Pub Date : 2024-08-22DOI: 10.1038/s41537-024-00489-7
Kristin Fjelnseth Wold, Isabel Viola Kreis, Gina Åsbø, Camilla Bärthel Flaaten, Line Widing, Magnus Johan Engen, Siv Hege Lyngstad, Erik Johnsen, Torill Ueland, Carmen Simonsen, Ingrid Melle
Illness trajectories in people with first-episode psychosis (FEP) vary significantly over time. Identifying early-course parameters predicting outcomes is essential, but long-term data still needs to be provided. We conducted a 10-year follow-up study of a comprehensive first-episode psychosis (FEP) cohort investigating the prevalence of clinical recovery (CR) and treatment resistance (TR) after ten years, as well as clinical, demographic, and pre-illness predictors of long-term outcomes. 102 participants with FEP DSM-IV Schizophrenia spectrum disorders were recruited within their first year of treatment. The Treatment Response and Resistance in Psychosis Working Group (TRRIP) and the Remission in Schizophrenia Working Group (RSWG) criteria were used to define TR and CR, respectively. At 10-year follow-up, 29 (29%) of the participants were classified as in CR, while 32 (31%) were classified as TR. We also identified a larger middle group (n = 41, 40%) consisting of participants in partial recovery. 7% of all participants had tried Clozapine at the 10-year follow-up. Logistic regression analyses identified insidious onset (OR = 4.16) and baseline disorganized symptoms (OR = 2.96) as significantly associated with an increased risk of developing TR. Good premorbid academic adjustment (OR = 1.60) and acute onset (OR = 3.40) were associated with an increased chance of CR. We identified three long-term outcome groups by using recent consensus definitions. We also identified the potential importance of assessing baseline disorganized symptoms and monitoring patients with insidious onset more closely. Further, the findings suggest that clinicians should pay close attention to early-course parameters and provide adequate treatment to improve long-term outcomes of FEP.
{"title":"Long-term clinical recovery and treatment resistance in first-episode psychosis: a 10-year follow-up study.","authors":"Kristin Fjelnseth Wold, Isabel Viola Kreis, Gina Åsbø, Camilla Bärthel Flaaten, Line Widing, Magnus Johan Engen, Siv Hege Lyngstad, Erik Johnsen, Torill Ueland, Carmen Simonsen, Ingrid Melle","doi":"10.1038/s41537-024-00489-7","DOIUrl":"10.1038/s41537-024-00489-7","url":null,"abstract":"<p><p>Illness trajectories in people with first-episode psychosis (FEP) vary significantly over time. Identifying early-course parameters predicting outcomes is essential, but long-term data still needs to be provided. We conducted a 10-year follow-up study of a comprehensive first-episode psychosis (FEP) cohort investigating the prevalence of clinical recovery (CR) and treatment resistance (TR) after ten years, as well as clinical, demographic, and pre-illness predictors of long-term outcomes. 102 participants with FEP DSM-IV Schizophrenia spectrum disorders were recruited within their first year of treatment. The Treatment Response and Resistance in Psychosis Working Group (TRRIP) and the Remission in Schizophrenia Working Group (RSWG) criteria were used to define TR and CR, respectively. At 10-year follow-up, 29 (29%) of the participants were classified as in CR, while 32 (31%) were classified as TR. We also identified a larger middle group (n = 41, 40%) consisting of participants in partial recovery. 7% of all participants had tried Clozapine at the 10-year follow-up. Logistic regression analyses identified insidious onset (OR = 4.16) and baseline disorganized symptoms (OR = 2.96) as significantly associated with an increased risk of developing TR. Good premorbid academic adjustment (OR = 1.60) and acute onset (OR = 3.40) were associated with an increased chance of CR. We identified three long-term outcome groups by using recent consensus definitions. We also identified the potential importance of assessing baseline disorganized symptoms and monitoring patients with insidious onset more closely. Further, the findings suggest that clinicians should pay close attention to early-course parameters and provide adequate treatment to improve long-term outcomes of FEP.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"69"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s41537-024-00490-0
Molly T Finnerty, Atif Khan, Kai You, Rui Wang, Gyojeong Gu, Deborah Layman, Qingxian Chen, Noémie Elhadad, Shalmali Joshi, Paul S Appelbaum, Todd Lencz, Sander Markx, Steven A Kushner, Andrey Rzhetsky
