首页 > 最新文献

Smart medicine最新文献

英文 中文
Near-infrared light-responsive Nitric oxide microcarrier for multimodal tumor therapy. 近红外光反应型一氧化氮微载体用于多模式肿瘤治疗
Pub Date : 2023-06-14 eCollection Date: 2023-08-01 DOI: 10.1002/SMMD.20230016
Danna Liang, Gaizhen Kuang, Xiang Chen, Jianhua Lu, Luoran Shang, Weijian Sun

Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior. Besides, the photothermal performance of the microcarriers accelerates the release of DOX. All these contribute to the excellent tumor-killing effect of the microcarriers by combining multiple therapeutic strategies including NO therapy, photothermal therapy, and chemotherapy. Moreover, it was demonstrated that the NIR-responsive NO delivery microcarriers could significantly inhibit tumor growth without apparent side effects in vivo. Therefore, it is believed that the novel NIR-responsive NO microcarriers are promising candidates in clinical tumor therapy applications.

一氧化氮(Nitric oxide, NO)在肿瘤治疗中显示出巨大的潜力,但开发精准可控的NO释放平台仍有待探索。本文提出了一种微流控电喷雾策略,用于制备水凝胶微球,将NO供体(S‐亚硝基谷胱甘肽,GSNO)与黑磷(BP)和化疗药物阿霉素(DOX)作为肿瘤治疗的微载体。基于BP优异的光热性能和GSNO的热敏性,微载体表现出近红外光(NIR)响应的NO释放行为。此外,微载体的光热性能加速了DOX的释放。这些都有助于微载体结合多种治疗策略,包括NO治疗、光热治疗和化疗,具有良好的肿瘤杀伤效果。此外,研究表明,NIR响应的NO递送微载体可以显著抑制肿瘤生长,而没有明显的体内副作用。因此,我们相信新型的NIR反应型NO微载体在临床肿瘤治疗中具有很好的应用前景。
{"title":"Near-infrared light-responsive Nitric oxide microcarrier for multimodal tumor therapy.","authors":"Danna Liang, Gaizhen Kuang, Xiang Chen, Jianhua Lu, Luoran Shang, Weijian Sun","doi":"10.1002/SMMD.20230016","DOIUrl":"10.1002/SMMD.20230016","url":null,"abstract":"<p><p>Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior. Besides, the photothermal performance of the microcarriers accelerates the release of DOX. All these contribute to the excellent tumor-killing effect of the microcarriers by combining multiple therapeutic strategies including NO therapy, photothermal therapy, and chemotherapy. Moreover, it was demonstrated that the NIR-responsive NO delivery microcarriers could significantly inhibit tumor growth without apparent side effects in vivo. Therefore, it is believed that the novel NIR-responsive NO microcarriers are promising candidates in clinical tumor therapy applications.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230016"},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43384719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of N6-methyladenosine epitranscriptome in non-alcoholic fatty liver disease and hepatocellular carcinoma. N6甲基腺苷表转录组在非酒精性脂肪性肝病和肝细胞癌中的作用
Pub Date : 2023-06-02 eCollection Date: 2023-08-01 DOI: 10.1002/SMMD.20230008
Yuyan Chen, Zhengyi Zhu, Lu Zhang, Jinglin Wang, Haozhen Ren

Non-alcoholic fatty liver disease (NAFLD) is a typical chronic liver disease connected to a high risk of developing hepatocellular carcinoma (HCC). The development of NAFLD and HCC has been associated with changes in epigenetics, such as histone modifications and micro RNA (miRNA)-mediated processes. Recently, in the realm of epitranscriptomics, RNA alterations have become important regulators. N6-methyladenosine (m6A) is the most common and crucial alteration for controlling mRNA stability, splicing, and translation. It is particularly important for controlling liver disease progression and hepatic function. This review aims to conclude recent research on the functions of m6A epitranscriptome in the molecular mechanisms behind NAFLD and HCC development, with special attention to the effects of m6A alteration on how HCC develops and its possible roles in the progression of NAFLD to HCC. Additionally, the review discusses the possible effects of m6A alteration on the treatment and diagnostic of NAFLD and HCC. It is crucial to remember that m6A modification is a reversible action controlled via the coordinated functions of the proteins that write and delete, enabling quick adaptability to environmental changes. The review also discusses m6A-binding proteins' function in mRNA alternative splicing, translation, and degradation and their ability to modulate mRNA stability and processing. Understanding RNA modification regulation and its part in the emergence of HCC and NAFLD may provide new avenues for diagnosing and treating these diseases.

