Sandeep K Gupta, Natalie Rutherford, Xenia Dolja-Gore, Tahne Watson, Balakrishnan R Nair
While reduced global brain metabolism is known in aging, Alzheimer's disease (AD), small vessel disease (SVD) and delirium, explanation of regional brain metabolic (rBM) changes is a challenge. We hypothesized that this may be explained by "triage phenomenon", to preserve metabolic supply to vital brain areas. We studied changes in rBM in 69 patients with at least 5% decline in global brain metabolism during active lymphoma. There was significant decline in the rBM of the inferior parietal, precuneus, superior parietal, lateral occipital, primary visual cortices (P<0.001) and in the right lateral prefrontal cortex (P=0.01). Some areas showed no change; multiple areas had significantly increased rBM (e.g. medial prefrontal, anterior cingulate, pons, cerebellum and mesial temporal cortices; P<0.001). We conclude the existence of a physiological triage phenomenon and argue a new hypothetical model to explain the shared events in the pathophysiology of aging, AD, SVD and delirium.
{"title":"Regional changes with global brain hypometabolism indicates a physiological triage phenomenon and can explain shared pathophysiological events in Alzheimer's & small vessel diseases and delirium.","authors":"Sandeep K Gupta, Natalie Rutherford, Xenia Dolja-Gore, Tahne Watson, Balakrishnan R Nair","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>While reduced global brain metabolism is known in aging, Alzheimer's disease (AD), small vessel disease (SVD) and delirium, explanation of regional brain metabolic (rBM) changes is a challenge. We hypothesized that this may be explained by \"triage phenomenon\", to preserve metabolic supply to vital brain areas. We studied changes in rBM in 69 patients with at least 5% decline in global brain metabolism during active lymphoma. There was significant decline in the rBM of the inferior parietal, precuneus, superior parietal, lateral occipital, primary visual cortices (P<0.001) and in the right lateral prefrontal cortex (P=0.01). Some areas showed no change; multiple areas had significantly increased rBM (e.g. medial prefrontal, anterior cingulate, pons, cerebellum and mesial temporal cortices; P<0.001). We conclude the existence of a physiological triage phenomenon and argue a new hypothetical model to explain the shared events in the pathophysiology of aging, AD, SVD and delirium.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"492-506"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727878/pdf/ajnmmi0011-0492.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macromolecular crystallography is commonly used to determine the structure of biological macromolecules. Currently the beamlines at synchrotron radiation facilities play an important role in macromolecular crystallography, and have produced an enormous number of molecular structures to help solve scientific questions and support applications. Structure information makes significant contributions to the virus-related research as well. However, it is mandatory to be protected the operators under a compatible biosafety infrastructure when a pathological agent is set up in a beamline. Here a level-2 biosafety protection for a macromolecular crystallography beamline at Shanghai Synchrotron Radiation Facility (SSRF) is introduced. To fulfill the biosafety in a radioactive environment, a dedicated design is implemented. Since the beamline will be opened to the external users from nationwide research units, the management process and experimental method are also drawn up.
{"title":"Implementation of level-2 biosafety for a macromolecular crystallography beamline at SSRF.","authors":"Huating Kong, Minjun Li, Qin Xu, Huan Zhou, Feng Yu, Qisheng Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Macromolecular crystallography is commonly used to determine the structure of biological macromolecules. Currently the beamlines at synchrotron radiation facilities play an important role in macromolecular crystallography, and have produced an enormous number of molecular structures to help solve scientific questions and support applications. Structure information makes significant contributions to the virus-related research as well. However, it is mandatory to be protected the operators under a compatible biosafety infrastructure when a pathological agent is set up in a beamline. Here a level-2 biosafety protection for a macromolecular crystallography beamline at Shanghai Synchrotron Radiation Facility (SSRF) is introduced. To fulfill the biosafety in a radioactive environment, a dedicated design is implemented. Since the beamline will be opened to the external users from nationwide research units, the management process and experimental method are also drawn up.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"529-536"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727877/pdf/ajnmmi0011-0529.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lutetium-177 [T½ = 6.76 d; Eβ (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in 177Lu-radiopharmacy with a focus on 177Lu produced via direct 176Lu (n, γ) 177Lu nuclear reaction in medium flux research reactors. The specific nuances of 177Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable in vivo stability. Traditional bifunctional chelators (BFCs) that are used for 177Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various 177Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent 177Lu-based radiopharmaceuticals that have been prepared using medium specific activity 177Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity 177Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.
