首页 > 最新文献

American journal of physiology. Lung cellular and molecular physiology最新文献

英文 中文
Neutrophil Elastase Activates Macrophage Calpain as a Mechanism for Phagocytic Failure. 中性粒细胞弹性蛋白酶激活巨噬细胞钙蛋白酶是吞噬失败的一种机制
IF 3.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-05 DOI: 10.1152/ajplung.00132.2024
Jonathan Ma, Apparao B Kummarapurugu, Shuo Zheng, Andrew J Ghio, Laxmikant S Deshpande, Judith A Voynow

Neutrophil elastase (NE), elevated in the cystic fibrosis (CF) airway, causes macrophage phagocytic failure. We previously reported that NE increases the release of protease Calpain-2 in macrophages. We hypothesized that NE mediates macrophage failure through activation of Calpains. We demonstrate that Calpain inhibition rescued NE induced macrophage phagocytic failure in murine alveolar macrophages in both cftr-null and wild type genotypes. We then sought to determine how NE regulates Calpain-2. Human monocyte derived macrophages (hMDM) from persons with CF (PwCF) and non-CF subjects, were treated with NE or control vehicle and cell lysates prepared to evaluate Calpain-2 protein abundance by Western, and Calpain activity by a specific activity kit. Calpain is activated by intracellular calcium and inactivated by an endogenous inhibitor, Calpastatin. Human MDM were thus treated with NE or control vehicle and cell lysates were analyzed for increased intracellular calcium by Fluo-4 assay and for Calpastatin protein abundance by Western. NE increased Calpain-2 protein and activity, degraded Calpastatin, and increased intracellular calcium in macrophages. At baseline there are no differences in Calpain activity, Calpain-2 and Calpastatin expression, and intracellular calcium between CF and non-CF macrophages. NE increased macrophage Calpain-2 protein and Calpain activity by two potential mechanisms: degradation of Calpastatin, and/or increased intracellular calcium. In summary, Calpain inhibition restored NE-induced macrophage phagocytic failure suggesting a potential CFTR-independent target for phagocytic failure in the CF airway.

在囊性纤维化(CF)气道中升高的中性粒细胞弹性蛋白酶(NE)会导致巨噬细胞吞噬功能衰竭。我们以前曾报道过 NE 会增加巨噬细胞中蛋白酶 Calpain-2 的释放。我们假设 NE 通过激活钙蛋白酶介导了巨噬细胞的衰竭。我们证明,抑制钙蛋白酶可挽救 NE 诱导的小鼠肺泡巨噬细胞吞噬功能衰竭,其基因型既有 cftr-null,也有野生型。然后,我们试图确定 NE 如何调节钙蛋白酶-2。用 NE 或对照品处理来自 CF 患者(PwCF)和非 CF 患者的人类单核细胞衍生巨噬细胞(hMDM),制备细胞裂解液,用 Western 法评估钙蛋白酶-2 蛋白丰度,用特异性活性试剂盒评估钙蛋白酶活性。钙蛋白酶由细胞内钙激活,并由内源性抑制剂钙司他丁失活。因此,用 NE 或对照品处理人 MDM,用 Fluo-4 法分析细胞裂解液中增加的细胞内钙,用 Western 法分析 Calpastatin 蛋白丰度。NE 增加了巨噬细胞中 Calpain-2 蛋白和活性,降解了 Calpastatin,并增加了细胞内钙。基线时,CF 和非 CF 巨噬细胞的钙蛋白酶活性、钙蛋白酶-2 和钙磷脂表达以及细胞内钙含量均无差异。NE 可通过两种潜在机制增加巨噬细胞的钙蛋白酶-2 蛋白和钙蛋白酶活性:降解钙磷脂和/或增加细胞内钙。总之,抑制钙蛋白酶可恢复 NE 诱导的巨噬细胞吞噬功能衰竭,这表明 CFTR 是导致 CF 气道吞噬功能衰竭的一个潜在的非依赖性靶点。
{"title":"Neutrophil Elastase Activates Macrophage Calpain as a Mechanism for Phagocytic Failure.","authors":"Jonathan Ma, Apparao B Kummarapurugu, Shuo Zheng, Andrew J Ghio, Laxmikant S Deshpande, Judith A Voynow","doi":"10.1152/ajplung.00132.2024","DOIUrl":"https://doi.org/10.1152/ajplung.00132.2024","url":null,"abstract":"<p><p>Neutrophil elastase (NE), elevated in the cystic fibrosis (CF) airway, causes macrophage phagocytic failure. We previously reported that NE increases the release of protease Calpain-2 in macrophages. We hypothesized that NE mediates macrophage failure through activation of Calpains. We demonstrate that Calpain inhibition rescued NE induced macrophage phagocytic failure in murine alveolar macrophages in both cftr-null and wild type genotypes. We then sought to determine how NE regulates Calpain-2. Human monocyte derived macrophages (hMDM) from persons with CF (PwCF) and non-CF subjects, were treated with NE or control vehicle and cell lysates prepared to evaluate Calpain-2 protein abundance by Western, and Calpain activity by a specific activity kit. Calpain is activated by intracellular calcium and inactivated by an endogenous inhibitor, Calpastatin. Human MDM were thus treated with NE or control vehicle and cell lysates were analyzed for increased intracellular calcium by Fluo-4 assay and for Calpastatin protein abundance by Western. NE increased Calpain-2 protein and activity, degraded Calpastatin, and increased intracellular calcium in macrophages. At baseline there are no differences in Calpain activity, Calpain-2 and Calpastatin expression, and intracellular calcium between CF and non-CF macrophages. NE increased macrophage Calpain-2 protein and Calpain activity by two potential mechanisms: degradation of Calpastatin, and/or increased intracellular calcium. In summary, Calpain inhibition restored NE-induced macrophage phagocytic failure suggesting a potential CFTR-independent target for phagocytic failure in the CF airway.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary-delivered Anticalin Jagged-1 antagonists reduce experimental airway mucus hyperproduction and obstruction. 肺部给药的安替卡林 Jagged-1 拮抗剂可减少实验性气道粘液过度分泌和阻塞。
IF 3.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-05 DOI: 10.1152/ajplung.00059.2024
Katharina Heinzelmann, Athanasios Fysikopoulos, Thomas J Jaquin, Janet K Peper-Gabriel, Eva-Maria Hansbauer, Stefan Grüner, Josef Prassler, Claudia Wurzenberger, Joseph G C Kennedy, Jazmin Y Snead, Joe A Wrennall, Kristina Heinig, Cornelia Wurzenberger, Rachida-Siham Bel Aiba, Robert Tarran, Alessandra Livraghi-Butrico, Mary F Fitzgerald, Gary P Anderson, Christine Rothe, Gabriele Matschiner, Shane A Olwill, Matthias Hagner