非酒精性脂肪性肝病(NAFLD)是一种典型的慢性肝病,与发展为肝细胞癌(HCC)的高风险相关。NAFLD和HCC的发展与表观遗传学的变化有关,如组蛋白修饰和微RNA (miRNA)介导的过程。最近,在表转录组学领域,RNA的改变已经成为重要的调控因子。N6‐甲基腺苷(m6A)是控制mRNA稳定性、剪接和翻译的最常见和最关键的改变。它对控制肝脏疾病的进展和肝功能尤为重要。本文旨在总结m6A表转录组在NAFLD和HCC发生的分子机制中的作用,重点关注m6A改变对HCC发生的影响及其在NAFLD向HCC进展中的可能作用。此外,本文还讨论了m6A改变对NAFLD和HCC治疗和诊断的可能影响。重要的是要记住,m6A修饰是一种可逆的行为,通过蛋白质的写入和删除的协调功能控制,使其能够快速适应环境变化。本文还讨论了m6A结合蛋白在mRNA选择性剪接、翻译和降解中的功能,以及它们调节mRNA稳定性和加工的能力。了解RNA修饰调控及其在HCC和NAFLD发生中的作用可能为这些疾病的诊断和治疗提供新的途径。
{"title":"Roles of N6-methyladenosine epitranscriptome in non-alcoholic fatty liver disease and hepatocellular carcinoma.","authors":"Yuyan Chen, Zhengyi Zhu, Lu Zhang, Jinglin Wang, Haozhen Ren","doi":"10.1002/SMMD.20230008","DOIUrl":"10.1002/SMMD.20230008","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is a typical chronic liver disease connected to a high risk of developing hepatocellular carcinoma (HCC). The development of NAFLD and HCC has been associated with changes in epigenetics, such as histone modifications and micro RNA (miRNA)-mediated processes. Recently, in the realm of epitranscriptomics, RNA alterations have become important regulators. N6-methyladenosine (m6A) is the most common and crucial alteration for controlling mRNA stability, splicing, and translation. It is particularly important for controlling liver disease progression and hepatic function. This review aims to conclude recent research on the functions of m6A epitranscriptome in the molecular mechanisms behind NAFLD and HCC development, with special attention to the effects of m6A alteration on how HCC develops and its possible roles in the progression of NAFLD to HCC. Additionally, the review discusses the possible effects of m6A alteration on the treatment and diagnostic of NAFLD and HCC. It is crucial to remember that m6A modification is a reversible action controlled via the coordinated functions of the proteins that write and delete, enabling quick adaptability to environmental changes. The review also discusses m6A-binding proteins' function in mRNA alternative splicing, translation, and degradation and their ability to modulate mRNA stability and processing. Understanding RNA modification regulation and its part in the emergence of HCC and NAFLD may provide new avenues for diagnosing and treating these diseases.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230008"},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45924842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1. 单次治疗剂量的抗病毒UL29 siRNA群可减轻鼻内感染HSV‐1的小鼠的症状和病毒载量
Pub Date : 2023-05-10 eCollection Date: 2023-05-01 DOI: 10.1002/SMMD.20230009
Tuomas Lasanen, Fanny Frejborg, Liisa M Lund, Marie C Nyman, Julius Orpana, Huda Habib, Salla Alaollitervo, Alesia A Levanova, Minna M Poranen, Veijo Hukkanen, Kiira Kalke

Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene UL29. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.

