The carboxylic multi-walled carbon nanotube-loaded nickel (Ni/c-MWCNT) catalyst prepared by the excess impregnation method was used for the hydrogenation of oleoresin-based turpentine (OBT) into high energy density fuel. Benefiting from small nickel nanoparticle sizes (about 10 nm) and the carrier’s high surface area, a hydrogenation rate of 99.1% was achieved at 145 °C and 3 MPa, superior to a commercial 5 wt.% Pd/C. Hydrogenated oleoresin-based turpentine (HOBT) satisfied the density, flash point, and freezing point outlined by the American Society of Testing and Materials standard. Hydrogenation improved the oxidative stability, smoke point, and calorific value of OBT while changing its color to water white. The impact of blend ratio on the blended biomass fuel performance was evaluated by measuring the smoke point, density, kinematic viscosity, calorific value, freezing point, and flash point of biofuels blended with HOBT and exo-tetrahydrodicyclopentadiene (JP-10). When HOBT was blended up to 20% (v/v) with JP-10, the performance of blended biomass fuel was comparable to that of JP-10 and even superior at freezing temperatures.