Mucus hypersecretion and mucus obstruction are pathogenic features in many chronic lung diseases directly linked to disease severity, exacerbation, progression, and mortality. The Jagged-1/Notch pathway is a promising therapeutic target that regulates secretory and ciliated cell trans-differentiation in the lung. However, the Notch pathway is also required in various other organs. Hence, pulmonary delivery of therapeutic agents is a promising approach to target this pathway while minimizing systemic exposure. Using Anticalin® technology, Jagged-1 Anticalin binding proteins were generated and engineered to potent and selective inhalable Jagged-1 antagonists. Their therapeutic potential to reduce airway mucus hyperproduction and obstruction was investigated ex vivo and in vivo. In primary airway cell cultures grown at air-liquid interface and stimulated with inflammatory cytokines, Jagged-1 Anticalin binding proteins reduced both mucin gene expression and mucous cell metaplasia. In vivo, prophylactic and therapeutic treatment with a pulmonary-delivered Jagged-1 Anticalin binding protein reduced mucous cell metaplasia, epithelial thickening and airway mucus hyperproduction in IL-13 and house dust mite allergen-challenged mice, respectively. Further, in a transgenic mouse model with pathophysiologic features of cystic fibrosis and COPD, pulmonary-delivered Jagged-1 Anticalin binding protein reduced hallmarks of airway mucus obstruction. In all in vivo models a reduction of mucous cells with a concomitant increase of ciliated cells was observed. Collectively, these findings support Jagged-1 antagonists' therapeutic potential for patients with muco-obstructive lung diseases, and the feasibility of targeting the Jagged-1/Notch pathway by inhalation.

