Pub Date : 2023-04-01Epub Date: 2023-03-03DOI: 10.1002/viw.20220056
Shima Masoudi Asil, Erick Damian Guerrero, Georgina Bugarini, Joshua Cayme, Nydia De Avila, Jaime Garcia, Adrian Hernandez, Julia Mecado, Yazeneth Madero, Frida Moncayo, Rosario Olmos, David Perches, Jacob Roman, Diana Salcido-Padilla, Efrain Sanchez, Christopher Trejo, Paulina Trevino, Md Nurunnabi, Mahesh Narayan
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
{"title":"Theranostic applications of multifunctional carbon nanomaterials.","authors":"Shima Masoudi Asil, Erick Damian Guerrero, Georgina Bugarini, Joshua Cayme, Nydia De Avila, Jaime Garcia, Adrian Hernandez, Julia Mecado, Yazeneth Madero, Frida Moncayo, Rosario Olmos, David Perches, Jacob Roman, Diana Salcido-Padilla, Efrain Sanchez, Christopher Trejo, Paulina Trevino, Md Nurunnabi, Mahesh Narayan","doi":"10.1002/viw.20220056","DOIUrl":"10.1002/viw.20220056","url":null,"abstract":"<p><p>Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-01-11DOI: 10.1002/viw.20220053
Sai Krishna Katla, Wan Zhou, Hamed Tavakoli, Elvia Lilia Padilla Méndez, Xiujun Li
A low-cost microfluidic platform integrated with a flexible heater was developed for in situ temperature-dependent spectroscopic measurement at the point of care. After verifying the system by comparing on-chip spectroscopic measurement of methylene blue with the conventional spectroscopy, we demonstrated its applications in temperature-dependent absorption spectroscopy of a model biomolecule, curcumin. The system is portable, battery-powered and requires ultra-low volumes of analytes, which is highly suitable for point-of-care characterization.
{"title":"Portable in situ temperature-dependent spectroscopy on a low-cost microfluidic platform integrated with a battery-powered thermofoil heater.","authors":"Sai Krishna Katla, Wan Zhou, Hamed Tavakoli, Elvia Lilia Padilla Méndez, Xiujun Li","doi":"10.1002/viw.20220053","DOIUrl":"10.1002/viw.20220053","url":null,"abstract":"<p><p>A low-cost microfluidic platform integrated with a flexible heater was developed for in situ temperature-dependent spectroscopic measurement at the point of care. After verifying the system by comparing on-chip spectroscopic measurement of methylene blue with the conventional spectroscopy, we demonstrated its applications in temperature-dependent absorption spectroscopy of a model biomolecule, curcumin. The system is portable, battery-powered and requires ultra-low volumes of analytes, which is highly suitable for point-of-care characterization.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2. Furthermore, many of those who are infected remain asymptomatic for several days, leading to the increased possibility of unintended transmission of the virus. Thus, developing rigorous and universal testing technologies to continuously detect COVID-19 for entire populations remains a critical challenge that needs to be overcome. Wearable respiratory sensors can monitor biomechanical signals such as the abnormities in respiratory rate and cough frequency caused by COVID-19, as well as biochemical signals such as viral biomarkers from exhaled breaths. The point-of-care system enabled by advanced respiratory sensors is expected to promote better control of the pandemic by providing an accessible, continuous, widespread, noninvasive, and reliable solution for COVID-19 diagnosis, monitoring, and management.
