Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Interactions between inorganic materials and living systems can be strongly influenced by the dimensional property of the materials, which can in turn impact biological activities. Although the role of biomaterials at the molecular and cellular scales has been studied, research investigating the effects of biomaterials across multiple dimensional scales is relatively scarce. Herein, comparing the effectiveness of two-dimensional graphene oxide nanosheets (GOs) and three-dimensional graphene oxide quantum dots (GOQDs) (though not zero-dimensional because of their significant surface area) in cancer therapies, we have discovered that GOs, with the same mass concentration, exhibit stronger anti-cancer and anti-tumor metastasis properties than GOQDs. Our research, which employed liquid-phase atomic force microscopy, revealed that lower-dimensional GOs create a more extensive nano-bio interface that impedes actin protein polymerization into the cytoskeleton, leading to the prevention of tumor metastasis. These results help to better understand the underlying mechanisms and offer a dimensional perspective on the potential of optimizing the properties of graphene-based materials for clinical applications, e.g., cancer therapy.
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.