Pub Date : 2024-08-25eCollection Date: 2024-01-01DOI: 10.62347/NLLV9295
Yongshun Liu, Wenpeng Huang, Yihan Yang, Weibo Cai, Zhaonan Sun
Multiple myeloma (MM) is a malignant blood disease, but there have been significant improvements in the prognosis due to advancements in quantitative assessment and targeted therapy in recent years. The quantitative assessment of MM bone marrow infiltration and prognosis prediction is influenced by imaging and artificial intelligence (AI) quantitative parameters. At present, the primary imaging methods include computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These methods are now crucial for diagnosing MM and evaluating myeloma cell infiltration, extramedullary disease, treatment effectiveness, and prognosis. Furthermore, the utilization of AI, specifically incorporating machine learning and radiomics, shows great potential in the field of diagnosing MM and distinguishing between MM and lytic metastases. This review discusses the advancements in imaging methods, including CT, MRI, and PET/CT, as well as AI for quantitatively assessing MM. We have summarized the key concepts, advantages, limitations, and diagnostic performance of each technology. Finally, we discussed the challenges related to clinical implementation and presented our views on advancing this field, with the aim of providing guidance for future research.
多发性骨髓瘤(MM)是一种恶性血液疾病,但近年来由于定量评估和靶向治疗的进步,其预后有了显著改善。多发性骨髓瘤骨髓浸润的定量评估和预后预测受到影像学和人工智能(AI)定量参数的影响。目前,主要的成像方法包括计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET)。这些方法对于诊断骨髓瘤、评估骨髓瘤细胞浸润、髓外疾病、治疗效果和预后至关重要。此外,人工智能的应用,特别是机器学习和放射组学的结合,在诊断MM和区分MM与溶解性转移瘤方面显示出巨大的潜力。本综述讨论了成像方法(包括 CT、MRI 和 PET/CT)以及人工智能在定量评估 MM 方面的进展。我们总结了每种技术的关键概念、优势、局限性和诊断性能。最后,我们讨论了与临床实施相关的挑战,并提出了我们对推进这一领域发展的看法,旨在为未来研究提供指导。
{"title":"Recent advances in imaging and artificial intelligence (AI) for quantitative assessment of multiple myeloma.","authors":"Yongshun Liu, Wenpeng Huang, Yihan Yang, Weibo Cai, Zhaonan Sun","doi":"10.62347/NLLV9295","DOIUrl":"10.62347/NLLV9295","url":null,"abstract":"<p><p>Multiple myeloma (MM) is a malignant blood disease, but there have been significant improvements in the prognosis due to advancements in quantitative assessment and targeted therapy in recent years. The quantitative assessment of MM bone marrow infiltration and prognosis prediction is influenced by imaging and artificial intelligence (AI) quantitative parameters. At present, the primary imaging methods include computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These methods are now crucial for diagnosing MM and evaluating myeloma cell infiltration, extramedullary disease, treatment effectiveness, and prognosis. Furthermore, the utilization of AI, specifically incorporating machine learning and radiomics, shows great potential in the field of diagnosing MM and distinguishing between MM and lytic metastases. This review discusses the advancements in imaging methods, including CT, MRI, and PET/CT, as well as AI for quantitatively assessing MM. We have summarized the key concepts, advantages, limitations, and diagnostic performance of each technology. Finally, we discussed the challenges related to clinical implementation and presented our views on advancing this field, with the aim of providing guidance for future research.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 4","pages":"208-229"},"PeriodicalIF":2.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-25eCollection Date: 2024-01-01DOI: 10.62347/TLNN8316
Xiao-Qin Chen, Jie Jiang, Jian Xing, Zhao-Kai Ming, Min Zhu, Quan Bao, Ming-Cheng Hu
Purpose: This study delves into the hemodynamic characteristics of Vertebrobasilar Artery Fenestration (VBAF) combined with Vertebrobasilar Dolichoectasia (VBD) using Magnetic Resonance Angiography (MRA). By summarizing the hemodynamic features and identifying high-risk populations, we aim to provide insights for clinical treatment.
Methods: Utilizing MRA images as a foundation, arterial three-dimensional geometric models were constructed. A total of 22 cases were categorized into control, S, L, U, and Spiral groups, and numerical simulation analysis of the vessels was conducted using computational fluid dynamics methods.