单纯疱疹病毒1型(HSV-1)是一种引起反复感染的人类病原体。阿昔洛韦耐药菌株存在,并可能导致严重并发症,这些并发症可能无法用目前的疗法治疗。我们已经开发了siRNA群,其靶向基本HSV基因UL29的653碱基对长区域。根据我们之前的结果,抗UL29 siRNA群在体外有效抑制循环HSV菌株和无环鸟苷抗性HSV菌株的复制,同时显示出良好的安全性。我们在小鼠中研究了单一鼻内治疗剂量的siRNA群,这些小鼠首先鼻内接种HSV-1,4小时后给予治疗。我们使用了一种表达萤光素酶的HSV-1菌株,该菌株能够通过体内成像对感染进行日常随访。我们的研究结果表明,单剂量的UL29靶向siRNA群可以抑制HSV-1在口腔面部组织中的复制,这反映在离体HSV滴度和HSV DNA拷贝数以及荧光素酶衍生信号的减少中。此外,该治疗有保护小鼠免受严重临床症状影响并延缓症状发作的趋势。这些结果支持抗病毒siRNA群作为HSV-1感染的新治疗方法的发展。
{"title":"Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1.","authors":"Tuomas Lasanen, Fanny Frejborg, Liisa M Lund, Marie C Nyman, Julius Orpana, Huda Habib, Salla Alaollitervo, Alesia A Levanova, Minna M Poranen, Veijo Hukkanen, Kiira Kalke","doi":"10.1002/SMMD.20230009","DOIUrl":"10.1002/SMMD.20230009","url":null,"abstract":"<p><p>Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene <i>UL29</i>. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230009"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41580158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound‐trigged micro/nanorobots for biomedical applications (2/2023) 用于生物医学应用的超声触发微/纳米机器人(2/2023)
Pub Date : 2023-05-01 DOI: 10.1002/smmd.66
Danqing Huang, Lijun Cai, Ning Li, Yuanjin Zhao
{"title":"Ultrasound‐trigged micro/nanorobots for biomedical applications (2/2023)","authors":"Danqing Huang, Lijun Cai, Ning Li, Yuanjin Zhao","doi":"10.1002/smmd.66","DOIUrl":"https://doi.org/10.1002/smmd.66","url":null,"abstract":"","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49136963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV‐1 (2/2023) 单次治疗剂量的抗病毒UL29 siRNA群可减轻鼻内感染HSV-1的小鼠的症状和病毒载量(2/2023)
Pub Date : 2023-05-01 DOI: 10.1002/smmd.65
Tuomas Lasanen, Fanny Frejborg, Liisa M. Lund, Marie C. Nyman, Julius Orpana, Huda Habib, Salla Alaollitervo, Alesia A. Levanova, M. Poranen, V. Hukkanen, Kiira Kalke
{"title":"Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV‐1 (2/2023)","authors":"Tuomas Lasanen, Fanny Frejborg, Liisa M. Lund, Marie C. Nyman, Julius Orpana, Huda Habib, Salla Alaollitervo, Alesia A. Levanova, M. Poranen, V. Hukkanen, Kiira Kalke","doi":"10.1002/smmd.65","DOIUrl":"https://doi.org/10.1002/smmd.65","url":null,"abstract":"","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45780591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
Pub Date : 2023-05-01 DOI: 10.1111/raju.12348
No abstract is available for this article.
这篇文章没有摘要。
{"title":"Issue Information","authors":"","doi":"10.1111/raju.12348","DOIUrl":"https://doi.org/10.1111/raju.12348","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41682422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli‐responsive silk fibroin for on‐demand drug delivery (2/2023) 刺激反应丝素蛋白用于按需给药(2/2023)
Pub Date : 2023-05-01 DOI: 10.1002/smmd.77
Xiang Lin, Lijun Cai, Xinyue Cao, Yuanjin Zhao
The silk fibroin protein derived from silkworm can be used as a responsive delivery material for various biomedical applications. The background of the image represents a side view of skin, symbolizing biomedical applications. Various specific examples represented by bubbles are derived from the background, including two typical examples shown in the image: one is an anti-tumor treatment method achieved through infrared-responsive drug delivery, and the other is a skin patch for heat-responsive drug delivery.
从蚕丝中提取的丝素蛋白可作为一种反应性递送材料用于各种生物医学应用。图像的背景是皮肤的侧视图,象征着生物医学应用。从背景中衍生出以气泡为代表的各种具体实例,包括如图所示的两个典型实例:一个是通过红外响应性给药实现的抗肿瘤治疗方法,另一个是热响应性给药的皮肤贴片。
{"title":"Stimuli‐responsive silk fibroin for on‐demand drug delivery (2/2023)","authors":"Xiang Lin, Lijun Cai, Xinyue Cao, Yuanjin Zhao","doi":"10.1002/smmd.77","DOIUrl":"https://doi.org/10.1002/smmd.77","url":null,"abstract":"The silk fibroin protein derived from silkworm can be used as a responsive delivery material for various biomedical applications. The background of the image represents a side view of skin, symbolizing biomedical applications. Various specific examples represented by bubbles are derived from the background, including two typical examples shown in the image: one is an anti-tumor treatment method achieved through infrared-responsive drug delivery, and the other is a skin patch for heat-responsive drug delivery.","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":"120 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135703468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Engineered photoresponsive biohybrids for tumor therapy (2/2023) 用于肿瘤治疗的工程光反应生物杂合体(2/2023)
Pub Date : 2023-05-01 DOI: 10.1002/smmd.64
Xiaocheng Wang, Yazhi Sun, D. Wangpraseurt
{"title":"Engineered photoresponsive biohybrids for tumor therapy (2/2023)","authors":"Xiaocheng Wang, Yazhi Sun, D. Wangpraseurt","doi":"10.1002/smmd.64","DOIUrl":"https://doi.org/10.1002/smmd.64","url":null,"abstract":"","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47680545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk‐based conductive materials for smart biointerfaces (2/2023) 用于智能生物界面的丝基导电材料(2/2023)
Pub Date : 2023-05-01 DOI: 10.1002/smmd.67
Fanfan Fu, D. Liu, Yilun Wu
{"title":"Silk‐based conductive materials for smart biointerfaces (2/2023)","authors":"Fanfan Fu, D. Liu, Yilun Wu","doi":"10.1002/smmd.67","DOIUrl":"https://doi.org/10.1002/smmd.67","url":null,"abstract":"","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46660632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezoelectric biomaterials for neural tissue engineering. 神经组织工程用压电生物材料
Pub Date : 2023-04-26 eCollection Date: 2023-05-01 DOI: 10.1002/SMMD.20230002
Dongyu Xu, Hui Zhang, Yu Wang, Yuan Zhang, Fanglei Ye, Ling Lu, Renjie Chai