{"title":"A review of advances in the last decade on targeted cancer therapy using <sup>177</sup>Lu: focusing on <sup>177</sup>Lu produced by the direct neutron activation route.","authors":"Rubel Chakravarty, Sudipta Chakraborty","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Lutetium-177 [T½ = 6.76 d; E<sub>β</sub> (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in <sup>177</sup>Lu-radiopharmacy with a focus on <sup>177</sup>Lu produced via direct <sup>176</sup>Lu (n, γ) <sup>177</sup>Lu nuclear reaction in medium flux research reactors. The specific nuances of <sup>177</sup>Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable <i>in vivo</i> stability. Traditional bifunctional chelators (BFCs) that are used for <sup>177</sup>Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various <sup>177</sup>Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent <sup>177</sup>Lu-based radiopharmaceuticals that have been prepared using medium specific activity <sup>177</sup>Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity <sup>177</sup>Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"443-475"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727880/pdf/ajnmmi0011-0443.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study determined the optimal timing of scanning for measurement of cerebral blood flow (CBF) after acetazolamide (ACZ) administration for detection of preexisting cerebral hemodynamics and metabolism in bilateral major cerebral artery steno-occlusive diseases. Thirty three patients underwent 15O gas positron emission tomography (PET) and each parameter was obtained in the bilateral middle cerebral artery (MCA) territories. CBF was also obtained using H215O PET scanning performed at baseline and at 5, 15, and 30 min after ACZ administration. Relative CBF at each time point after ACZ administration to baseline CBF was calculated. For MCA territories with normal cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2), CBF continued increasing until 15 min after ACZ administration. For MCA territories with abnormally increased CBV, CBF decreased 5 min after ACZ administration. After that, CBF continued increasing until 30 min after ACZ administration. For MCA territories with abnormally decreased CMRO2, CBF did not change 5 min after ACZ administration. Ten min later, CBF increased. The accuracy to detect abnormally increased CBV was significantly greater for relative CBF5 than for relative CBF15. The accuracy to detect abnormally decreased CMRO2 was significantly greater for relative CBF5 or CBF15 than for relative CBF30. For detecting abnormally increased oxygen extraction fraction, the accuracy did not differ among each relative CBF. These findings suggested that CBF measurement at 5 min after ACZ administration is the optimal timing for detection of preexisting cerebral hemodynamics and metabolism in bilateral major cerebral artery steno-occlusive diseases.
