Poly(ADP-ribose) polymerase (PARP) activation often indicates a disruptive signal to lipid metabolism, the physiological alteration of which may be implicated in the development of non-alcoholic fatty liver disease. The objective of this study was to evaluate the capability of [68Ga]DOTA-PARPi PET to detect hepatic PARP expression in a non-alcoholic steatohepatitis (NASH) mouse model. In this study, male C57BL/6 mice were subjected to a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for a 12-week period to establish preclinical NASH models. [68Ga]DOTA-PARPi PET imaging of the liver was conducted at the 12-week mark after CDAHFD feeding. Comprehensive histopathological analysis, covering hepatic steatosis, inflammation, fibrosis, along with blood biochemistry, was performed in both NASH models and control groups. Despite the induction of severe inflammation, steatosis and fibrosis in the liver of mice with the CDAHFD-NASH model, PET imaging of NASH with [68Ga]-DOTA-PARPi did not reveal a significantly higher uptake in NASH models compared to the control. This underscores the necessity for further development of new chelator-based PARP1 tracers with high binding affinity to enable the visualization of PARP1 changes in NASH pathology.