Results: Hemodynamic parameters of the VBAF combined with the VBD model were obtained, including blood flow velocity, oscillatory shear stress (OSI), wall shear stress (WSS), and aneurysm formation indicator (AFI). The V, OSI, and WSS indices of the L, U, and Spiral groups were significantly higher than those of the control group (P < 0.05). High-speed blood flow, elevated WSS, and increased OSI in these groups were concentrated at the fenestration site, with scattered distribution along the tortuous vertebral artery and basilar artery segments, accompanied by significant differences in the parameters of the bilateral vertebral arteries.
Conclusion: This preliminary investigation identifies the L, U, and Spiral groups as high-risk populations. Abnormal hemodynamics may lead to a vicious cycle in vascular wall pathology, increasing the likelihood of adverse events such as cerebral infarction. Clinical attention should focus on individuals within these groups and their corresponding vascular regions.
{"title":"Hemodynamic characteristics of vertebrobasilar artery fenestration combined with vertebrobasilar dolichoectasia: a study based on magnetic resonance angiography.","authors":"Xiao-Qin Chen, Jie Jiang, Jian Xing, Zhao-Kai Ming, Min Zhu, Quan Bao, Ming-Cheng Hu","doi":"10.62347/TLNN8316","DOIUrl":"10.62347/TLNN8316","url":null,"abstract":"<p><strong>Purpose: </strong>This study delves into the hemodynamic characteristics of Vertebrobasilar Artery Fenestration (VBAF) combined with Vertebrobasilar Dolichoectasia (VBD) using Magnetic Resonance Angiography (MRA). By summarizing the hemodynamic features and identifying high-risk populations, we aim to provide insights for clinical treatment.</p><p><strong>Methods: </strong>Utilizing MRA images as a foundation, arterial three-dimensional geometric models were constructed. A total of 22 cases were categorized into control, S, L, U, and Spiral groups, and numerical simulation analysis of the vessels was conducted using computational fluid dynamics methods.</p><p><strong>Results: </strong>Hemodynamic parameters of the VBAF combined with the VBD model were obtained, including blood flow velocity, oscillatory shear stress (OSI), wall shear stress (WSS), and aneurysm formation indicator (AFI). The V, OSI, and WSS indices of the L, U, and Spiral groups were significantly higher than those of the control group (<i>P</i> < 0.05). High-speed blood flow, elevated WSS, and increased OSI in these groups were concentrated at the fenestration site, with scattered distribution along the tortuous vertebral artery and basilar artery segments, accompanied by significant differences in the parameters of the bilateral vertebral arteries.</p><p><strong>Conclusion: </strong>This preliminary investigation identifies the L, U, and Spiral groups as high-risk populations. Abnormal hemodynamics may lead to a vicious cycle in vascular wall pathology, increasing the likelihood of adverse events such as cerebral infarction. Clinical attention should focus on individuals within these groups and their corresponding vascular regions.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 4","pages":"253-260"},"PeriodicalIF":2.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15eCollection Date: 2024-01-01DOI: 10.62347/NANX3492
Alekhya Madiraju, Abhijit Bhattaru, Truongan Pham, Anish Pundyavana, Krishna Vamsi Rojulpote, William Y Raynor, Thomas J Werner, Abass Alavi
Sarcoidosis is a systemic disease with unclear etiology characterized by the accumulation of noncaseating, immune granulomas in affected tissues. In cardiac sarcoidosis (CS), white blood cells build up within the heart muscles, causing cardiac abnormalities. Accurate and early diagnosis of CS proves challenging. However, usage of positron emission tomography (PET) imaging, namely 18F-FDG-PET, has proven successful in diagnosing inflammatory cardiomyopathy. This review seeks to examine the role of PET in managing ventricular tachycardia in cardiac sarcoidosis. PET, in conjunction with cardiac magnetic resonance imaging (CMR) is also endorsed as the premier method for diagnosis and management of arrhythmias associated with CS by The Heart Rhythm Society. After a CS diagnosis, risk stratification of ventricular arrhythmias is a necessity given the potential for sudden cardiac death. 18F-FDG-PET has been successful in monitoring disease advancement and treatment responses in CS patients. Early stages of CS are often treated with immunosuppression drugs if there are additional signs of VT. Currently, corticosteroid and anti-arrhythmia compounds: methotrexate, cyclophosphamide, infliximab, amiodarone, and azathioprine are used to suppress inflammation. 18F-FDG-PET has certainly proven to be an incredibly useful and accurate diagnostic tool of CS. While late gadolinium enhancement by CMR is efficient in detecting myocardial necrosis and/or advanced fibrosis scarring, 18F-FDG portrays the increased uptake level of glucose metabolism. In combination PET/MRI has proven to be more successful in improving the efficacy of both scans, addressing their drawbacks, and highlighting their advantages. Managing CS patients is highly involved in detecting inflammatory regions of the heart. Early recognition prevents cardiac abnormality, mainly VT and VF in CS patients, and extends lifespan.