{"title":"Optimal timing for measuring cerebral blood flow after acetazolamide administration to detect preexisting cerebral hemodynamics and metabolism in patients with bilateral major cerebral artery steno-occlusive diseases: <sup>15</sup>O positron emission tomography studies.","authors":"Masakazu Kobayashi, Suguru Igarashi, Tatsuhiko Takahashi, Shunrou Fujiwara, Kohei Chida, Kazunori Terasaki, Yoshitaka Kubo, Kuniaki Ogasawara","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study determined the optimal timing of scanning for measurement of cerebral blood flow (CBF) after acetazolamide (ACZ) administration for detection of preexisting cerebral hemodynamics and metabolism in bilateral major cerebral artery steno-occlusive diseases. Thirty three patients underwent <sup>15</sup>O gas positron emission tomography (PET) and each parameter was obtained in the bilateral middle cerebral artery (MCA) territories. CBF was also obtained using H<sub>2</sub> <sup>15</sup>O PET scanning performed at baseline and at 5, 15, and 30 min after ACZ administration. Relative CBF at each time point after ACZ administration to baseline CBF was calculated. For MCA territories with normal cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO<sub>2</sub>), CBF continued increasing until 15 min after ACZ administration. For MCA territories with abnormally increased CBV, CBF decreased 5 min after ACZ administration. After that, CBF continued increasing until 30 min after ACZ administration. For MCA territories with abnormally decreased CMRO<sub>2</sub>, CBF did not change 5 min after ACZ administration. Ten min later, CBF increased. The accuracy to detect abnormally increased CBV was significantly greater for relative CBF<sub>5</sub> than for relative CBF<sub>15</sub>. The accuracy to detect abnormally decreased CMRO<sub>2</sub> was significantly greater for relative CBF<sub>5</sub> or CBF<sub>15</sub> than for relative CBF<sub>30</sub>. For detecting abnormally increased oxygen extraction fraction, the accuracy did not differ among each relative CBF. These findings suggested that CBF measurement at 5 min after ACZ administration is the optimal timing for detection of preexisting cerebral hemodynamics and metabolism in bilateral major cerebral artery steno-occlusive diseases.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"507-518"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727876/pdf/ajnmmi0011-0507.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Euy Sung Moon, Sanjana Ballal, Madhav Prasad Yadav, Chandrasekhar Bal, Yentl Van Rymenant, Sarah Stephan, An Bracke, Pieter Van der Veken, Ingrid De Meester, Frank Roesch
Several radiopharmaceuticals targeting fibroblast activation protein (FAP) based on the highly potent FAP inhibitor UAMC1110 are currently under investigation. Pre-clinical as well as clinical research exhibited the potential of these imaging agents. However, the monomeric small molecules seemed to have a short retention time in the tumor in combination with fast renal clearance. Therefore, our strategy was to develop homodimeric systems having two FAP inhibitors to improve residence time and tumor accumulation. The homodimers with two squaramide coupled FAP inhibitor conjugates DOTA.(SA.FAPi)2 and DOTAGA.(SA.FAPi)2 were synthesized and radiochemically evaluated with gallium-68. [68Ga]Ga-DOTAGA.(SA.FAPi)2 was tested for its in vitro stability, lipophilicity and affinity properties. In addition, human PET/CT scans were performed for [68Ga]Ga-DOTAGA.(SA.FAPi)2 with a head-to-head comparison with [68Ga]Ga-DOTA.SA.FAPi and [18F]FDG. Labeling with gallium-68 demonstrated high radiochemical yields. Inhibition measurements revealed excellent affinity and selectivity with low nanomolar IC50 values for FAP. In PET/CT human studies, significantly higher tumor uptake as well as longer tumor retention could be observed for [68Ga]Ga-DOTAGA.(SA.FAPi)2 compared to [68Ga]Ga-DOTA.SA.FAPi. Therefore, the introduction of the dimer led to an advance in human PET imaging indicated by increased tumor accumulation and prolonged retention times in vivo and thus, the use of dimeric structures could be the next step towards prolonged uptake of FAP inhibitors resulting in radiotherapeutic analogs of FAP inhibitors.