Given the chronic nature of schizophrenia, it is important to examine age-specific prevalence and incidence to understand the scope of the burden of schizophrenia across the lifespan. Estimates of lifetime prevalence of schizophrenia have varied widely and have often relied upon community-based data estimates from over two decades ago, while more recent studies have shown considerable promise by leveraging pooled datasets. However, the validity of measures of schizophrenia, particularly new onset schizophrenia, has not been well studied in these large health databases. The current study examines prevalence and validity of incidence measures of new diagnoses of schizophrenia in 2019 using two U.S. administrative health databases: MarketScan, a national database of individuals receiving employer-sponsored commercial insurance (N = 16,365,997), and NYS Medicaid, a large state public insurance program (N = 4,414,153). Our results indicate that the prevalence of schizophrenia is over 10-fold higher, and the incidence two-fold higher, in the NYS Medicaid population compared to the MarketScan database. In addition, prevalence increased over the lifespan in the Medicaid population, but decreased in the employment based MarketScan database beginning in early adulthood. Incident measures of new diagnoses of schizophrenia had excellent validity, with positive predictive values and specificity exceeding 95%, but required a longer lookback period for Medicaid compared to MarketScan. Further work is needed to leverage these findings to develop robust clinical outcome predictors for new onset of schizophrenia within large administrative health data systems.
{"title":"Prevalence and incidence measures for schizophrenia among commercial health insurance and medicaid enrollees.","authors":"Molly T Finnerty, Atif Khan, Kai You, Rui Wang, Gyojeong Gu, Deborah Layman, Qingxian Chen, Noémie Elhadad, Shalmali Joshi, Paul S Appelbaum, Todd Lencz, Sander Markx, Steven A Kushner, Andrey Rzhetsky","doi":"10.1038/s41537-024-00490-0","DOIUrl":"10.1038/s41537-024-00490-0","url":null,"abstract":"<p><p>Given the chronic nature of schizophrenia, it is important to examine age-specific prevalence and incidence to understand the scope of the burden of schizophrenia across the lifespan. Estimates of lifetime prevalence of schizophrenia have varied widely and have often relied upon community-based data estimates from over two decades ago, while more recent studies have shown considerable promise by leveraging pooled datasets. However, the validity of measures of schizophrenia, particularly new onset schizophrenia, has not been well studied in these large health databases. The current study examines prevalence and validity of incidence measures of new diagnoses of schizophrenia in 2019 using two U.S. administrative health databases: MarketScan, a national database of individuals receiving employer-sponsored commercial insurance (N = 16,365,997), and NYS Medicaid, a large state public insurance program (N = 4,414,153). Our results indicate that the prevalence of schizophrenia is over 10-fold higher, and the incidence two-fold higher, in the NYS Medicaid population compared to the MarketScan database. In addition, prevalence increased over the lifespan in the Medicaid population, but decreased in the employment based MarketScan database beginning in early adulthood. Incident measures of new diagnoses of schizophrenia had excellent validity, with positive predictive values and specificity exceeding 95%, but required a longer lookback period for Medicaid compared to MarketScan. Further work is needed to leverage these findings to develop robust clinical outcome predictors for new onset of schizophrenia within large administrative health data systems.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"68"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Both the brain-derived neurotrophic factor (BDNF) valine (Val)/methionine (Met) polymorphism and mismatch negativity (MMN) amplitude are reportedly linked to working memory impairments in schizophrenia. However, there is evident scarcity of research aimed at exploring the relationships among the three factors. In this secondary analysis of a randomized, controlled, double-blind trial, we investigated these relationships. The trial assessed the efficacy of transcranial direct current stimulation for enhancing working memory in clinically stable schizophrenia patients, who were randomly divided into three groups: dorsolateral prefrontal cortex stimulation, posterior parietal cortex stimulation, and sham stimulation groups. Transcranial direct current stimulation was administered concurrently with a working memory task over five days. We assessed the BDNF genotype, MMN amplitude, working memory capacity, and interference control subdomains. These assessments were conducted at baseline with 54 patients and followed up post-intervention with 48 patients. Compared to BDNF Met-carriers, Val homozygotes exhibited fewer positive and general symptoms and increased working memory capacity at baseline. A correlation between MMN amplitude and working memory capacity was noted only in BDNF Val homozygotes. The correlations were significantly different in the two BDNF genotype groups. Furthermore, in the intervention group that showed significant improvement in MMN amplitude, BDNF Val homozygotes exhibited greater enhancement in working memory capacity than Met-carriers. This study provides in vivo evidence for the interaction between MMN and BDNF Val/Met polymorphism for working memory capacity. As MMN has been considered a biomarker of N-methyl-D-aspartate receptor (NMDAR) function, these data shed light on the complex interactions between BDNF and NMDAR in terms of working memory in schizophrenia.