粘液分泌过多和粘液阻塞是许多慢性肺病的致病特征,与疾病的严重程度、恶化、进展和死亡率直接相关。Jagged-1/Notch通路是一个很有前景的治疗靶点,它能调节肺部分泌细胞和纤毛细胞的转分化。然而,其他器官也需要 Notch 通路。因此,肺部给药是一种很有前景的方法,既能靶向这一途径,又能最大限度地减少全身暴露。利用 Anticalin® 技术生成了 Jagged-1 Anticalin 结合蛋白,并将其设计为强效、选择性的可吸入 Jagged-1 拮抗剂。研究人员对这些拮抗剂减少气道粘液过度分泌和阻塞的治疗潜力进行了体内外研究。在气-液界面生长的原发性气道细胞培养物中,在炎症细胞因子的刺激下,Jagged-1 Anticalin 结合蛋白可减少粘蛋白基因的表达和粘液细胞的增生。在体内,使用肺部投放的 Jagged-1 Anticalin 结合蛋白进行预防性和治疗性治疗,可分别减少 IL-13 和屋尘螨过敏原致敏小鼠的粘液细胞增生、上皮增厚和气道粘液亢进。此外,在具有囊性纤维化和慢性阻塞性肺病病理生理特征的转基因小鼠模型中,肺输送的 Jagged-1 抗原结合蛋白减少了气道粘液阻塞的特征。在所有体内模型中,都观察到粘液细胞减少,同时纤毛细胞增加。总之,这些研究结果支持 Jagged-1 拮抗剂对粘液阻塞性肺病患者的治疗潜力,以及通过吸入靶向 Jagged-1/Notch 通路的可行性。
{"title":"Pulmonary-delivered Anticalin Jagged-1 antagonists reduce experimental airway mucus hyperproduction and obstruction.","authors":"Katharina Heinzelmann, Athanasios Fysikopoulos, Thomas J Jaquin, Janet K Peper-Gabriel, Eva-Maria Hansbauer, Stefan Grüner, Josef Prassler, Claudia Wurzenberger, Joseph G C Kennedy, Jazmin Y Snead, Joe A Wrennall, Kristina Heinig, Cornelia Wurzenberger, Rachida-Siham Bel Aiba, Robert Tarran, Alessandra Livraghi-Butrico, Mary F Fitzgerald, Gary P Anderson, Christine Rothe, Gabriele Matschiner, Shane A Olwill, Matthias Hagner","doi":"10.1152/ajplung.00059.2024","DOIUrl":"https://doi.org/10.1152/ajplung.00059.2024","url":null,"abstract":"<p><p>Mucus hypersecretion and mucus obstruction are pathogenic features in many chronic lung diseases directly linked to disease severity, exacerbation, progression, and mortality. The Jagged-1/Notch pathway is a promising therapeutic target that regulates secretory and ciliated cell trans-differentiation in the lung. However, the Notch pathway is also required in various other organs. Hence, pulmonary delivery of therapeutic agents is a promising approach to target this pathway while minimizing systemic exposure. Using Anticalin® technology, Jagged-1 Anticalin binding proteins were generated and engineered to potent and selective inhalable Jagged-1 antagonists. Their therapeutic potential to reduce airway mucus hyperproduction and obstruction was investigated ex vivo and in vivo. In primary airway cell cultures grown at air-liquid interface and stimulated with inflammatory cytokines, Jagged-1 Anticalin binding proteins reduced both mucin gene expression and mucous cell metaplasia. In vivo, prophylactic and therapeutic treatment with a pulmonary-delivered Jagged-1 Anticalin binding protein reduced mucous cell metaplasia, epithelial thickening and airway mucus hyperproduction in IL-13 and house dust mite allergen-challenged mice, respectively. Further, in a transgenic mouse model with pathophysiologic features of cystic fibrosis and COPD, pulmonary-delivered Jagged-1 Anticalin binding protein reduced hallmarks of airway mucus obstruction. In all in vivo models a reduction of mucous cells with a concomitant increase of ciliated cells was observed. Collectively, these findings support Jagged-1 antagonists' therapeutic potential for patients with muco-obstructive lung diseases, and the feasibility of targeting the Jagged-1/Notch pathway by inhalation.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. 早产儿肺间充质干细胞通过 p21 受周期性拉伸和高氧衰老
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI: 10.1152/ajplung.00355.2023
Judith Behnke, Maurizio J Goetz, Lena Holzfurtner, Pauline Korte, Astrid Weiss, Tayyab Shahzad, Jochen Wilhelm, Ralph T Schermuly, Stefano Rivetti, Saverio Bellusci, Harald Ehrhardt

Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.

早产儿肺驻留间充质干细胞(MSC)的表型畸变是支气管肺发育不良发病机制的标志性事件。在此,我们评估了周期性机械拉伸(CMS)和高氧(HOX)的影响。与 40% 的高氧相比,80% 的高氧对细胞增殖和死亡的负面作用更为明显。虽然单用 CMS 的影响不大,但 CMS 加 HOX 的影响最大。p21干扰干扰了细胞衰老,导致细胞死亡加剧,这证明了一种促进生存的机制。HOX 40% 和有限暴露于 HOX 80% 会产生一种可逆的表型,并重新获得增殖,而长期暴露于 HOX 80% 则会导致间充质干细胞生长停滞。我们的机理数据解释了 HOX 和 CMS 如何诱导间充质干细胞表型破坏效应。这些结果与临床观察结果一致,即需要补充氧气和机械通气的早产儿特别容易患 BPD。虽然抑制 p21 并不是一种可行的方法,但限制暴露的持续时间和程度是很有希望的。
{"title":"Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21.","authors":"Judith Behnke, Maurizio J Goetz, Lena Holzfurtner, Pauline Korte, Astrid Weiss, Tayyab Shahzad, Jochen Wilhelm, Ralph T Schermuly, Stefano Rivetti, Saverio Bellusci, Harald Ehrhardt","doi":"10.1152/ajplung.00355.2023","DOIUrl":"10.1152/ajplung.00355.2023","url":null,"abstract":"<p><p>Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.<b>NEW & NOTEWORTHY</b> Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L694-L711"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAP2K1 dampens cigarette smoke-induced inflammation via suppression of type I interferon pathway activation. map2k1 通过抑制 i 型干扰素通路的激活来抑制香烟烟雾诱发的肺部炎症。
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI: 10.1152/ajplung.00080.2024
Ke-Qin Gong, Jourdan E Brune, Xiaoyun Guo, Anne M Manicone

Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in Map2k1 associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of Map2k1 in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid Map2k1 (LysmCre+Mek1fl) and wild-type mice (Mek1fl). Mice deficient in myeloid Map2k1 had enhanced CS-induced lung inflammation characterized by increased neutrophil recruitment, vascular leak, augmented expression of elastolytic matrix metalloproteinases, and increased type I interferon-stimulated gene expression. The augmented neutrophilic inflammatory response could be abrogated by IFNAR1 blockade. These findings indicate that myeloid Map2k1 regulates the immune response to CS via inhibition of the type I interferon pathway. Overall, these results suggest that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation and its expression is protective.NEW & NOTEWORTHY Activation of the mitogen-activated protein kinases (MAPK)-ERK1/2 pathway is present in COPD lung tissue compared with healthy lungs. Our study using mice deficient in myeloid Map2k1 reveals that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation via suppression of type I interferon responses, and its expression is protective.

慢性阻塞性肺病(COPD)包括慢性支气管炎和肺气肿,是全球发病率和死亡率的主要原因。慢性阻塞性肺病肺组织中存在 MAP2K(丝裂原活化蛋白 2 激酶)通路激活,Map2k1 的遗传多态性与慢性阻塞性肺病患者 FEV1 下降有关,这表明它可能与疾病发病机制有关。为了测试 Map2k1 在香烟烟雾(CS)诱导的肺部炎症中的功能性贡献,我们在缺乏髓系 Map2k1 的小鼠(LysmCre+Mek1fl)和野生型小鼠(Mek1fl)中使用了短期 CS 暴露模型。缺失髓系 Map2k1 的小鼠在 CS 诱导的肺部炎症中表现为中性粒细胞募集增加、溶解性基质金属蛋白酶表达增加以及 I 型干扰素刺激基因表达增加。中性粒细胞炎症反应的增强可通过阻断 IFNAR1 而减弱。这些研究结果表明,髓细胞 Map2k1 通过抑制 I 型干扰素通路调节对 CS 的免疫反应。总之,这些结果表明,Map2k1 是调节 CS 诱导的肺部炎症严重程度的关键因素,其表达具有保护作用。
{"title":"MAP2K1 dampens cigarette smoke-induced inflammation via suppression of type I interferon pathway activation.","authors":"Ke-Qin Gong, Jourdan E Brune, Xiaoyun Guo, Anne M Manicone","doi":"10.1152/ajplung.00080.2024","DOIUrl":"10.1152/ajplung.00080.2024","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in <i>Map2k1</i> associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of <i>Map2k1</i> in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid <i>Map2k1</i> (<i>Lysm<sup>Cre+</sup>Mek1<sup>fl</sup></i>) and wild-type mice (<i>Mek1<sup>fl</sup></i>). Mice deficient in myeloid <i>Map2k1</i> had enhanced CS-induced lung inflammation characterized by increased neutrophil recruitment, vascular leak, augmented expression of elastolytic matrix metalloproteinases, and increased type I interferon-stimulated gene expression. The augmented neutrophilic inflammatory response could be abrogated by IFNAR1 blockade. These findings indicate that myeloid <i>Map2k1</i> regulates the immune response to CS via inhibition of the type I interferon pathway. Overall, these results suggest that <i>Map2k1</i> is a critical determinant in modulating the severity of CS-induced lung inflammation and its expression is protective.<b>NEW & NOTEWORTHY</b> Activation of the mitogen-activated protein kinases (MAPK)-ERK1/2 pathway is present in COPD lung tissue compared with healthy lungs. Our study using mice deficient in myeloid <i>Map2k1</i> reveals that <i>Map2k1</i> is a critical determinant in modulating the severity of CS-induced lung inflammation via suppression of type I interferon responses, and its expression is protective.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L740-L748"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bronchoalveolar lavage dilution conundrum: an updated view on a long-standing problem. 支气管肺泡灌洗液稀释难题:对长期存在问题的最新看法。
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI: 10.1152/ajplung.00054.2024
Sarah Haeger, Camille M Moore, Shannon A McManus, Peter K Moore, William J Janssen, Kara J Mould

Bronchoalveolar lavage (BAL) is used by researchers to study molecular interactions within healthy and diseased human lungs. However, the utility of BAL fluid measurements may be limited by difficulties accounting for dilution of the epithelial lining fluid (ELF) sampled and inconsistent collection techniques. The use of endogenous markers to estimate ELF dilution has been proposed as a potential method to normalize acellular molecule measurements in BAL fluid, but these markers are also imperfect and prone to inaccuracy. The focus of this report is to review factors that affect the interpretation of acellular molecule measurements in lung ELF and present original data comparing the performance of several BAL dilution markers during health and in a human endobronchial endotoxin challenge model of acute inflammation. Our findings suggest that incomplete ELF and lavage fluid mixing, flux of markers across the alveolar barrier, and lung inflammation are all possible factors that can affect marker performance. Accounting for these factors, we show that commonly used markers including urea, total protein, albumin, and immunoglobulin M are likely unreliable BAL dilution markers. In contrast, surfactant protein D appears to be less affected by these factors and may be a more accurate and biologically plausible marker to improve the reproducibility of acellular BAL component measurements across individuals during health and inflammatory states.NEW & NOTEWORTHY In this report, mathematical prediction models and real-world measurements are used to compare the performance of molecular markers of dilution in bronchoalveolar lavage fluid samples. Effects of acute inflammation within individual subjects are highlighted. These findings inform recommendations for normalizing measurements across bronchoalveolar lavage samples and highlight the need for additional markers to improve the rigor of translational studies utilizing bronchoalveolar lavage measurements.