几种基于高效FAP抑制剂UAMC1110靶向成纤维细胞活化蛋白(FAP)的放射性药物目前正在研究中。临床前和临床研究显示了这些显像剂的潜力。然而,单分子小分子似乎在肿瘤中保留时间短,并且肾脏清除速度快。因此,我们的策略是开发具有两种FAP抑制剂的同二聚体系统,以改善停留时间和肿瘤积累。合成了具有两种方酰胺偶联FAP抑制剂偶联物DOTA.(SA.FAPi)2和DOTAGA.(SA.FAPi)2的同型二聚体,并用镓-68进行了放射化学评价。[68Ga]Ga-DOTAGA.(SA.FAPi)2的体外稳定性、亲脂性和亲和力进行了测试。此外,对[68Ga] ga - dota .(SA.FAPi)2进行了人体PET/CT扫描,并与[68Ga]Ga-DOTA.SA进行了头部比较。[18F]FDG。用镓-68标记显示出很高的放射化学产率。抑制实验显示FAP具有良好的亲和性和选择性,IC50值较低。在PET/CT人体研究中,与[68Ga]Ga-DOTA.SA.FAPi相比,[68Ga]Ga-DOTAGA.(SA.FAPi)2的肿瘤摄取率明显更高,肿瘤滞留时间也更长。因此,二聚体的引入导致了人体PET成像的进步,这表明肿瘤积累增加,体内滞留时间延长,因此,二聚体结构的使用可能是延长FAP抑制剂摄取的下一步,从而产生FAP抑制剂的放射治疗类似物。
{"title":"Fibroblast Activation Protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: a step to improve tumor uptake and retention time.","authors":"Euy Sung Moon, Sanjana Ballal, Madhav Prasad Yadav, Chandrasekhar Bal, Yentl Van Rymenant, Sarah Stephan, An Bracke, Pieter Van der Veken, Ingrid De Meester, Frank Roesch","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Several radiopharmaceuticals targeting fibroblast activation protein (FAP) based on the highly potent FAP inhibitor UAMC1110 are currently under investigation. Pre-clinical as well as clinical research exhibited the potential of these imaging agents. However, the monomeric small molecules seemed to have a short retention time in the tumor in combination with fast renal clearance. Therefore, our strategy was to develop homodimeric systems having two FAP inhibitors to improve residence time and tumor accumulation. The homodimers with two squaramide coupled FAP inhibitor conjugates DOTA.(SA.FAPi)<sub>2</sub> and DOTAGA.(SA.FAPi)<sub>2</sub> were synthesized and radiochemically evaluated with gallium-68. [<sup>68</sup>Ga]Ga-DOTAGA.(SA.FAPi)<sub>2</sub> was tested for its <i>in vitro</i> stability, lipophilicity and affinity properties. In addition, human PET/CT scans were performed for [<sup>68</sup>Ga]Ga-DOTAGA.(SA.FAPi)<sub>2</sub> with a head-to-head comparison with [<sup>68</sup>Ga]Ga-DOTA.SA.FAPi and [<sup>18</sup>F]FDG. Labeling with gallium-68 demonstrated high radiochemical yields. Inhibition measurements revealed excellent affinity and selectivity with low nanomolar IC<sub>50</sub> values for FAP. In PET/CT human studies, significantly higher tumor uptake as well as longer tumor retention could be observed for [<sup>68</sup>Ga]Ga-DOTAGA.(SA.FAPi)<sub>2</sub> compared to [<sup>68</sup>Ga]Ga-DOTA.SA.FAPi. Therefore, the introduction of the dimer led to an advance in human PET imaging indicated by increased tumor accumulation and prolonged retention times <i>in vivo</i> and thus, the use of dimeric structures could be the next step towards prolonged uptake of FAP inhibitors resulting in radiotherapeutic analogs of FAP inhibitors.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"476-491"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727881/pdf/ajnmmi0011-0476.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea O Fontana, Mary Gonzalez Melo, Gilles Allenbach, Costa Georgantas, Ruijia Wang, Olivier Braissant, Frederic Barbey, John O Prior, Diana Ballhausen, David Viertl
Introduction: Evaluation of glomerular filtration rate is very important in both preclinical and clinical setting, especially in the context of chronic kidney disease. It is typically performed using 51Cr-EDTA or by imaging with 123I-Hippuran scintigraphy, which has a significantly lower resolution and sensitivity as compared to PET. 68Ga-EDTA represents a valid alternative due to its quick availability using a 68Ge/68Ga generator, while PET/CT enables both imaging of renal function and accurate quantitation of clearance of activity from both plasma and urine. Therefore, we aimed at investigating the use of 68Ga-EDTA as a preclinical tracer for determining renal function in a knock-in rat model known to present progressive decline of renal function.