{"title":"Current uses and understanding of PET imaging in cardiac sarcoidosis.","authors":"Alekhya Madiraju, Abhijit Bhattaru, Truongan Pham, Anish Pundyavana, Krishna Vamsi Rojulpote, William Y Raynor, Thomas J Werner, Abass Alavi","doi":"10.62347/NANX3492","DOIUrl":"10.62347/NANX3492","url":null,"abstract":"<p><p>Sarcoidosis is a systemic disease with unclear etiology characterized by the accumulation of noncaseating, immune granulomas in affected tissues. In cardiac sarcoidosis (CS), white blood cells build up within the heart muscles, causing cardiac abnormalities. Accurate and early diagnosis of CS proves challenging. However, usage of positron emission tomography (PET) imaging, namely <sup>18</sup>F-FDG-PET, has proven successful in diagnosing inflammatory cardiomyopathy. This review seeks to examine the role of PET in managing ventricular tachycardia in cardiac sarcoidosis. PET, in conjunction with cardiac magnetic resonance imaging (CMR) is also endorsed as the premier method for diagnosis and management of arrhythmias associated with CS by The Heart Rhythm Society. After a CS diagnosis, risk stratification of ventricular arrhythmias is a necessity given the potential for sudden cardiac death. <sup>18</sup>F-FDG-PET has been successful in monitoring disease advancement and treatment responses in CS patients. Early stages of CS are often treated with immunosuppression drugs if there are additional signs of VT. Currently, corticosteroid and anti-arrhythmia compounds: methotrexate, cyclophosphamide, infliximab, amiodarone, and azathioprine are used to suppress inflammation. <sup>18</sup>F-FDG-PET has certainly proven to be an incredibly useful and accurate diagnostic tool of CS. While late gadolinium enhancement by CMR is efficient in detecting myocardial necrosis and/or advanced fibrosis scarring, <sup>18</sup>F-FDG portrays the increased uptake level of glucose metabolism. In combination PET/MRI has proven to be more successful in improving the efficacy of both scans, addressing their drawbacks, and highlighting their advantages. Managing CS patients is highly involved in detecting inflammatory regions of the heart. Early recognition prevents cardiac abnormality, mainly VT and VF in CS patients, and extends lifespan.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 3","pages":"161-174"},"PeriodicalIF":2.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15eCollection Date: 2024-01-01DOI: 10.62347/JOQM7920
Jorge D Oldan, Yueh Z Lee, Kristen OIinger, Thad S Benefield, Erin T Carey, Noor D Abu-Alnadi, Steven L Young
Endometriosis is a common cause of infertility, pelvic pain, and dysmenorrhea and there are prior case reports of lesion detection using an 18F-fluoroestradiol (FES) tracer with positron emission tomography (PET). We aimed to further investigate the use of the FES tracer in the context of PET-magnetic resonance (PET-MR) imaging. We administered FES to 6 patients and then imaged them using a Siemens mMR PET-MR scanner. Each patient was taken to surgery within 30 days after imaging, and surgical visualization served as the gold-standard for diagnosis. PET did not prove to be as sensitive as MR (50% per-patient sensitivity versus 67% per-patient and 35% versus 48% per-lesion), and did not show any additional sites over and above MR. When MR was used to localize lesions on PET after imaging, there was insufficient evidence of an association between total tracer uptake and reported pain intensity (P=0.25). FES PET-MR offers no additional value to MR for endometriosis.