研究人员利用支气管肺泡灌洗液(BAL)来研究健康和患病人体肺部的分子相互作用。然而,由于难以考虑上皮内衬液(ELF)的稀释以及收集技术的不一致,BAL 液测量的实用性可能会受到限制。有人提出使用内源性标记物来估算 ELF 稀释度,作为对 BAL 液中无细胞分子测量值进行归一化的一种潜在方法,但这些标记物也不完善,容易出现误差。本报告的重点是回顾影响肺ELF中无细胞分子测量结果解读的因素,并提供原始数据,比较几种BAL稀释标记物在健康状态下和在人类急性炎症支气管内毒素挑战模型中的表现。我们的研究结果表明,ELF 和灌洗液的不完全混合、标记物穿过肺泡屏障的通量以及肺部炎症都可能是影响标记物性能的因素。考虑到这些因素,我们发现尿素、总蛋白、白蛋白和免疫球蛋白 M 等常用标记物可能是不可靠的 BAL 稀释标记物。相比之下,表面活性蛋白 D 受这些因素的影响较小,可能是一种更准确、更符合生物学原理的标记物,可提高不同个体、健康和炎症状态下无细胞 BAL 成分测量的可重复性。
{"title":"The bronchoalveolar lavage dilution conundrum: an updated view on a long-standing problem.","authors":"Sarah Haeger, Camille M Moore, Shannon A McManus, Peter K Moore, William J Janssen, Kara J Mould","doi":"10.1152/ajplung.00054.2024","DOIUrl":"10.1152/ajplung.00054.2024","url":null,"abstract":"<p><p>Bronchoalveolar lavage (BAL) is used by researchers to study molecular interactions within healthy and diseased human lungs. However, the utility of BAL fluid measurements may be limited by difficulties accounting for dilution of the epithelial lining fluid (ELF) sampled and inconsistent collection techniques. The use of endogenous markers to estimate ELF dilution has been proposed as a potential method to normalize acellular molecule measurements in BAL fluid, but these markers are also imperfect and prone to inaccuracy. The focus of this report is to review factors that affect the interpretation of acellular molecule measurements in lung ELF and present original data comparing the performance of several BAL dilution markers during health and in a human endobronchial endotoxin challenge model of acute inflammation. Our findings suggest that incomplete ELF and lavage fluid mixing, flux of markers across the alveolar barrier, and lung inflammation are all possible factors that can affect marker performance. Accounting for these factors, we show that commonly used markers including urea, total protein, albumin, and immunoglobulin M are likely unreliable BAL dilution markers. In contrast, surfactant protein D appears to be less affected by these factors and may be a more accurate and biologically plausible marker to improve the reproducibility of acellular BAL component measurements across individuals during health and inflammatory states.<b>NEW & NOTEWORTHY</b> In this report, mathematical prediction models and real-world measurements are used to compare the performance of molecular markers of dilution in bronchoalveolar lavage fluid samples. Effects of acute inflammation within individual subjects are highlighted. These findings inform recommendations for normalizing measurements across bronchoalveolar lavage samples and highlight the need for additional markers to improve the rigor of translational studies utilizing bronchoalveolar lavage measurements.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L807-L813"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New faces: introducing the newest Editorial Board Fellows of the American Journal of Physiology-Lung Cellular and Molecular Physiology. 新面孔:介绍《美国生理学杂志-肺细胞与分子生理学》最新的编委成员。
IF 3.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-10-01 DOI: 10.1152/ajplung.00304.2024
Larissa A Shimoda, Cristina M Alvira, Julie A Bastarache, Rodney D Britt, Wolfgang M Kuebler, Thiago S Moreira, Eric P Schmidt
{"title":"New faces: introducing the newest Editorial Board Fellows of the <i>American Journal of Physiology-Lung Cellular and Molecular Physiology</i>.","authors":"Larissa A Shimoda, Cristina M Alvira, Julie A Bastarache, Rodney D Britt, Wolfgang M Kuebler, Thiago S Moreira, Eric P Schmidt","doi":"10.1152/ajplung.00304.2024","DOIUrl":"https://doi.org/10.1152/ajplung.00304.2024","url":null,"abstract":"","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":"327 5","pages":"L669-L671"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of mechanical stimulation in the development of respiratory system diseases. 呼吸系统疾病发生的机械刺激机制。
IF 3.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI: 10.1152/ajplung.00122.2024
Tian Xia, Ziyin Pan, Haoxin Wan, Yongsen Li, Guocai Mao, Jun Zhao, Fangbiao Zhang, Shu Pan

During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.