Methods: 68Ga-EDTA was injected in 23 rats, either wild type (n=10) or knock-in (n=13). By applying a unidirectional, two-compartment model and Rutland-Patlak Plot linear regression analysis, split renal function was determined from the age of 6 weeks to 12 months.
Results: Glomerular filtration ranged from 0.025±0.01 ml/min at 6 weeks to 0.049±0.05 ml/min at 6 months in wild type rats. Glomerular filtration was significantly lower in knock-in rats at 6 and 12 months (P<0.01). No significant difference was observed in renal volumes between knock-in and wild type animals, based on imaging-derived volume calculations.
Conclusions: 68Ga-EDTA turned out to be a very promising PET/CT tracer for the evaluation of split renal function. This method allowed detection of progressive renal impairment in a knock-in rat model. Additional validation in a human cohort is warranted to further assess clinical utility in both, healthy individuals and patients with renal impairment.
{"title":"The use of <sup>68</sup>Ga-EDTA PET allows detecting progressive decline of renal function in rats.","authors":"Andrea O Fontana, Mary Gonzalez Melo, Gilles Allenbach, Costa Georgantas, Ruijia Wang, Olivier Braissant, Frederic Barbey, John O Prior, Diana Ballhausen, David Viertl","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Evaluation of glomerular filtration rate is very important in both preclinical and clinical setting, especially in the context of chronic kidney disease. It is typically performed using <sup>51</sup>Cr-EDTA or by imaging with <sup>123</sup>I-Hippuran scintigraphy, which has a significantly lower resolution and sensitivity as compared to PET. <sup>68</sup>Ga-EDTA represents a valid alternative due to its quick availability using a <sup>68</sup>Ge/<sup>68</sup>Ga generator, while PET/CT enables both imaging of renal function and accurate quantitation of clearance of activity from both plasma and urine. Therefore, we aimed at investigating the use of <sup>68</sup>Ga-EDTA as a preclinical tracer for determining renal function in a knock-in rat model known to present progressive decline of renal function.</p><p><strong>Methods: </strong><sup>68</sup>Ga-EDTA was injected in 23 rats, either wild type (n=10) or knock-in (n=13). By applying a unidirectional, two-compartment model and Rutland-Patlak Plot linear regression analysis, split renal function was determined from the age of 6 weeks to 12 months.</p><p><strong>Results: </strong>Glomerular filtration ranged from 0.025±0.01 ml/min at 6 weeks to 0.049±0.05 ml/min at 6 months in wild type rats. Glomerular filtration was significantly lower in knock-in rats at 6 and 12 months (P<0.01). No significant difference was observed in renal volumes between knock-in and wild type animals, based on imaging-derived volume calculations.</p><p><strong>Conclusions: </strong><sup>68</sup>Ga-EDTA turned out to be a very promising PET/CT tracer for the evaluation of split renal function. This method allowed detection of progressive renal impairment in a knock-in rat model. Additional validation in a human cohort is warranted to further assess clinical utility in both, healthy individuals and patients with renal impairment.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"519-528"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727875/pdf/ajnmmi0011-0519.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunxia Qin, Yangmeihui Song, Weibo Cai, Xiaoli Lan
Radionuclide-labeled fibroblast activation protein inhibitors (FAPIs) are popular nuclear imaging probes in recent years. It's of great significance for tumor diagnosis and has great potential in tumor treatment. However, optimization of the probes is needed to further increase tumor uptake and prolong tumor retention for improved treatment efficacy and fewer side effects. In this issue of AJNMMI, Moon et al. reported two squaramide coupled FAPI conjugates (DOTA.(SA.FAPi)2 and DOTAGA.(SA.FAPi)2) and labeled them with 68Ga. The resulted tracers showed increased tumor accumulation and persistent retention, which led to an advance in PET imaging. The use of dimeric structures provides a feasible strategy to develop radiotherapeutic analogs of FAP inhibitors.