{"title":"Fluoroestradiol PET-MRI imaging for detection of endometriosis lesions and symptom correlation.","authors":"Jorge D Oldan, Yueh Z Lee, Kristen OIinger, Thad S Benefield, Erin T Carey, Noor D Abu-Alnadi, Steven L Young","doi":"10.62347/JOQM7920","DOIUrl":"10.62347/JOQM7920","url":null,"abstract":"<p><p>Endometriosis is a common cause of infertility, pelvic pain, and dysmenorrhea and there are prior case reports of lesion detection using an 18F-fluoroestradiol (FES) tracer with positron emission tomography (PET). We aimed to further investigate the use of the FES tracer in the context of PET-magnetic resonance (PET-MR) imaging. We administered FES to 6 patients and then imaged them using a Siemens mMR PET-MR scanner. Each patient was taken to surgery within 30 days after imaging, and surgical visualization served as the gold-standard for diagnosis. PET did not prove to be as sensitive as MR (50% per-patient sensitivity versus 67% per-patient and 35% versus 48% per-lesion), and did not show any additional sites over and above MR. When MR was used to localize lesions on PET after imaging, there was insufficient evidence of an association between total tracer uptake and reported pain intensity (P=0.25). FES PET-MR offers no additional value to MR for endometriosis.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 3","pages":"182-188"},"PeriodicalIF":2.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HER2 overexpression is associated with various tumor types and prompted the development of targeted therapies. Previously, iso-[211At]SGMAB-5F7 was developed as a HER2-targeted alpha therapy agent, demonstrating promising therapeutic efficacy in the preclinical stage. Aiming for an 18F-labeled tracer for companion diagnostics in clinical translation, we employed the Al18F-RESCA strategy in our current work and investigated whether [18F]AlF-RESCA-5F7 could visualize HER2 expression in vivo. [18F]AlF-RESCA-5F7 was attained with high radiochemical purity (> 99%) and molar activity in the range of 16.5 ± 8.8 GBq/μmol (n = 8). Compared to previously reported radiotracers that contained 5F7 as the HER2-targeting carrier and fluorine-18 as the positron-emitting isotope, the radiosynthesis was simplified to one single step within 30 min. The dissociation constant of [18F]AlF-RESCA-5F7 was determined as 3.3 nM via saturation binding assay using SKOV3 ovarian carcinoma cells. Tumor uptake of the novel tracer in Balb/c nude mice bearing SKOV3 xenografts was 4.69 ± 1.51, 3.34 ± 0.82 and 3.77 ± 0.99 %ID/g at 1, 2, and 4 h post-injection. Even though high retention of radioactivity was seen in the kidneys, micro-PET/CT imaging of [18F]AlF-RESCA-5F7 delineated the tumor up to 4 h post-injection with minimal activity in the gallbladder, intestines, and bone. This study suggests that [18F]AlF-RESCA-5F7 is a promising HER2 PET radiotracer with an eased radiolabeling method. Whether [18F]AlF-RESCA-5F7 could work as a companion diagnostic agent to assist in patient stratification and treatment monitoring of iso-[211At]SGMAB-5F7 warrants further investigation.
{"title":"Radiosynthesis and preclinical evaluations of [<sup>18</sup>F]AlF-RESCA-5F7 as a novel molecular probe for HER2 tumor imaging.","authors":"Ruhua Tian, Jinping Kong, Yingfang He, Guoqiang Xu, Tengxiang Chen, Junbin Han","doi":"10.62347/BVPK1360","DOIUrl":"10.62347/BVPK1360","url":null,"abstract":"<p><p>HER2 overexpression is associated with various tumor types and prompted the development of targeted therapies. Previously, <i>iso</i>-[<sup>211</sup>At]SGMAB-5F7 was developed as a HER2-targeted alpha therapy agent, demonstrating promising therapeutic efficacy in the preclinical stage. Aiming for an <sup>18</sup>F-labeled tracer for companion diagnostics in clinical translation, we employed the Al<sup>18</sup>F-RESCA strategy in our current work and investigated whether [<sup>18</sup>F]AlF-RESCA-5F7 could visualize HER2 expression <i>in vivo</i>. [<sup>18</sup>F]AlF-RESCA-5F7 was attained with high radiochemical purity (> 99%) and molar activity in the range of 16.5 ± 8.8 GBq/μmol (n = 8). Compared to previously reported radiotracers that contained 5F7 as the HER2-targeting carrier and fluorine-18 as the positron-emitting isotope, the radiosynthesis was simplified to one single step within 30 min. The dissociation constant of [<sup>18</sup>F]AlF-RESCA-5F7 was determined as 3.3 nM <i>via</i> saturation binding assay using SKOV3 ovarian carcinoma cells. Tumor uptake of the novel tracer in Balb/c nude mice bearing SKOV3 xenografts was 4.69 ± 1.51, 3.34 ± 0.82 and 3.77 ± 0.99 %ID/g at 1, 2, and 4 h post-injection. Even though high retention of radioactivity was seen in the kidneys, micro-PET/CT imaging of [<sup>18</sup>F]AlF-RESCA-5F7 delineated the tumor up to 4 h post-injection with minimal activity in the gallbladder, intestines, and bone. This study suggests that [<sup>18</sup>F]AlF-RESCA-5F7 is a promising HER2 PET radiotracer with an eased radiolabeling method. Whether [<sup>18</sup>F]AlF-RESCA-5F7 could work as a companion diagnostic agent to assist in patient stratification and treatment monitoring of <i>iso</i>-[<sup>211</sup>At]SGMAB-5F7 warrants further investigation.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 3","pages":"175-181"},"PeriodicalIF":2.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15eCollection Date: 2024-01-01DOI: 10.62347/SUNN5303
Maija Radzina, Mara Tirane, Lilita Roznere, Liene Zemniece, Laura Dronka, Marika Kalnina, Edgars Mamis, Juergen Biederer, Vilnis Lietuvietis, Arvis Freimanis, Egils Vjaters
[This corrects the article on p. 106 in vol. 10, PMID: 32419979.].