在呼吸过程中,机械应力会引发影响呼吸系统的生物反应。机械应力在呼吸系统的发育过程中起着至关重要的作用。然而,病理机械应力可通过影响细胞外基质和细胞传导过程来影响呼吸系统疾病的发生和发展。在本文中,我们将探讨机械力与细胞沟通并对其产生影响的机制。我们概述了呼吸力学的基本知识,从微观角度阐明了机械刺激在影响呼吸系统发育和分化中的重要作用。我们还探讨了机械传导在哮喘、肺损伤、肺纤维化和肺癌等呼吸系统疾病的发病和发展过程中的潜在机制。最后,我们展望了细胞机械传导的新研究方向,旨在为未来呼吸系统疾病的治疗研究提供新的见解。
{"title":"Mechanisms of mechanical stimulation in the development of respiratory system diseases.","authors":"Tian Xia, Ziyin Pan, Haoxin Wan, Yongsen Li, Guocai Mao, Jun Zhao, Fangbiao Zhang, Shu Pan","doi":"10.1152/ajplung.00122.2024","DOIUrl":"10.1152/ajplung.00122.2024","url":null,"abstract":"<p><p>During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L724-L739"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal importance of the soluble receptor for advanced glycation end-products in nonintubated hospitalized patients with COVID-19 pneumonia. COVID-19 肺炎非插管住院患者体内高级糖化终产物可溶性受体的纵向重要性。
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI: 10.1152/ajplung.00350.2023
Katherine D Wick, Lianne Siegel, Cathryn Oldmixon, Jens D Lundgren, B Taylor Thompson, Chayse Jones, Carolyn Leroux, Michael A Matthay

The soluble receptor for advanced glycation end-products (sRAGE) is a marker of alveolar type I cell injury associated with outcomes in COVID-19 pneumonia. How plasma sRAGE changes over time and whether it remains associated with long-term clinical outcomes beyond a single measurement in COVID-19 have not been well studied. We studied two cohorts in randomized clinical trials of monoclonal antibody treatment for COVID-19 (bamlanivimab and tixagevimab/cilgavimab). We first studied the association between baseline plasma sRAGE and 90-day clinical outcomes, which had been previously demonstrated in the bamlanivimab cohort, among hospitalized patients with COVID-19 supported with high-flow nasal oxygen (HFNO) or noninvasive ventilation (NIV) in the tixagevimab/cilgavimab study. Next, we investigated the relationship between day 3 sRAGE and 90-day outcomes and how plasma sRAGE changes over the first 3 days of hospitalization in both clinical trial cohorts. We found that plasma sRAGE in the highest quartile in the HFNO/NIV participants in the tixagevimab/cilgavimab trial was associated with a significantly lower rate of 90-day sustained recovery [recovery rate ratio = 0.31, 95% confidence interval (CI) = 0.14-0.71, P = 0.005] and with a significantly higher rate of 90-day mortality (hazard ratio = 2.49, 95% CI = 1.15-5.43, P = 0.021) compared with the lower three quartiles. Day 3 plasma sRAGE in both clinical trial cohorts remained associated with 90-day clinical outcomes. The trajectory of sRAGE was not influenced by treatment assignment. Our results indicate that plasma sRAGE is a valuable prognostic marker in COVID-19 up to 3 days after initial hospital presentation.NEW & NOTEWORTHY The soluble receptor for advanced glycation end-products (sRAGE) is a marker of alveolar type I epithelial cell injury associated with clinical outcomes in acute respiratory distress syndrome and, more recently, in hospitalized subjects with COVID-19. How plasma sRAGE changes over time and whether plasma sRAGE remains associated with long-term clinical outcomes beyond a single baseline measurement in patients with COVID-19 have not been well studied.