{"title":"Dimeric FAPI with potential for tumor theranostics.","authors":"Chunxia Qin, Yangmeihui Song, Weibo Cai, Xiaoli Lan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Radionuclide-labeled fibroblast activation protein inhibitors (FAPIs) are popular nuclear imaging probes in recent years. It's of great significance for tumor diagnosis and has great potential in tumor treatment. However, optimization of the probes is needed to further increase tumor uptake and prolong tumor retention for improved treatment efficacy and fewer side effects. In this issue of AJNMMI, Moon et al. reported two squaramide coupled FAPI conjugates (DOTA.(SA.FAPi)<sub>2</sub> and DOTAGA.(SA.FAPi)<sub>2</sub>) and labeled them with <sup>68</sup>Ga. The resulted tracers showed increased tumor accumulation and persistent retention, which led to an advance in PET imaging. The use of dimeric structures provides a feasible strategy to develop radiotherapeutic analogs of FAP inhibitors.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"537-541"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727879/pdf/ajnmmi0011-0537.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amin Haghighat Jahromi, Matthew Zabel, Ryosuke Okamura, Carl K Hoh, Razelle Kurzrock
The relationship between higher variant allele fraction (VAF) of genomic alterations in circulating tumor DNA (%ctDNA), an indicator of poor outcome, and maximum standardized uptake value (SUVmax), the most commonly used semi-quantitative parameter in 18F-FDG PET/CT, has not been studied. Overall, 433 cancer patients had blood-based next generation sequencing. Maximum and sum of %ctDNA alterations (%ctDNAmax and %ctDNAsum, respectively) represent the maximum and sum of VAF, reported as a percentage. The subset of 46 eligible patients had treatment-naïve metastatic disease and PET/CT imaging, with median 13 days prior to ctDNA testing. We found a linear correlation between the maximum VAF (%ctDNAmax) (as well as the sum of the VAFs (%ctDNAsum)) and SUVmax of the most 18F-FDG-avid lesion (r=0.43, P=0.003; r=0.43, P=0.002; respectively). Our data suggest that SUVmax may be a non-invasive and readily available surrogate indicator for %ctDNA, a prognostic factor for patient survival. Since higher %ctDNA has been previously correlated with worse outcome, the relationship between SUVmax, %ctDNA and survival warrants further study.
{"title":"Variant allele fraction of genomic alterations in circulating tumor DNA (%ctDNA) correlates with SUV<sub>max</sub> in PET scan.","authors":"Amin Haghighat Jahromi, Matthew Zabel, Ryosuke Okamura, Carl K Hoh, Razelle Kurzrock","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The relationship between higher variant allele fraction (VAF) of genomic alterations in circulating tumor DNA (%ctDNA), an indicator of poor outcome, and maximum standardized uptake value (SUV<sub>max</sub>), the most commonly used semi-quantitative parameter in <sup>18</sup>F-FDG PET/CT, has not been studied. Overall, 433 cancer patients had blood-based next generation sequencing. Maximum and sum of %ctDNA alterations (%ctDNA<sub>max</sub> and %ctDNA<sub>sum</sub>, respectively) represent the maximum and sum of VAF, reported as a percentage. The subset of 46 eligible patients had treatment-naïve metastatic disease and PET/CT imaging, with median 13 days prior to ctDNA testing. We found a linear correlation between the maximum VAF (%ctDNA<sub>max</sub>) (as well as the sum of the VAFs (%ctDNA<sub>sum</sub>)) and SUV<sub>max</sub> of the most <sup>18</sup>F-FDG-avid lesion (r=0.43, P=0.003; r=0.43, P=0.002; respectively). Our data suggest that SUV<sub>max</sub> may be a non-invasive and readily available surrogate indicator for %ctDNA, a prognostic factor for patient survival. Since higher %ctDNA has been previously correlated with worse outcome, the relationship between SUV<sub>max</sub>, %ctDNA and survival warrants further study.