{"title":"Wearable respiratory sensors for COVID-19 monitoring.","authors":"Guorui Chen, Sophia Shen, Trinny Tat, Xun Zhao, Yihao Zhou, Yunsheng Fang, Jun Chen","doi":"10.1002/VIW.20220024","DOIUrl":"10.1002/VIW.20220024","url":null,"abstract":"<p><p>Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2. Furthermore, many of those who are infected remain asymptomatic for several days, leading to the increased possibility of unintended transmission of the virus. Thus, developing rigorous and universal testing technologies to continuously detect COVID-19 for entire populations remains a critical challenge that needs to be overcome. Wearable respiratory sensors can monitor biomechanical signals such as the abnormities in respiratory rate and cough frequency caused by COVID-19, as well as biochemical signals such as viral biomarkers from exhaled breaths. The point-of-care system enabled by advanced respiratory sensors is expected to promote better control of the pandemic by providing an accessible, continuous, widespread, noninvasive, and reliable solution for COVID-19 diagnosis, monitoring, and management.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 5","pages":"20220024"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10584698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudheesh K Shukla, Santanu Patra, Trupti R Das, Dharmesh Kumar, Anshuman Mishra, Ashutosh Tiwari
The pandemic respiratory disease COVID-19 has spread over the globe within a small span of time. Generally, there are two important points are being highlighted and considered towards the successful diagnosis and treatment process. The first point includes the reduction of the rate of infections and the next one is the decrease of the death rate. The major threat to public health globally progresses due to the absence of effective medication and widely accepted immunization for the COVID-19. Whereas, understanding of host susceptibility, clinical features, adaptation of COVID-19 to new environments, asymptomatic infection is difficult and challenging. Therefore, a rapid and an exact determination of pathogenic viruses play an important role in deciding treatments and preventing pandemic to save the people's lives. It is urgent to fix a standardized diagnostic approach for detecting the COVID-19. Here, this systematic review describes all the current approaches using for screening and diagnosing the COVID-19 infectious patient. The renaissance in pathogen due to host adaptability and new region, facing creates several obstacles in diagnosis, drug, and vaccine development process. The study shows that adaptation of accurate and affordable diagnostic tools based on candidate biomarkers using sensor and digital medicine technology can deliver effective diagnosis services at the mass level. Better prospects of public health management rely on diagnosis with high specificity and cost-effective manner along with multidisciplinary research, specific policy, and technology adaptation. The proposed healthcare model with defined road map represents effective prognosis system.
{"title":"Progress in COVID research and developments during pandemic.","authors":"Sudheesh K Shukla, Santanu Patra, Trupti R Das, Dharmesh Kumar, Anshuman Mishra, Ashutosh Tiwari","doi":"10.1002/VIW.20210020","DOIUrl":"10.1002/VIW.20210020","url":null,"abstract":"<p><p>The pandemic respiratory disease COVID-19 has spread over the globe within a small span of time. Generally, there are two important points are being highlighted and considered towards the successful diagnosis and treatment process. The first point includes the reduction of the rate of infections and the next one is the decrease of the death rate. The major threat to public health globally progresses due to the absence of effective medication and widely accepted immunization for the COVID-19. Whereas, understanding of host susceptibility, clinical features, adaptation of COVID-19 to new environments, asymptomatic infection is difficult and challenging. Therefore, a rapid and an exact determination of pathogenic viruses play an important role in deciding treatments and preventing pandemic to save the people's lives. It is urgent to fix a standardized diagnostic approach for detecting the COVID-19. Here, this systematic review describes all the current approaches using for screening and diagnosing the COVID-19 infectious patient. The renaissance in pathogen due to host adaptability and new region, facing creates several obstacles in diagnosis, drug, and vaccine development process. The study shows that adaptation of accurate and affordable diagnostic tools based on candidate biomarkers using sensor and digital medicine technology can deliver effective diagnosis services at the mass level. Better prospects of public health management rely on diagnosis with high specificity and cost-effective manner along with multidisciplinary research, specific policy, and technology adaptation. The proposed healthcare model with defined road map represents effective prognosis system.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":" ","pages":"20210020"},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9350081/pdf/VIW2-9999-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01Epub Date: 2022-03-15DOI: 10.1002/VIW.20200181
Qing Bao, Tao Yang, Mingying Yang, Chuanbin Mao
Since the outbreak of COVID-19, the number of confirmed cases and deaths has increased globally at a dramatic speed. In view of the serious health threat to humans, this review discusses the state-of-the-art studies about fighting this disease. It summarizes the current strategies and recent advances in detecting, preventing, and treating COVID-19 and interprets the underlying mechanisms in detail. Detection of COVID-19 can be successfully achieved by multiple techniques such as polymerase chain reaction, computed tomography imaging, and nano-biosensing. Inactivated virus vaccine, nucleic acid vaccine, and different nanoparticles have been employed to effectively prevent COVID-19. A variety of agents such as antiviral agents, neutralizing antibodies, and nanotherapeutics have been developed to treat COVID-19 with exciting efficacy. Although nanobiotechnology has shown great potential in the diagnosis, prevention, and treatment of COVID-19, efforts should be made to explore new biocompatible nano-biomaterials to advance this field to clinical applications. Hence, nanobiotechnology paves a new way to detect, prevent, and treat COVID-19 effectively.
