specialty chemical manufacturing is another attractive entry point for electrochemical process design. We further outline the results of a scoping study aimed at assessing the potential to decarbonize the production of several organic compounds that are widely used in specialty chemical manufacturing by using electrochemical reactors. Our approach entails mapping the supply chain for each compound back to its petrochemical feedstock, identifying opportunities to incorporate electrochemical transformations along the supply chain, and estimating the potential for decarbonization through the adoption of electrosynthetic schemes. The results show there already exist significant opportunities to decarbonize specialty chemical transformations today, even under very conservative assumptions about process efficiency and the carbon intensity of the input electricity.
Since the development of polymer-modified asphalt, its functionality and preparation process have been continuously optimized, thus improving driving comfort and extending the service life of asphalt pavements. However, traditional polymer-modified asphalt is faced with certain limitations in terms of production and storage. To address these issues and enhance the storage stability of modified asphalt materials, a novel polyurethane (PU) elastomer with high elasticity and self-healing properties, named S-PU, was developed using dynamic covalent bond reversible technology. S-PU was applied as a modifier for asphalt modification. Through conventional performance and fluorescence microscopy (FM) tests, the optimal dosage of S-PU for asphalt modification was determined. The best asphalt modification effect was achieved when the S-PU content was 10%. Furthermore, atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) were employed to analyze the micromorphology and modification mechanism of S-PU-modified asphalt. The results reveal an increase in the size of the “bee-like” structures after asphalt modification, along with chemical crosslinking between S-PU and asphalt molecules. This study introduces a novel approach for preparing self-healing asphalt through the utilization of dynamic covalent chemistry, offering new perspectives in the field.
The rising trend of green energy has made it necessary to utilise efficient green materials in electrochemical energy storage devices (EESDs) under a green economy. The need for sustainable energy storage technologies due to the rising demand for energy, improved technology, and the huge challenge of E-waste requires the development of eco-friendly advanced materials and recycling processes in electrochemical energy storage within a circular economy framework. This paper focuses on cellulose, shellac, polylactic acid (PLA), chitin, and chitosan due to their exceptional sustainability, biodegradability, and functional properties and explore how these polymers can improve the circular economy for batteries and supercapacitors by following the aspects of their background, processing and preparation methods, properties, chemical structures, applications, and recent development. As such, this review promotes the increased utilisation of biodegradable biopolymers within the circular economy of EESDs, particularly for future technologies such as flexible, wearable, stretchable, and transparent devices. This review raises awareness of these materials' capability to improve sustainability and recyclability, thus promoting increased use and integration of these materials into EESDs leading to green technologies and low environmental impact.
The rapidly growing population and increased energy consumption are leading to the depletion of non-renewable sources, thus posing a great threat of resource unavailability to future generations. This problem can be tackled using sustainable and renewable sources and by practicing the principles of green chemistry. Hydroformylation, which has applications in various industries, is a highly commercialised, transition metal-catalysed process that is used to produce tonnes of chemicals globally. In this process, the employment of bio-renewable starting materials is a great step toward sustainability. This review highlights the hydroformylation, hydroaminomethylation, and associated tandem reactions of natural olefins, such as terpenes, allyl/propenyl benzene derivatives, oleo-compounds, and steroids. This review intends to provide a clear picture of the research reported to date, encouraging further research and advancement of sustainable practices, environmental friendliness, and application of green chemistry principles in this field.
Zeolitic imidazolate framework improved vanadium ferrite (VFe2O4@monoZIF-8) was prepared to purify a ciprofloxacin (CP), ampicillin (AP), and erythromycin (EY) contaminated water system via a visible light driven photocatalytic process. Furthermore, VFe2O4@monoZIF-8 was evaluated for its hepato-renal toxicity in Wistar rats to establish its toxicity profile. Characterization of VFe2O4@monoZIF-8 was performed with scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry evaluation (TGA), energy-dispersive X-ray microanalysis (EDX), and transmission electron microscopy (TEM). The VFe2O4@monoZIF-8 crystallite size determined by XRD is 34.32 nm, while the average particle size from the TEM image is 162.32 nm. The surface of VFe2O4@monoZIF-8 as shown in the SEM image is homogeneous having hexagonal and asymmetrically shaped particles. EDX results confirmed vanadium (V), iron (Fe), oxygen (O), carbon (C) and zinc (Zn) as the constituent elements. The bandgap energy is 2.18 eV. VFe2O4@monoZIF-8 completely (100%) photodegraded all the antibiotics (CP, AP and EY). In the 10th regeneration cycle, the degradation efficiency for CP was 95.10 ± 1.00%, for AP it was 98.60 ± 1.00% and for EY it was 98.60 ± 0.70%. VFe2O4@monoZIF-8 exhibited no significant changes in the plasma creatine, urea and uric acid levels of rats studied, suggesting healthy function of the studied kidneys. Furthermore, there was no significant effect on plasma electrolyte, sodium and potassium levels. The photocatalytic degradation capacity of VFe2O4@monoZIF-8 compared favorably with previous studies with minimal toxicity to the hepato-renal system, which suggests VFe2O4@monoZIF-8 as a potential resource for decontaminating antibiotic polluted water systems.