{"title":"Interaction between BDNF Val66Met polymorphism and mismatch negativity for working memory capacity in schizophrenia.","authors":"Wenpeng Hou, Xiangqin Qin, Hang Li, Qi Wang, Yushen Ding, Xiongying Chen, Ru Wang, Fang Dong, Qijing Bo, Xianbin Li, Fuchun Zhou, Chuanyue Wang","doi":"10.1038/s41537-024-00493-x","DOIUrl":"10.1038/s41537-024-00493-x","url":null,"abstract":"<p><p>Both the brain-derived neurotrophic factor (BDNF) valine (Val)/methionine (Met) polymorphism and mismatch negativity (MMN) amplitude are reportedly linked to working memory impairments in schizophrenia. However, there is evident scarcity of research aimed at exploring the relationships among the three factors. In this secondary analysis of a randomized, controlled, double-blind trial, we investigated these relationships. The trial assessed the efficacy of transcranial direct current stimulation for enhancing working memory in clinically stable schizophrenia patients, who were randomly divided into three groups: dorsolateral prefrontal cortex stimulation, posterior parietal cortex stimulation, and sham stimulation groups. Transcranial direct current stimulation was administered concurrently with a working memory task over five days. We assessed the BDNF genotype, MMN amplitude, working memory capacity, and interference control subdomains. These assessments were conducted at baseline with 54 patients and followed up post-intervention with 48 patients. Compared to BDNF Met-carriers, Val homozygotes exhibited fewer positive and general symptoms and increased working memory capacity at baseline. A correlation between MMN amplitude and working memory capacity was noted only in BDNF Val homozygotes. The correlations were significantly different in the two BDNF genotype groups. Furthermore, in the intervention group that showed significant improvement in MMN amplitude, BDNF Val homozygotes exhibited greater enhancement in working memory capacity than Met-carriers. This study provides in vivo evidence for the interaction between MMN and BDNF Val/Met polymorphism for working memory capacity. As MMN has been considered a biomarker of N-methyl-D-aspartate receptor (NMDAR) function, these data shed light on the complex interactions between BDNF and NMDAR in terms of working memory in schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"70"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41537-024-00486-w
Carlos A Larrauri
{"title":"Messiah or pariah? Psychosis, science, and finding meaning in lived experience.","authors":"Carlos A Larrauri","doi":"10.1038/s41537-024-00486-w","DOIUrl":"10.1038/s41537-024-00486-w","url":null,"abstract":"","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"67"},"PeriodicalIF":3.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1038/s41537-024-00475-z
Reetta-Liina Armio, Heikki Laurikainen, Tuula Ilonen, Maija Walta, Elina Sormunen, Arvi Tolvanen, Raimo K R Salokangas, Nikolaos Koutsouleris, Lauri Tuominen, Jarmo Hietala
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
{"title":"Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis.","authors":"Reetta-Liina Armio, Heikki Laurikainen, Tuula Ilonen, Maija Walta, Elina Sormunen, Arvi Tolvanen, Raimo K R Salokangas, Nikolaos Koutsouleris, Lauri Tuominen, Jarmo Hietala","doi":"10.1038/s41537-024-00475-z","DOIUrl":"10.1038/s41537-024-00475-z","url":null,"abstract":"<p><p>Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"66"},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41537-024-00485-x
Dabing Li, Qiangwen Pan, Yewei Xiao, Kehui Hu
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