{"title":"Detection, prevention and treatment of COVID-19 and opportunities for nanobiotechnology.","authors":"Qing Bao, Tao Yang, Mingying Yang, Chuanbin Mao","doi":"10.1002/VIW.20200181","DOIUrl":"10.1002/VIW.20200181","url":null,"abstract":"<p><p>Since the outbreak of COVID-19, the number of confirmed cases and deaths has increased globally at a dramatic speed. In view of the serious health threat to humans, this review discusses the state-of-the-art studies about fighting this disease. It summarizes the current strategies and recent advances in detecting, preventing, and treating COVID-19 and interprets the underlying mechanisms in detail. Detection of COVID-19 can be successfully achieved by multiple techniques such as polymerase chain reaction, computed tomography imaging, and nano-biosensing. Inactivated virus vaccine, nucleic acid vaccine, and different nanoparticles have been employed to effectively prevent COVID-19. A variety of agents such as antiviral agents, neutralizing antibodies, and nanotherapeutics have been developed to treat COVID-19 with exciting efficacy. Although nanobiotechnology has shown great potential in the diagnosis, prevention, and treatment of COVID-19, efforts should be made to explore new biocompatible nano-biomaterials to advance this field to clinical applications. Hence, nanobiotechnology paves a new way to detect, prevent, and treat COVID-19 effectively.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 4","pages":"20200181"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10265510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO3-NPs) nanoantidote to neutralize excess hydrogen ions (H+), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO3-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO3-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.
{"title":"Nanoantidote for repression of acidosis pH promoting COVID-19 infection.","authors":"Qidong Liu, Huitong Ruan, Zhihao Sheng, Xiaoru Sun, Siguang Li, Wenguo Cui, Cheng Li","doi":"10.1002/VIW.20220004","DOIUrl":"10.1002/VIW.20220004","url":null,"abstract":"<p><p>Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO<sub>3</sub>-NPs) nanoantidote to neutralize excess hydrogen ions (H<sup>+</sup>), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO<sub>3</sub>-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO<sub>3</sub>-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":" ","pages":"20220004"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40609149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01Epub Date: 2021-08-27DOI: 10.1002/VIW.20200110
Hailey Monaco, Shinya Yokomizo, Hak Soo Choi, Satoshi Kashiwagi
Among modalities of cancer immunotherapy, near-infrared photoimmunotherapy (NIR-PIT) has reached significant preclinical and clinical stages and quickly evolved over the last 5 years. NIR-PIT uses deep-penetrable NIR light to induce physicochemical changes in the antibody-photosensitizer conjugate (APC), leading to resultant necrosis and immunogenic cell death (ICD) of the cancer cells. Alternatively, other types of photomedicine use photosensitizers to convert absorbed light energy either into reactive oxygen species for photodynamic therapy (PDT) or into heat for photothermal therapy (PTT). ICD is a unique and relevant outcome of NIR-PIT because it induces long-lasting antitumor host immunity, which overcomes the immunosuppressive network of cancer. Due to its high specificity and durable antitumor effects, NIR-PIT is now considered a promising cancer therapy, and optimized NIR-PIT is readily expanding its applicability to many different types of cancer. Along with the traditional method of NIR-PIT, new avenues in its realm of treatment are currently being explored, such as the targeting of other immunosuppressive elements, delivery of NIR light through a catheter, real-time imaging for tumor detection, and the use of tumor-seeking small molecules for improved efficacy and safety. In addition, its effect on hyperpermeability has opened a door for a wide array of combination therapies with other modalities. This review summarizes the recent findings in clinical and preclinical studies of NIR-induced photomedicine and its future significance in the field of cancer research.