[此处更正了第 10 卷第 106 页的文章,PMID:32419979]。
{"title":"Erratum: Accuracy of <sup>68</sup>Ga-PSMA-11 PET/CT and multiparametric MRI for the detection of local tumor and lymph node metastases in early biochemical recurrence of prostate cancer.","authors":"Maija Radzina, Mara Tirane, Lilita Roznere, Liene Zemniece, Laura Dronka, Marika Kalnina, Edgars Mamis, Juergen Biederer, Vilnis Lietuvietis, Arvis Freimanis, Egils Vjaters","doi":"10.62347/SUNN5303","DOIUrl":"https://doi.org/10.62347/SUNN5303","url":null,"abstract":"<p><p>[This corrects the article on p. 106 in vol. 10, PMID: 32419979.].</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 3","pages":"189"},"PeriodicalIF":2.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fever of unknown origin (FUO) continues to be a challenging diagnosis in clinical medicine. It has more than 200 known causes, including infections, autoimmune diseases, neoplasia, and other miscellaneous disorders. Despite the development of a wide range of diagnostic tools, a specific diagnostic algorithm for FUO is not yet available. However, [18F]FDG PET/CT, which yields information on cellular metabolism, in addition to details of organ anatomy, has been shown to be successful in the FUO investigation. This study highlights the uses of [18F]FDG PET/CT in diagnosing various causes of FUO. [18F]FDG PET/CT has been increasingly used to detect septic infections, sterile inflammatory processes, and malignancies, occupying a significant portion of the known causes of FUO. It has led to a more definitive identification of the etiology of FUO and accurate clinical management. However, more in-depth studies are crucial to understanding if [18F]FDG PET/CT can be used in the work-up of FUO.
{"title":"[<sup>18</sup>F]FDG PET/CT for identifying the causes of fever of unknown origin (FUO).","authors":"Shashi B Singh, Niki Shrestha, Sadikshya Bhandari, Suprita Shrestha, Bijay Shrestha, Neharika Shrestha, Swarnima Rijal, Rajshree Singh, Soren Hess, Thomas J Werner, Abass Alavi, Mona-Elisabeth Revheim","doi":"10.62347/OQQC6007","DOIUrl":"10.62347/OQQC6007","url":null,"abstract":"<p><p>Fever of unknown origin (FUO) continues to be a challenging diagnosis in clinical medicine. It has more than 200 known causes, including infections, autoimmune diseases, neoplasia, and other miscellaneous disorders. Despite the development of a wide range of diagnostic tools, a specific diagnostic algorithm for FUO is not yet available. However, [<sup>18</sup>F]FDG PET/CT, which yields information on cellular metabolism, in addition to details of organ anatomy, has been shown to be successful in the FUO investigation. This study highlights the uses of [<sup>18</sup>F]FDG PET/CT in diagnosing various causes of FUO. [<sup>18</sup>F]FDG PET/CT has been increasingly used to detect septic infections, sterile inflammatory processes, and malignancies, occupying a significant portion of the known causes of FUO. It has led to a more definitive identification of the etiology of FUO and accurate clinical management. However, more in-depth studies are crucial to understanding if [<sup>18</sup>F]FDG PET/CT can be used in the work-up of FUO.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 2","pages":"87-96"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25eCollection Date: 2024-01-01DOI: 10.62347/QPAS5990
Ghazaleh Jamalipour Soufi, Ali Hekmatnia, Farzaneh Hekmatnia, Andrew Parviz Zarei, Shamim Shafieyoon, Sara Azizollahi, Mohamad Ghazanfari Hashemi, Farshad Riahi
Infection with the Human Immunodeficiency Virus (HIV) is one of the most pressing issues facing public health on a worldwide scale. Currently, HIV-related lymphoma is the most common cause of death among people living with HIV, and warrants more attention. The unique challenges associated with HIV-related lymphoma management derive from the underlying HIV infection and its immunosuppressive effects. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has gained significant prominence in the past few years as a valuable diagnostic and therapeutic instrument for the treatment of HIV-related lymphoma. This review will start with an overview of the subtypes, risk factors, and therapeutic choices for individuals with HIV-related lymphoma. We will then briefly discuss the current application of 18F-FDG PET/CT in the medical management of HIV-related lymphoma patients, followed by the initial staging of the disease, the evaluation of therapeutic response, the prediction of prognostic outcomes, the decision-making process for radiotherapy guided by PET findings, and the distinguishing of various diagnoses.