{"title":"Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms.","authors":"Dabing Li, Qiangwen Pan, Yewei Xiao, Kehui Hu","doi":"10.1038/s41537-024-00485-x","DOIUrl":"10.1038/s41537-024-00485-x","url":null,"abstract":"<p><p>Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"65"},"PeriodicalIF":3.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The etiological and therapeutic complexities of schizophrenia (SCZ) persist, prompting exploration of anti-inflammatory therapy as a potential treatment approach. Methyl salicylate glycosides (MSGs), possessing a structural parent nucleus akin to aspirin, are being investigated for their therapeutic potential in schizophrenia. Utilizing bioinformation mining, network pharmacology, molecular docking and dynamics simulation, the potential value and mechanism of MSGs (including MSTG-A, MSTG-B, and Gaultherin) in the treatment of SCZ, as well as the underlying pathogenesis of the disorder, were examined. 581 differentially expressed genes related to SCZ were identified in patients and healthy individuals, with 349 up-regulated genes and 232 down-regulated genes. 29 core targets were characterized by protein-protein interaction (PPI) network, with the top 10 core targets being BDNF, VEGFA, PVALB, KCNA1, GRIN2A, ATP2B2, KCNA2, APOE, PPARGC1A and SCN1A. The pathogenesis of SCZ primarily involves cAMP signaling, neurodegenerative diseases and other pathways, as well as regulation of ion transmembrane transport. Molecular docking analysis revealed that the three candidates exhibited binding activity with certain targets with binding affinities ranging from -4.7 to -109.2 kcal/mol. MSTG-A, MSTG-B and Gaultherin show promise for use in the treatment of SCZ, potentially through their ability to modulate the expression of multiple genes involved in synaptic structure and function, ion transport, energy metabolism. Molecular dynamics simulation revealed good binding abilities between MSTG-A, MSTG-B, Gaultherin and ATP2B2. It suggests new avenues for further investigation in this area.
{"title":"Exploration on the potential efficacy and mechanism of methyl salicylate glycosides in the treatment of schizophrenia based on bioinformatics, molecular docking and dynamics simulation.","authors":"Xiuhuan Wang, Jiamu Ma, Ying Dong, Xueyang Ren, Ruoming Li, Guigang Yang, Gaimei She, Yunlong Tan, Song Chen","doi":"10.1038/s41537-024-00484-y","DOIUrl":"10.1038/s41537-024-00484-y","url":null,"abstract":"<p><p>The etiological and therapeutic complexities of schizophrenia (SCZ) persist, prompting exploration of anti-inflammatory therapy as a potential treatment approach. Methyl salicylate glycosides (MSGs), possessing a structural parent nucleus akin to aspirin, are being investigated for their therapeutic potential in schizophrenia. Utilizing bioinformation mining, network pharmacology, molecular docking and dynamics simulation, the potential value and mechanism of MSGs (including MSTG-A, MSTG-B, and Gaultherin) in the treatment of SCZ, as well as the underlying pathogenesis of the disorder, were examined. 581 differentially expressed genes related to SCZ were identified in patients and healthy individuals, with 349 up-regulated genes and 232 down-regulated genes. 29 core targets were characterized by protein-protein interaction (PPI) network, with the top 10 core targets being BDNF, VEGFA, PVALB, KCNA1, GRIN2A, ATP2B2, KCNA2, APOE, PPARGC1A and SCN1A. The pathogenesis of SCZ primarily involves cAMP signaling, neurodegenerative diseases and other pathways, as well as regulation of ion transmembrane transport. Molecular docking analysis revealed that the three candidates exhibited binding activity with certain targets with binding affinities ranging from -4.7 to -109.2 kcal/mol. MSTG-A, MSTG-B and Gaultherin show promise for use in the treatment of SCZ, potentially through their ability to modulate the expression of multiple genes involved in synaptic structure and function, ion transport, energy metabolism. Molecular dynamics simulation revealed good binding abilities between MSTG-A, MSTG-B, Gaultherin and ATP2B2. It suggests new avenues for further investigation in this area.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"64"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
{"title":"A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia.","authors":"Caroline Dugan, Basilis Zikopoulos, Arash Yazdanbakhsh","doi":"10.1038/s41537-024-00480-2","DOIUrl":"10.1038/s41537-024-00480-2","url":null,"abstract":"<p><p>Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"63"},"PeriodicalIF":3.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1038/s41537-024-00483-z