高级糖化终产物可溶性受体(sRAGE)是与 COVID-19 肺炎结果相关的肺泡 I 型细胞损伤标志物。对于血浆 sRAGE 如何随时间发生变化,以及除了 COVID-19 的单次测量之外,它是否仍与长期临床结果相关,尚未进行深入研究。我们研究了单克隆抗体治疗 COVID-19 随机临床试验中的两个队列(bamlanivimab 和 tixagevimab/cilgavimab)。我们首先研究了基线血浆 sRAGE 与 90 天临床预后之间的关系,该关系之前已在 bamlanivimab 队列中得到证实,而在 tixagevimab/cilgavimab 研究中,COVID-19 住院患者在高流量鼻氧 (HFNO) 或无创通气 (NIV) 支持下的 90 天临床预后也得到了证实。接下来,我们研究了两个临床试验队列中第 3 天 sRAGE 与 90 天预后之间的关系以及住院头 3 天血浆 sRAGE 的变化情况。我们发现,与较低的三个四分位数相比,tixagevimab/cilgavimab 试验中 HFNO/NIV 参与者血浆 sRAGE 最高的四分位数与较低的 90 天持续康复率(康复率比 0.31,95% CI 0.14-0.71,p=0.005)和较高的 90 天死亡率(HR 2.49,95% CI 1.15-5.43,p=0.021)相关。两个临床试验队列的第 3 天血浆 sRAGE 仍与 90 天临床结果相关。sRAGE 的变化轨迹不受治疗分配的影响。我们的研究结果表明,在 COVID-19 中,血浆 sRAGE 是一个有价值的预后标志物,可持续到首次入院后三天。
{"title":"Longitudinal importance of the soluble receptor for advanced glycation end-products in nonintubated hospitalized patients with COVID-19 pneumonia.","authors":"Katherine D Wick, Lianne Siegel, Cathryn Oldmixon, Jens D Lundgren, B Taylor Thompson, Chayse Jones, Carolyn Leroux, Michael A Matthay","doi":"10.1152/ajplung.00350.2023","DOIUrl":"10.1152/ajplung.00350.2023","url":null,"abstract":"<p><p>The soluble receptor for advanced glycation end-products (sRAGE) is a marker of alveolar type I cell injury associated with outcomes in COVID-19 pneumonia. How plasma sRAGE changes over time and whether it remains associated with long-term clinical outcomes beyond a single measurement in COVID-19 have not been well studied. We studied two cohorts in randomized clinical trials of monoclonal antibody treatment for COVID-19 (bamlanivimab and tixagevimab/cilgavimab). We first studied the association between baseline plasma sRAGE and 90-day clinical outcomes, which had been previously demonstrated in the bamlanivimab cohort, among hospitalized patients with COVID-19 supported with high-flow nasal oxygen (HFNO) or noninvasive ventilation (NIV) in the tixagevimab/cilgavimab study. Next, we investigated the relationship between <i>day 3</i> sRAGE and 90-day outcomes and how plasma sRAGE changes over the first 3 days of hospitalization in both clinical trial cohorts. We found that plasma sRAGE in the highest quartile in the HFNO/NIV participants in the tixagevimab/cilgavimab trial was associated with a significantly lower rate of 90-day sustained recovery [recovery rate ratio = 0.31, 95% confidence interval (CI) = 0.14-0.71, <i>P</i> = 0.005] and with a significantly higher rate of 90-day mortality (hazard ratio = 2.49, 95% CI = 1.15-5.43, <i>P</i> = 0.021) compared with the lower three quartiles. <i>Day 3</i> plasma sRAGE in both clinical trial cohorts remained associated with 90-day clinical outcomes. The trajectory of sRAGE was not influenced by treatment assignment. Our results indicate that plasma sRAGE is a valuable prognostic marker in COVID-19 up to 3 days after initial hospital presentation.<b>NEW & NOTEWORTHY</b> The soluble receptor for advanced glycation end-products (sRAGE) is a marker of alveolar type I epithelial cell injury associated with clinical outcomes in acute respiratory distress syndrome and, more recently, in hospitalized subjects with COVID-19. How plasma sRAGE changes over time and whether plasma sRAGE remains associated with long-term clinical outcomes beyond a single baseline measurement in patients with COVID-19 have not been well studied.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L607-L614"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas aeruginosa ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment. 铜绿假单胞菌 ExoY 感染肺微血管内皮细胞会向细胞外释放环核苷酸。
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI: 10.1152/ajplung.00038.2024
Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner

Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether P. aeruginosa primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with P. aeruginosa expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following P. aeruginosa ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, P. aeruginosa infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent P. aeruginosa.NEW & NOTEWORTHY P. aeruginosa exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. P. aeruginosa infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.