人类免疫缺陷病毒(HIV)感染是全球公共卫生面临的最紧迫问题之一。目前,HIV 相关淋巴瘤是导致 HIV 感染者死亡的最常见原因,值得更多关注。与 HIV 相关的淋巴瘤治疗所面临的独特挑战来自于潜在的 HIV 感染及其免疫抑制效应。在过去几年中,18F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(18F-FDG PET/CT)作为治疗艾滋病相关淋巴瘤的重要诊断和治疗工具,已获得了极大的重视。本综述将首先概述艾滋病相关淋巴瘤的亚型、风险因素和治疗选择。然后,我们将简要讨论 18F-FDG PET/CT 目前在艾滋病相关淋巴瘤患者医疗管理中的应用,接着讨论疾病的初步分期、治疗反应评估、预后预测、PET 发现指导下的放疗决策过程以及各种诊断的鉴别。
{"title":"Recent advancements in <sup>18</sup>F-FDG PET/CT for the diagnosis, staging, and treatment management of HIV-related lymphoma.","authors":"Ghazaleh Jamalipour Soufi, Ali Hekmatnia, Farzaneh Hekmatnia, Andrew Parviz Zarei, Shamim Shafieyoon, Sara Azizollahi, Mohamad Ghazanfari Hashemi, Farshad Riahi","doi":"10.62347/QPAS5990","DOIUrl":"10.62347/QPAS5990","url":null,"abstract":"<p><p>Infection with the Human Immunodeficiency Virus (HIV) is one of the most pressing issues facing public health on a worldwide scale. Currently, HIV-related lymphoma is the most common cause of death among people living with HIV, and warrants more attention. The unique challenges associated with HIV-related lymphoma management derive from the underlying HIV infection and its immunosuppressive effects. <sup>18</sup>F-fluorodeoxyglucose positron emission tomography/computed tomography (<sup>18</sup>F-FDG PET/CT) has gained significant prominence in the past few years as a valuable diagnostic and therapeutic instrument for the treatment of HIV-related lymphoma. This review will start with an overview of the subtypes, risk factors, and therapeutic choices for individuals with HIV-related lymphoma. We will then briefly discuss the current application of <sup>18</sup>F-FDG PET/CT in the medical management of HIV-related lymphoma patients, followed by the initial staging of the disease, the evaluation of therapeutic response, the prediction of prognostic outcomes, the decision-making process for radiotherapy guided by PET findings, and the distinguishing of various diagnoses.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 2","pages":"97-109"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to assess the efficacy of fluor-18 fluorodeoxyglucose (18F-FDG) PET/CT using sub-regional-based radiomics in predicting epidermal growth factor receptor (EGFR) mutation status in pretreatment patients with solid lung adenocarcinoma. A retrospective analysis included 269 patients (134 EGFR+ and 135 EGFR-) who underwent pretreatment 18F-FDG PET/CT scans and EGFR mutation testing. The most metabolically active intratumoral sub-region was identified, and radiomics features from whole tumors or sub-regional regions were used to build classification models. The dataset was split into a 7:3 ratio for training and independent testing. Feature subsets were determined by Pearson correlation and the Kruskal Wallis test and radiomics classifiers were built with support vector machines or logistic regressions. Evaluation metrics, including accuracy, area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were employed for different classifiers. Results indicated that the sub-region-based classifier outperformed the whole-tumor classifier in terms of accuracy (73.8% vs. 66.2%), AUC (0.768 vs. 0.632), specificity (65.0% vs. 50.0%), PPV (70.2% vs. 62.2%), and NPV (78.8% vs. 74.0%). The clinical classifier exhibited an accuracy of 75.0%, AUC of 0.768, sensitivity of 72.5%, specificity of 77.5%, PPV of 76.3%, and NPV of 73.8%. The combined classifier, incorporating sub-region analysis and clinical parameters, demonstrated further improvement with an accuracy of 77.5%, AUC of 0.807, sensitivity of 77.5%, specificity of 77.5%, and NPV of 77.5%. The study suggests that sub-region-based 18F-FDG PET/CT radiomics enhances EGFR mutation prediction in solid lung adenocarcinoma, providing a practical and cost-efficient alternative to invasive EGFR testing.
