Study objectives: Sleep contributes to declarative memory consolidation. Independently, schemas benefit memory. Here we investigated how sleep compared with active wake benefits schema consolidation 12 and 24 hours after initial learning.
Methods: Fifty-three adolescents (age: 15-19 years) randomly assigned into sleep and active wake groups participated in a schema-learning protocol based on transitive inference (i.e. If B > C and C > D then B > D). Participants were tested immediately after learning and following 12-, and 24-hour intervals of wake or sleep for both the adjacent (e.g. B-C, C-D; relational memory) and inference pairs: (e.g.: B-D, B-E, and C-E). Memory performance following the respective 12- and 24-hour intervals were analyzed using a mixed ANOVA with schema (schema, no-schema) as the within-participant factor, and condition (sleep, wake) as the between-participant factor.
Results: Twelve hours after learning, there were significant main effects of condition (sleep, wake) and schema, as well as a significant interaction, whereby schema-related memory was significantly better in the sleep condition compared to wake. Higher sleep spindle density was most consistently associated with greater overnight schema-related memory benefit. After 24 hours, the memory advantage of initial sleep was diminished.
Conclusions: Overnight sleep preferentially benefits schema-related memory consolidation following initial learning compared with active wake, but this advantage may be eroded after a subsequent night of sleep. This is possibly due to delayed consolidation that might occur during subsequent sleep opportunities in the wake group.
Clinical trial information: Name: Investigating Preferred Nap Schedules for Adolescents (NFS5) URL: https://clinicaltrials.gov/ct2/show/NCT04044885. Registration: NCT04044885.