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 4","pages":"307-312"},"PeriodicalIF":2.5,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414395/pdf/ajnmmi0011-0307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39409571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantification of tumor uptake using PET imaging is important for the evaluation of therapy response. For 18F FDG PET scans, a change in uptake of 25% is commonly considered significant. For scans using novel radiopharmaceuticals, the threshold of significance is unclear. Factors including imaging time, tumor size, activity concentration, and radiopharmaceutical may affect the repeatablity of uptake metrics. This work evaluates the effect of these parameters on the repeatablity of maximum SUV (SUVmax) and mean SUV (SUVmean) in phantoms using 18F and 68Ga. An Esser PET phantom (Data Spectrum, Durham NC) was scanned on a Biograph Horizon PET/CT scanner (Siemens Medical Solutions, Malvern PA) using 18F and 68Ga. Data were acquired for 5 minutes with reconstructions between 0.5-5 minutes. The background activity mimicked clinical scans with target-to-background (T/B) ratios from 1.7-19.8. The SUVmax and SUVmean were measured for 5 slices. The mean, standard deviation, and coefficient of variation (COV) were calculated. The effects of radionuclide, imaging time, activity concentration, and target size on COV were evaluated using multivariate gamma regressions. COV for 68Ga was 40% higher and 54% higher on average than for 18F for SUVmax and SUVmean, respectively. Decreased lesion size, imaging time, and activity concentration were significantly associated with increased COV for both metrics (P < 0.001). COV was substantially reduced at high T/B for 68Ga. At the highest T/B the COV for SUVmax and SUVmean was within the typical range seen for 18F. COV is relatively high for small targets (8 mm) but is dramatically reduced with high radiotracer uptake.
{"title":"Small target repeatability of <sup>68</sup>Ga and <sup>18</sup>F: effects of target concentration and imaging time on SUV measurements in clinically relevant phantoms.","authors":"Michael S Silosky, Luke W Patten, Bennett B Chin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Quantification of tumor uptake using PET imaging is important for the evaluation of therapy response. For <sup>18</sup>F FDG PET scans, a change in uptake of 25% is commonly considered significant. For scans using novel radiopharmaceuticals, the threshold of significance is unclear. Factors including imaging time, tumor size, activity concentration, and radiopharmaceutical may affect the repeatablity of uptake metrics. This work evaluates the effect of these parameters on the repeatablity of maximum SUV (SUV<sub>max</sub>) and mean SUV (SUV<sub>mean</sub>) in phantoms using <sup>18</sup>F and <sup>68</sup>Ga. An Esser PET phantom (Data Spectrum, Durham NC) was scanned on a Biograph Horizon PET/CT scanner (Siemens Medical Solutions, Malvern PA) using <sup>18</sup>F and <sup>68</sup>Ga. Data were acquired for 5 minutes with reconstructions between 0.5-5 minutes. The background activity mimicked clinical scans with target-to-background (T/B) ratios from 1.7-19.8. The SUV<sub>max</sub> and SUV<sub>mean</sub> were measured for 5 slices. The mean, standard deviation, and coefficient of variation (COV) were calculated. The effects of radionuclide, imaging time, activity concentration, and target size on COV were evaluated using multivariate gamma regressions. COV for <sup>68</sup>Ga was 40% higher and 54% higher on average than for <sup>18</sup>F for SUV<sub>max</sub> and SUV<sub>mean</sub>, respectively. Decreased lesion size, imaging time, and activity concentration were significantly associated with increased COV for both metrics (P < 0.001). COV was substantially reduced at high T/B for <sup>68</sup>Ga. At the highest T/B the COV for SUV<sub>max</sub> and SUV<sub>mean</sub> was within the typical range seen for <sup>18</sup>F. COV is relatively high for small targets (8 mm) but is dramatically reduced with high radiotracer uptake.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 4","pages":"280-289"},"PeriodicalIF":2.5,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414403/pdf/ajnmmi0011-0280.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39409634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijian Zhou, Preetesh Jain, Yang Lu, Homer Macapinlac, Michael L Wang, Jong Bum Son, Mark D Pagel, Guofan Xu, Jingfei Ma