{"title":"Quickly evolving near-infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment.","authors":"Hailey Monaco, Shinya Yokomizo, Hak Soo Choi, Satoshi Kashiwagi","doi":"10.1002/VIW.20200110","DOIUrl":"10.1002/VIW.20200110","url":null,"abstract":"<p><p>Among modalities of cancer immunotherapy, near-infrared photoimmunotherapy (NIR-PIT) has reached significant preclinical and clinical stages and quickly evolved over the last 5 years. NIR-PIT uses deep-penetrable NIR light to induce physicochemical changes in the antibody-photosensitizer conjugate (APC), leading to resultant necrosis and immunogenic cell death (ICD) of the cancer cells. Alternatively, other types of photomedicine use photosensitizers to convert absorbed light energy either into reactive oxygen species for photodynamic therapy (PDT) or into heat for photothermal therapy (PTT). ICD is a unique and relevant outcome of NIR-PIT because it induces long-lasting antitumor host immunity, which overcomes the immunosuppressive network of cancer. Due to its high specificity and durable antitumor effects, NIR-PIT is now considered a promising cancer therapy, and optimized NIR-PIT is readily expanding its applicability to many different types of cancer. Along with the traditional method of NIR-PIT, new avenues in its realm of treatment are currently being explored, such as the targeting of other immunosuppressive elements, delivery of NIR light through a catheter, real-time imaging for tumor detection, and the use of tumor-seeking small molecules for improved efficacy and safety. In addition, its effect on hyperpermeability has opened a door for a wide array of combination therapies with other modalities. This review summarizes the recent findings in clinical and preclinical studies of NIR-induced photomedicine and its future significance in the field of cancer research.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01Epub Date: 2021-07-12DOI: 10.1002/VIW.20200178
Zetong Ma, MengMei Zhu, Shuyi Zhang, Kewen Qian, Chuqi Wang, Wenyan Fu, Changhai Lei, Shi Hu
The world is experiencing one of the most difficult moments in history with COVID-19, which has rapidly developed into a worldwide pandemic with a significant health and economic burden. Efforts to fight the virus, including prevention and treatment, have never stopped. However, no specific drugs or treatments have yet been found. Antibody drugs have never been absent in epidemics such as SARS, MERS, HIV, Ebola, and so on in the past two decades. At present, while research on the SARS-CoV-2 vaccine is in full swing, antibody drugs are also receiving widespread attention. Several antibody drugs have successfully entered clinical trials and achieved impressive therapeutic effects. Here, we summarize the therapeutic antibodies against SARS-CoV-2, as well as the research using ACE2 recombinant protein or ACE2-Ig fusion protein.
{"title":"Therapeutic antibodies under development for SARS-CoV-2.","authors":"Zetong Ma, MengMei Zhu, Shuyi Zhang, Kewen Qian, Chuqi Wang, Wenyan Fu, Changhai Lei, Shi Hu","doi":"10.1002/VIW.20200178","DOIUrl":"10.1002/VIW.20200178","url":null,"abstract":"<p><p>The world is experiencing one of the most difficult moments in history with COVID-19, which has rapidly developed into a worldwide pandemic with a significant health and economic burden. Efforts to fight the virus, including prevention and treatment, have never stopped. However, no specific drugs or treatments have yet been found. Antibody drugs have never been absent in epidemics such as SARS, MERS, HIV, Ebola, and so on in the past two decades. At present, while research on the SARS-CoV-2 vaccine is in full swing, antibody drugs are also receiving widespread attention. Several antibody drugs have successfully entered clinical trials and achieved impressive therapeutic effects. Here, we summarize the therapeutic antibodies against SARS-CoV-2, as well as the research using ACE2 recombinant protein or ACE2-Ig fusion protein.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 2","pages":"20200178"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39614725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01Epub Date: 2021-06-18DOI: 10.1002/VIW.20200164
Yoav Y Broza, Hossam Haick
The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to challenges never before seen in fast diagnostics, monitoring, and prevention of the outbreak. As a result, different approaches for fast diagnostic and screening are made and yet to find the ideal way. The current mini-review provides and examines evidence-based innovative and rapid chemical sensing and related biodiagnostic solutions to deal with infectious disease and related pandemic emergencies, which could offer the best possible care for the general population and improve the approachability of the pandemic information, insights, and surrounding contexts. The review discusses how integration of sensing devices with big data analysis, artificial Intelligence or machine learning, and clinical decision support system, could improve the accuracy of the recorded patterns of the disease conditions within an ocean of information. At the end, the mini-review provides a prospective on the requirements to improve our coping of the pandemic-related biodiagnostics as well as future opportunities.