{"title":"Subregion-specific <sup>18</sup>F-FDG PET-CT radiomics for the pre-treatment prediction of EGFR mutation status in solid lung adenocarcinoma.","authors":"Yun Wang, Guang Yang, Xinyi Gao, Linfa Li, Hongzhou Zhu, Heqing Yi","doi":"10.62347/DDRR4923","DOIUrl":"10.62347/DDRR4923","url":null,"abstract":"<p><p>This study aimed to assess the efficacy of fluor-18 fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT using sub-regional-based radiomics in predicting epidermal growth factor receptor (EGFR) mutation status in pretreatment patients with solid lung adenocarcinoma. A retrospective analysis included 269 patients (134 EGFR+ and 135 EGFR-) who underwent pretreatment <sup>18</sup>F-FDG PET/CT scans and EGFR mutation testing. The most metabolically active intratumoral sub-region was identified, and radiomics features from whole tumors or sub-regional regions were used to build classification models. The dataset was split into a 7:3 ratio for training and independent testing. Feature subsets were determined by Pearson correlation and the Kruskal Wallis test and radiomics classifiers were built with support vector machines or logistic regressions. Evaluation metrics, including accuracy, area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were employed for different classifiers. Results indicated that the sub-region-based classifier outperformed the whole-tumor classifier in terms of accuracy (73.8% vs. 66.2%), AUC (0.768 vs. 0.632), specificity (65.0% vs. 50.0%), PPV (70.2% vs. 62.2%), and NPV (78.8% vs. 74.0%). The clinical classifier exhibited an accuracy of 75.0%, AUC of 0.768, sensitivity of 72.5%, specificity of 77.5%, PPV of 76.3%, and NPV of 73.8%. The combined classifier, incorporating sub-region analysis and clinical parameters, demonstrated further improvement with an accuracy of 77.5%, AUC of 0.807, sensitivity of 77.5%, specificity of 77.5%, and NPV of 77.5%. The study suggests that sub-region-based <sup>18</sup>F-FDG PET/CT radiomics enhances EGFR mutation prediction in solid lung adenocarcinoma, providing a practical and cost-efficient alternative to invasive EGFR testing.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 2","pages":"134-143"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25eCollection Date: 2024-01-01DOI: 10.62347/NFDH6303
Xi Chen, Yue Sun, Fei Li, Ling Xi, Jun Dai, Can Zhao, Qingjian Dong
Molecular imaging enables visualization and characterization of biological processes that influence tumor behavior and response to therapy. The TMTP1 (NVVRQ) peptide has shown remarkable affinity to highly metastatic tumors and and its potential receptor is aminopeptidase P2. In this study, we have designed and synthesized a 68Ga-labeled cyclic TMTP1 radiotracer (68Ga-DOTA-TMTP1), for PET imaging of cervical cancer. The goal of this study was to investigate the properties of this radiotracer and its tumor diagnostic potential. The radiochemical yield of 68Ga-DOTA-TMTP1 was high and the radiochemical purity was greater than 95%. The octanol-water partition coefficient for 68Ga-DOTA-TMTP1 was -2.76 ± 0.08 and 68Ga-DOTA-TMTP1 has showed excellent stability in in vitro studies. The cellular uptake and efflux of 68Ga-DOTA-TMTP1 in paired highly metastatic and lowly metastatic cervical cancer cell line HeLa and C-33A as well as normal cervical epithelial cell line End1 were measured in a γ counter. 68Ga-DOTA-TMTP1 exhibited higher uptake in HeLa cells than in C-33A cells. The binding to HeLa and C-33A cells could be blocked by excess TMTP1. On microPET images, HeLa tumors were clearly visualized within 60 min and the uptake of the radiotracer in HeLa tumors was higher than that of C-33A tumors. After blocking with TMTP1, HeLa tumors uptake was significantly reduced and the specificity 68Ga-DOTA-TMTP1 was thus validated. Overall, we have successfully synthesized 68Ga-DOTA-TMTP1 with high yield and high specific activity and have demonstrated its potential role for highly metastatic tumor-targeted diagnosis.