18F-FDG PET/CT can provide quantitative characterization with prognostic value for mantle cell lymphoma (MCL). However, detection of MCL is performed manually, which is labor intensive and not a part of the routine clinical practice. This study investigates a deep learning convolutional neural network (DLCNN) for computer-aided detection of MCL on 18F-FDG PET/CT. We retrospectively analyzed 142 baseline 18F-FDG PET/CT scans of biopsy-confirmed MCL acquired between May 2007 and October 2018. Of the 142 scans, 110 were from our institution and 32 were from outside institutions. An Xception-based U-Net was constructed to classify each pixel of the PET/CT images as MCL or not. The network was first trained and tested on the within-institution scans by applying five-fold cross-validation. Sensitivity and false positives (FPs) per patient were calculated for network evaluation. The network was then tested on the outside-institution scans, which were excluded from network training. For the 110 within-institution patients (85 male; median age, 58 [range: 39-84] years), the network achieved an overall median sensitivity of 88% (interquartile range [IQR]: 25%) with 15 (IQR: 12) FPs/patient. Sensitivity was dependent on lesion size and SUVmax but not on lesion location. For the 32 outside-institution patients (24 male; median age, 59 [range: 40-67] years), the network achieved a median sensitivity of 84% (IQR: 24%) with 14 (IQR: 10) FPs/patient. No significant performance difference was found between the within and outside institution scans. Therefore, DLCNN can potentially help with MCL detection on 18F-FDG PET/CT with high sensitivity and limited FPs.
{"title":"Computer-aided detection of mantle cell lymphoma on <sup>18</sup>F-FDG PET/CT using a deep learning convolutional neural network.","authors":"Zijian Zhou, Preetesh Jain, Yang Lu, Homer Macapinlac, Michael L Wang, Jong Bum Son, Mark D Pagel, Guofan Xu, Jingfei Ma","doi":"","DOIUrl":"","url":null,"abstract":"<p><p><sup>18</sup>F-FDG PET/CT can provide quantitative characterization with prognostic value for mantle cell lymphoma (MCL). However, detection of MCL is performed manually, which is labor intensive and not a part of the routine clinical practice. This study investigates a deep learning convolutional neural network (DLCNN) for computer-aided detection of MCL on <sup>18</sup>F-FDG PET/CT. We retrospectively analyzed 142 baseline <sup>18</sup>F-FDG PET/CT scans of biopsy-confirmed MCL acquired between May 2007 and October 2018. Of the 142 scans, 110 were from our institution and 32 were from outside institutions. An Xception-based U-Net was constructed to classify each pixel of the PET/CT images as MCL or not. The network was first trained and tested on the within-institution scans by applying five-fold cross-validation. Sensitivity and false positives (FPs) per patient were calculated for network evaluation. The network was then tested on the outside-institution scans, which were excluded from network training. For the 110 within-institution patients (85 male; median age, 58 [range: 39-84] years), the network achieved an overall median sensitivity of 88% (interquartile range [IQR]: 25%) with 15 (IQR: 12) FPs/patient. Sensitivity was dependent on lesion size and SUV<sub>max</sub> but not on lesion location. For the 32 outside-institution patients (24 male; median age, 59 [range: 40-67] years), the network achieved a median sensitivity of 84% (IQR: 24%) with 14 (IQR: 10) FPs/patient. No significant performance difference was found between the within and outside institution scans. Therefore, DLCNN can potentially help with MCL detection on <sup>18</sup>F-FDG PET/CT with high sensitivity and limited FPs.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 4","pages":"260-270"},"PeriodicalIF":2.5,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414404/pdf/ajnmmi0011-0260.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39409632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}