{"title":"Biodiagnostics in an era of global pandemics-From biosensing materials to data management.","authors":"Yoav Y Broza, Hossam Haick","doi":"10.1002/VIW.20200164","DOIUrl":"10.1002/VIW.20200164","url":null,"abstract":"<p><p>The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to challenges never before seen in fast diagnostics, monitoring, and prevention of the outbreak. As a result, different approaches for fast diagnostic and screening are made and yet to find the ideal way. The current mini-review provides and examines evidence-based innovative and rapid chemical sensing and related biodiagnostic solutions to deal with infectious disease and related pandemic emergencies, which could offer the best possible care for the general population and improve the approachability of the pandemic information, insights, and surrounding contexts. The review discusses how integration of sensing devices with big data analysis, artificial Intelligence or machine learning, and clinical decision support system, could improve the accuracy of the recorded patterns of the disease conditions within an ocean of information. At the end, the mini-review provides a prospective on the requirements to improve our coping of the pandemic-related biodiagnostics as well as future opportunities.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 2","pages":"20200164"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39614305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-01-31DOI: 10.1002/VIW.20200118
Eddie Adams, Gregory D Sepich-Poore, Sandrine Miller-Montgomery, Rob Knight
The pursuit of highly sensitive and specific cancer diagnostics based on cell-free (cf) nucleic acids isolated from minimally invasive liquid biopsies has been an area of intense research and commercial effort for at least two decades. Most of these tests detect cancer-specific mutations or epigenetic modifications on circulating DNA derived from tumor cells (ctDNA). Although recent FDA approvals of both single and multi-analyte liquid biopsy companion diagnostic assays are proof of the tremendous progress made in this domain, using ctDNA for the diagnosis of early-stage (stage I/II) cancers remains challenging due to several factors, such as low mutational allele frequency in circulation, overlapping profiles in genomic alterations among diverse cancers, and clonal hematopoiesis. This review discusses these analytical challenges, interim solutions, and the opportunity to complement ctDNA diagnostics with microbiome-aware analyses that may mitigate several existing ctDNA assay limitations.
{"title":"Using All Our Genomes: Blood-based Liquid Biopsies for the Early Detection of Cancer.","authors":"Eddie Adams, Gregory D Sepich-Poore, Sandrine Miller-Montgomery, Rob Knight","doi":"10.1002/VIW.20200118","DOIUrl":"10.1002/VIW.20200118","url":null,"abstract":"<p><p>The pursuit of highly sensitive and specific cancer diagnostics based on cell-free (cf) nucleic acids isolated from minimally invasive liquid biopsies has been an area of intense research and commercial effort for at least two decades. Most of these tests detect cancer-specific mutations or epigenetic modifications on circulating DNA derived from tumor cells (ctDNA). Although recent FDA approvals of both single and multi-analyte liquid biopsy companion diagnostic assays are proof of the tremendous progress made in this domain, using ctDNA for the diagnosis of early-stage (stage I/II) cancers remains challenging due to several factors, such as low mutational allele frequency in circulation, overlapping profiles in genomic alterations among diverse cancers, and clonal hematopoiesis. This review discusses these analytical challenges, interim solutions, and the opportunity to complement ctDNA diagnostics with microbiome-aware analyses that may mitigate several existing ctDNA assay limitations.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307139/pdf/nihms-1750953.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10580063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}