Nerve injury caused by trauma or iatrogenic trauma can lead to loss of sensory and motor function, resulting in paralysis of patients. Inspired by endogenous bioelectricity and extracellular matrix, various external physical and chemical stimuli have been introduced to treat nerve injury. Benefiting from the self-power feature and great biocompatibility, piezoelectric biomaterials have attracted widespread attention in biomedical applications, especially in neural tissue engineering. Here, we provide an overview of the development of piezoelectric biomaterials for neural tissue engineering. First, several types of piezoelectric biomaterials are introduced, including inorganic piezoelectric nanomaterials, organic piezoelectric polymers, and their derivates. Then, we focus on the in vitro and in vivo external energy-driven piezoelectric effects involving ultrasound, mechanical movement, and other external field-driven piezoelectric effects. Neuroengineering applications of the piezoelectric biomaterials as in vivo grafts for the treatment of central nerve injury and peripheral nerve injury are also discussed and highlighted. Finally, the current challenges and future development of piezoelectric biomaterials for promoting nerve regeneration and treating neurological diseases are presented.

外伤或医源性外伤引起的神经损伤可导致感觉和运动功能丧失,导致患者瘫痪。在内源性生物电和细胞外基质的启发下,各种外部物理和化学刺激被引入治疗神经损伤。压电生物材料由于具有自功率特性和良好的生物相容性,在生物医学尤其是神经组织工程方面的应用受到了广泛的关注。本文就神经组织工程中压电生物材料的研究进展作一综述。首先,介绍了几种类型的压电生物材料,包括无机压电纳米材料、有机压电聚合物及其衍生物。然后,我们重点研究了体外和体内外部能量驱动的压电效应,包括超声、机械运动和其他外场驱动的压电效应。讨论并强调了压电生物材料作为活体移植物在中枢神经损伤和周围神经损伤治疗中的神经工程应用。最后,介绍了压电生物材料在促进神经再生和治疗神经系统疾病方面面临的挑战和未来的发展。
{"title":"Piezoelectric biomaterials for neural tissue engineering.","authors":"Dongyu Xu, Hui Zhang, Yu Wang, Yuan Zhang, Fanglei Ye, Ling Lu, Renjie Chai","doi":"10.1002/SMMD.20230002","DOIUrl":"10.1002/SMMD.20230002","url":null,"abstract":"<p><p>Nerve injury caused by trauma or iatrogenic trauma can lead to loss of sensory and motor function, resulting in paralysis of patients. Inspired by endogenous bioelectricity and extracellular matrix, various external physical and chemical stimuli have been introduced to treat nerve injury. Benefiting from the self-power feature and great biocompatibility, piezoelectric biomaterials have attracted widespread attention in biomedical applications, especially in neural tissue engineering. Here, we provide an overview of the development of piezoelectric biomaterials for neural tissue engineering. First, several types of piezoelectric biomaterials are introduced, including inorganic piezoelectric nanomaterials, organic piezoelectric polymers, and their derivates. Then, we focus on the in vitro and in vivo external energy-driven piezoelectric effects involving ultrasound, mechanical movement, and other external field-driven piezoelectric effects. Neuroengineering applications of the piezoelectric biomaterials as in vivo grafts for the treatment of central nerve injury and peripheral nerve injury are also discussed and highlighted. Finally, the current challenges and future development of piezoelectric biomaterials for promoting nerve regeneration and treating neurological diseases are presented.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230002"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43054384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Smart medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1