The chemical industry plays a pivotal role in modern society, providing essential products like plastics, consumer products, pharmaceuticals, speciality and agricultural chemicals. With increasing global prosperity and evolving societal demands, the need for sustainable chemicals is more pressing than ever. Essentially, the production of chemicals as we know it today is based on the use of fossil fuel for supplying the feedstock needed to provide the carbon-skeleton and the energy required for the synthesis process. As either of the two leads to CO2 emissions, net-zero in chemistry requires both renewable energy and sustainable carbon supply strategies. Decarbonisation in the chemical industry requires the use of carbon-free renewable energy and changes in process design to replace CO2 liberating steps (mainly energy supply) during manufacturing, e.g. with hydrogen as a reducing agent. While defossilisation technologies refer to using defossilised carbon feedstock for material production, namely biomass, or carbon supplied via carbon capture and utilisation (CCU) or from recycling of carbonaceous waste streams. This paper presents a meta-analysis of net-zero transition scenarios for the chemical industry to achieve net-zero emissions by 2050, focusing on feedstock structures and renewable energy requirements. Additionally, it evaluates the sustainability of defossilisation technologies and underscores the imperative of target-oriented cooperation of industry, policymakers, academia, and the public to facilitate a rapid transition towards a more sustainable chemical industry.
Perovskite oxides, such as La0.5Ba0.5FeO3 (LBF), facilitate CO2 conversion by reverse water–gas shift chemical looping (RWSG-CL) at moderate conditions by employing an oxygen vacancy at the surface to aid CO2 adsorption and then to scavenge an oxygen atom from it to fill the vacancy. The formation of composites with silica is also known to enhance the perovskite oxide's performance. To better clarify this, experimental and computational methods are now combined to probe CO2 adsorption for both unsupported and silica-supported LBF. Chemisorption tests showed the CO2 adsorption sites increased from 12.4 to 60.6 μmol gLBF−1 after adding SiO2 (75 wt%) to LBF (25 wt%). Spectroscopic studies (DRIFTS) indicated that the carbonate formation during CO2 adsorption shifts from bidentate to monodentate because the surface morphology changes upon supporting on silica. Computational (DFT) results provide evidence for CO2 adsorbed as a monodentate and a bidentate carbonate, respectively, on the (111) and (100) surfaces. Monodentate species required lower energy, as determined by DFT, to dissociate C–O bond than bidentate species. Since XRD results identified increases in the (111) relative to (100) planes upon supporting LBF on SiO2, the combined DRIFTS and DFT approach revealed that the perovskite oxide restructures when in composite form, which explains the increased RWGS-CL process yield of CO.
Perovskite/silicon (Si) tandem solar cells (TSCs) have emerged as a promising candidate among PV technologies due to their capability to greatly increase power conversion efficiency (PCE) exceeding the Shockley–Queisser limit of single-junction solar cells. Nevertheless, obstacles to the durability of perovskite materials and the environmental consequences of their life cycle present notable barriers to their widespread commercial deployment. The objective of this article is to deliver a review of life cycle assessment (LCA) and sustainability analysis of perovskite/Si TSCs: first, focusing on their working principle, configuration, components and recent progress and then presenting an overview of the LCA and sustainability study performed on perovskite/Si TSCs. Finally, this review highlights important directions for future LCA and sustainability studies required for the successful development of this remarkable perovskite/Si TSC PV technology.
As the world endeavors to meet ambitious climate targets and mitigate carbon emissions, green hydrogen stands out as a versatile and scalable solution offering a viable pathway toward sustainable development. Significant advancements in green hydrogen production have been observed in regions demonstrating robust commitments to integrating renewable energy sources, which serve as pioneering models of the feasibility and potential of integrating green hydrogen into existing energy ecosystems. This paper undertakes a comprehensive analysis of the technical challenges hindering the widespread adoption of green hydrogen production, while highlighting the abundant opportunities associated with this transformative technology. The study aims to scrutinize the underlying technologies, methodologies, and structural complexities associated with green hydrogen production to uncover latent opportunities for achieving global decarbonization goals, particularly aligned with the objectives of the 2030 Agenda and the Sustainable Development Goals (SDGs).