Alex Hatzimanolis, Stefania Foteli, Lida-Alkisti Xenaki, Mirjana Selakovic, Stefanos Dimitrakopoulos, Ilias Vlachos, Ioannis Kosteletos, Rigas-Filippos Soldatos, Maria Gazouli, Stylianos Chatzipanagiotou, Nikos Stefanis
The tryptophan-metabolizing kynurenine pathway (KP) can be activated by enhanced inflammatory responses and has been implicated in the pathophysiology of schizophrenia. However, there is little evidence for KP dysregulation in the early course of psychotic illness. We aimed to investigate the potential immune-mediated hyperactivity of KP in individuals with first-episode psychosis (FEP) and the relationship with symptom severity and treatment response outcomes. Serum immunoassays were performed to measure peripheral levels of inflammatory cytokines (IL-1β, IL-10, TNF-a), KP rate-limiting enzymes (IDO/TDO), and kynurenic acid (KYNA) metabolite in 104 antipsychotic-naïve patients with FEP and 80 healthy controls (HC). The Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning Scale (GAF) were administered to assess psychopathology and functioning status at admission and following 4-week treatment with antipsychotics. Cytokine and KP components levels were substantially increased in FEP patients compared to HC, before and after antipsychotic treatment. A significant positive correlation between pro-inflammatory IL-1β and KYNA levels was observed among FEP patients, but not in HC. Importantly, within-patient analysis revealed that those with higher baseline KYNA experienced more severe negative symptoms and poorer clinical improvement at follow-up. These findings suggest that KP is upregulated in early psychosis, likely through the induction of IL-1β-dependent pathways, and raised peripheral KYNA might represent a promising indicator of non-response to antipsychotic medication in patients with FEP.
{"title":"Elevated serum kynurenic acid in individuals with first-episode psychosis and insufficient response to antipsychotics.","authors":"Alex Hatzimanolis, Stefania Foteli, Lida-Alkisti Xenaki, Mirjana Selakovic, Stefanos Dimitrakopoulos, Ilias Vlachos, Ioannis Kosteletos, Rigas-Filippos Soldatos, Maria Gazouli, Stylianos Chatzipanagiotou, Nikos Stefanis","doi":"10.1038/s41537-024-00483-z","DOIUrl":"10.1038/s41537-024-00483-z","url":null,"abstract":"<p><p>The tryptophan-metabolizing kynurenine pathway (KP) can be activated by enhanced inflammatory responses and has been implicated in the pathophysiology of schizophrenia. However, there is little evidence for KP dysregulation in the early course of psychotic illness. We aimed to investigate the potential immune-mediated hyperactivity of KP in individuals with first-episode psychosis (FEP) and the relationship with symptom severity and treatment response outcomes. Serum immunoassays were performed to measure peripheral levels of inflammatory cytokines (IL-1β, IL-10, TNF-a), KP rate-limiting enzymes (IDO/TDO), and kynurenic acid (KYNA) metabolite in 104 antipsychotic-naïve patients with FEP and 80 healthy controls (HC). The Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning Scale (GAF) were administered to assess psychopathology and functioning status at admission and following 4-week treatment with antipsychotics. Cytokine and KP components levels were substantially increased in FEP patients compared to HC, before and after antipsychotic treatment. A significant positive correlation between pro-inflammatory IL-1β and KYNA levels was observed among FEP patients, but not in HC. Importantly, within-patient analysis revealed that those with higher baseline KYNA experienced more severe negative symptoms and poorer clinical improvement at follow-up. These findings suggest that KP is upregulated in early psychosis, likely through the induction of IL-1β-dependent pathways, and raised peripheral KYNA might represent a promising indicator of non-response to antipsychotic medication in patients with FEP.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"61"},"PeriodicalIF":3.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1038/s41537-024-00478-w
Julia Gallucci, Maria T Secara, Oliver Chen, Lindsay D Oliver, Brett D M Jones, Tulip Marawi, George Foussias, Aristotle N Voineskos, Colin Hawco