分子成像技术可对影响肿瘤行为和治疗反应的生物过程进行可视化和特征描述。TMTP1(NVVRQ)肽对高度转移性肿瘤具有显著的亲和力,其潜在受体是氨肽酶 P2。在这项研究中,我们设计并合成了一种 68Ga 标记的环状 TMTP1 放射性示踪剂(68Ga-DOTA-TMTP1),用于宫颈癌的 PET 成像。这项研究的目的是研究这种放射性示踪剂的特性及其肿瘤诊断潜力。68Ga-DOTA-TMTP1 的放射化学收率很高,放射化学纯度大于 95%。68Ga-DOTA-TMTP1的辛醇-水分配系数为-2.76 ± 0.08,68Ga-DOTA-TMTP1在体外研究中表现出优异的稳定性。68Ga-DOTA-TMTP1 在成对的高转移性和低转移性宫颈癌细胞系 HeLa 和 C-33A 以及正常宫颈上皮细胞系 End1 中的细胞摄取和外流情况在 γ 计数器中进行了测量。68Ga-DOTA-TMTP1 在 HeLa 细胞中的吸收率高于 C-33A 细胞。过量的 TMTP1 可以阻断与 HeLa 和 C-33A 细胞的结合。在 microPET 图像上,HeLa 肿瘤在 60 分钟内清晰可见,而且 HeLa 肿瘤对放射性示踪剂的摄取量高于 C-33A 肿瘤。用 TMTP1 阻断后,HeLa 肿瘤的摄取明显减少,68Ga-DOTA-TMTP1 的特异性由此得到验证。总之,我们成功合成了 68Ga-DOTA-TMTP1,其产量高、特异性强,证明了它在高转移性肿瘤靶向诊断中的潜在作用。
{"title":"<sup>68</sup>Ga-labeled TMTP1 radiotracer for PET imaging of cervical cancer.","authors":"Xi Chen, Yue Sun, Fei Li, Ling Xi, Jun Dai, Can Zhao, Qingjian Dong","doi":"10.62347/NFDH6303","DOIUrl":"10.62347/NFDH6303","url":null,"abstract":"<p><p>Molecular imaging enables visualization and characterization of biological processes that influence tumor behavior and response to therapy. The TMTP1 (NVVRQ) peptide has shown remarkable affinity to highly metastatic tumors and and its potential receptor is aminopeptidase P2. In this study, we have designed and synthesized a <sup>68</sup>Ga-labeled cyclic TMTP1 radiotracer (<sup>68</sup>Ga-DOTA-TMTP1), for PET imaging of cervical cancer. The goal of this study was to investigate the properties of this radiotracer and its tumor diagnostic potential. The radiochemical yield of <sup>68</sup>Ga-DOTA-TMTP1 was high and the radiochemical purity was greater than 95%. The octanol-water partition coefficient for <sup>68</sup>Ga-DOTA-TMTP1 was -2.76 ± 0.08 and <sup>68</sup>Ga-DOTA-TMTP1 has showed excellent stability in in vitro studies. The cellular uptake and efflux of <sup>68</sup>Ga-DOTA-TMTP1 in paired highly metastatic and lowly metastatic cervical cancer cell line HeLa and C-33A as well as normal cervical epithelial cell line End1 were measured in a γ counter. <sup>68</sup>Ga-DOTA-TMTP1 exhibited higher uptake in HeLa cells than in C-33A cells. The binding to HeLa and C-33A cells could be blocked by excess TMTP1. On microPET images, HeLa tumors were clearly visualized within 60 min and the uptake of the radiotracer in HeLa tumors was higher than that of C-33A tumors. After blocking with TMTP1, HeLa tumors uptake was significantly reduced and the specificity <sup>68</sup>Ga-DOTA-TMTP1 was thus validated. Overall, we have successfully synthesized <sup>68</sup>Ga-DOTA-TMTP1 with high yield and high specific activity and have demonstrated its potential role for highly metastatic tumor-targeted diagnosis.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"14 2","pages":"110-121"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}