表达可溶性杂环酶 ExoY 的铜绿假单胞菌三型分泌系统(TTSS)能在肺微血管内皮细胞(PMVECs)中产生环核苷酸。在细胞内,环核苷酸信号高度分区,但这些第二信使也会释放到细胞外空间。虽然激动剂刺激内源性腺苷酸环化酶(AC)或 ExoY 的存在会增加环核苷酸,但细胞内与细胞外的信号比例尚未确定。此外,目前还不清楚铜绿假单胞菌原发感染或用原发感染产生的无菌培养基上清处理是否会改变β-肾上腺素能激动剂诱导的 PMVECs 中 cAMP 的升高。在这里,我们确定 PMVECs 在内源性 AC 受 beta 肾上腺素能刺激后,以及在感染表达 ExoY 的铜绿假单胞菌后,会向细胞外空间连续释放 cAMP。令人惊讶的是,在 PMVECs 中,在基线或铜绿假单胞菌 ExoY 感染后,细胞内只检测到一小部分 cGMP,而在细胞外检测到的 cGMP 总量所占比例较大。因此,仅检测细胞内的环核苷酸可能会低估肺内皮细胞生成环核苷酸的能力,因为大部分环核苷酸被输送到细胞外。此外,铜绿假单胞菌感染或用原发感染的无菌培养基上清液处理会抑制β-肾上腺素能cAMP反应,而功能性ExoY的表达会进一步减弱这种反应。这些发现揭示了铜绿假单胞菌感染表达 TTSS 的 ExoY 后细胞外环核苷酸过量的现象。
{"title":"<i>Pseudomonas aeruginosa</i> ExoY infection of pulmonary microvascular endothelial cells releases cyclic nucleotides into the extracellular compartment.","authors":"Madeline Stone, Chung-Sik Choi, Nandita Dey, Grace Swain, Troy Stevens, Sarah L Sayner","doi":"10.1152/ajplung.00038.2024","DOIUrl":"10.1152/ajplung.00038.2024","url":null,"abstract":"<p><p>Type three secretion system (TTSS)-competent Pseudomonas aeruginosa expressing soluble promiscuous cyclase, exoenzyme Y (ExoY), generates cyclic nucleotides in pulmonary microvascular endothelial cells (PMVECs). Within cells, cyclic nucleotide signals are highly compartmentalized, but these second messengers are also released into the extracellular space. Although agonist stimulation of endogenous adenylyl cyclase (AC) or the presence of ExoY increases cyclic nucleotides, the proportion of the signal that is in the intracellular versus extracellular compartments is unresolved. Furthermore, it is unclear whether <i>P. aeruginosa</i> primary infection or treatment with sterile media supernatants derived from a primary infection alters beta-adrenergic agonist-induced elevations in cAMP in PMVECs. Herein, we determine that PMVECs release cAMP into the extracellular space constitutively, following beta-adrenergic stimulation of endogenous AC, and following infection with <i>P. aeruginosa</i> expressing ExoY. Surprisingly, in PMVECs, only a small proportion of cGMP is detected within the cell at baseline or following <i>P. aeruginosa</i> ExoY infection with a larger proportion of total cGMP being detected extracellularly. Thus, the ability of lung endothelium to generate cyclic nucleotides may be underestimated by examining intracellular cyclic nucleotides alone, since a large portion is delivered into the extracellular compartment. In addition, <i>P. aeruginosa</i> infection or treatment with sterile media supernatants from a primary infection suppresses the beta-adrenergic cAMP response, which is further attenuated by the expression of functional ExoY. These findings reveal an overabundance of extracellular cyclic nucleotides following infection with ExoY expressing TTSS-competent <i>P. aeruginosa</i>.<b>NEW & NOTEWORTHY</b> <i>P. aeruginosa</i> exoenzyme Y (ExoY) infection increases cyclic nucleotides intracellularly, but an overabundance of cAMP and cGMP is also detected in the extracellular space and reveals a greater capacity of pulmonary endothelial cells to generate cAMP and cGMP. <i>P. aeruginosa</i> infection or treatment with sterile media supernatants derived from a primary infection suppresses the β-adrenergic-induced cAMP response in pulmonary endothelial cells, which is exacerbated by the expression of functional ExoY.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L756-L768"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells. LMTK2 在人类支气管上皮细胞中开启典型的 TGF-β1 信号传导。
IF 4.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-24 DOI: 10.1152/ajplung.00034.2024
Daniel F Cruz, Joshua Donovan, Ewelina D Hejenkowska, Fangping Mu, Ipsita Banerjee, Maja Köhn, Carlos M Farinha, Agnieszka Swiatecka-Urban

Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.NEW & NOTEWORTHY Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.

转化生长因子(TGF-β1)是慢性肺病中一种重要的促纤维化介质,目前还没有减轻其不良影响的具体策略。TGF-β1 信号的激活是一个涉及配体、跨膜受体和转录因子的多部分过程。此外,一个由适配蛋白组成的复杂网络对信号强度、持续时间和活性进行微调。也就是说,Smad7 会招募生长停滞和 DNA 损伤(GADD34)蛋白,然后与磷蛋白磷酸酶 1(PP1c)的催化亚基相互作用,使 TGF-β 受体(TβR)-I 失活,并下调 TGF-β1 信号传导。人们对 TGF-β1 如何从 GADD34-PP1c 抑制作用中释放 TβR-I 以激活其信号传导知之甚少。跨膜狐猴酪氨酸激酶 2(LMTK2)是 PP1c 抑制剂,我们已发表的数据显示 TGF-β1 将 LMTK2 募集到细胞表面。在这里,我们检验了 TGF-β1 招募 LMTK2 以抑制 PP1c 从而激活 TβR-I 的假设。首先,在人类支气管上皮细胞中,LMTK2 在多个检查点与 TGF-β1 通路相互作用。其次,TGF-β1通过LMTK2依赖性机制抑制PP1c。第三,TGF-β1 利用 LMTK2 激活由 Smad3 介导的典型信号传导。我们提出了一个模型,即 LMTK2-PP1c 和 Smad7-GADD34-PP1c 复合物是人类支气管上皮细胞中 TGF-β1 信号传导的开关。
{"title":"LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells.","authors":"Daniel F Cruz, Joshua Donovan, Ewelina D Hejenkowska, Fangping Mu, Ipsita Banerjee, Maja Köhn, Carlos M Farinha, Agnieszka Swiatecka-Urban","doi":"10.1152/ajplung.00034.2024","DOIUrl":"10.1152/ajplung.00034.2024","url":null,"abstract":"<p><p>Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.<b>NEW & NOTEWORTHY</b> Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L769-L782"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Lung cellular and molecular physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1