Depressive symptoms in Schizophrenia Spectrum Disorders (SSDs) negatively impact suicidality, prognosis, and quality of life. Despite this, efficacious treatments are limited, largely because the neural mechanisms underlying depressive symptoms in SSDs remain poorly understood. We conducted a systematic review to provide an overview of studies that investigated the neural correlates of depressive symptoms in SSDs using neuroimaging techniques. We searched MEDLINE, PsycINFO, EMBASE, Web of Science, and Cochrane Library databases from inception through June 19, 2023. Specifically, we focused on structural and functional magnetic resonance imaging (MRI), encompassing: (1) T1-weighted imaging measuring brain morphology; (2) diffusion-weighted imaging assessing white matter integrity; or (3) T2*-weighted imaging measures of brain function. Our search yielded 33 articles; 14 structural MRI studies, 18 functional (f)MRI studies, and 1 multimodal fMRI/MRI study. Reviewed studies indicate potential commonalities in the neurobiology of depressive symptoms between SSDs and major depressive disorders, particularly in subcortical and frontal brain regions, though confidence in this interpretation is limited. The review underscores a notable knowledge gap in our understanding of the neurobiology of depression in SSDs, marked by inconsistent approaches and few studies examining imaging metrics of depressive symptoms. Inconsistencies across studies' findings emphasize the necessity for more direct and comprehensive research focusing on the neurobiology of depression in SSDs. Future studies should go beyond "total score" depression metrics and adopt more nuanced assessment approaches considering distinct subdomains. This could reveal unique neurobiological profiles and inform investigations of targeted treatments for depression in SSDs.
{"title":"A systematic review of structural and functional magnetic resonance imaging studies on the neurobiology of depressive symptoms in schizophrenia spectrum disorders.","authors":"Julia Gallucci, Maria T Secara, Oliver Chen, Lindsay D Oliver, Brett D M Jones, Tulip Marawi, George Foussias, Aristotle N Voineskos, Colin Hawco","doi":"10.1038/s41537-024-00478-w","DOIUrl":"10.1038/s41537-024-00478-w","url":null,"abstract":"<p><p>Depressive symptoms in Schizophrenia Spectrum Disorders (SSDs) negatively impact suicidality, prognosis, and quality of life. Despite this, efficacious treatments are limited, largely because the neural mechanisms underlying depressive symptoms in SSDs remain poorly understood. We conducted a systematic review to provide an overview of studies that investigated the neural correlates of depressive symptoms in SSDs using neuroimaging techniques. We searched MEDLINE, PsycINFO, EMBASE, Web of Science, and Cochrane Library databases from inception through June 19, 2023. Specifically, we focused on structural and functional magnetic resonance imaging (MRI), encompassing: (1) T1-weighted imaging measuring brain morphology; (2) diffusion-weighted imaging assessing white matter integrity; or (3) T2*-weighted imaging measures of brain function. Our search yielded 33 articles; 14 structural MRI studies, 18 functional (f)MRI studies, and 1 multimodal fMRI/MRI study. Reviewed studies indicate potential commonalities in the neurobiology of depressive symptoms between SSDs and major depressive disorders, particularly in subcortical and frontal brain regions, though confidence in this interpretation is limited. The review underscores a notable knowledge gap in our understanding of the neurobiology of depression in SSDs, marked by inconsistent approaches and few studies examining imaging metrics of depressive symptoms. Inconsistencies across studies' findings emphasize the necessity for more direct and comprehensive research focusing on the neurobiology of depression in SSDs. Future studies should go beyond \"total score\" depression metrics and adopt more nuanced assessment approaches considering distinct subdomains. This could reveal unique neurobiological profiles and inform investigations of targeted treatments for depression in SSDs.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"59"},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}