首页 > 最新文献

American journal of physiology. Endocrinology and metabolism最新文献

英文 中文
Ethnic differences in postprandial fatty acid trafficking and utilization between overweight and obese White European and Black African-Caribbean men. 超重和肥胖的欧洲白人男子与非洲裔加勒比黑人男子之间在餐后脂肪酸贩运和利用方面的种族差异。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-07-31 DOI: 10.1152/ajpendo.00164.2024
Reuben M Reed, Fariba Shojaee-Moradie, Gráinne Whelehan, Nicola Jackson, Oliver C Witard, Margot Umpleby, Barbara A Fielding, Martin B Whyte, Louise M Goff

Black African-Caribbean (BAC) populations are at greater risk of cardiometabolic disease than White Europeans (WE), despite exhibiting lower fasting triacylglycerol (TAG) concentrations. However, limited data exist regarding postprandial fatty acid metabolism in BAC populations. This study determined the ethnic differences in postprandial fatty acid metabolism between overweight and obese WE and BAC men. WE [n = 10, age 33.3 ± 1.7 yr; body mass index (BMI) = 26.8 (25.8-31.0) kg/m2] and BAC [n = 9, age 27.9 ± 1.0 yr; BMI = 27.5 (26.0-28.6) kg/m2] men consumed two consecutive (at 0 and 300 min) moderate-to-high-fat meals-the first labeled with [U-13C]palmitate. The plasma concentration and appearance of meal-derived fatty acids in very-low-density lipoprotein (VLDL)-TAG, chylomicron-TAG, and nonesterified fatty acid (NEFA) were determined over an 8-h postprandial period. Indirect calorimetry with 13CO2 enrichment determined total and meal-derived fatty acid oxidation rates, and plasma β-hydroxybutyrate (3-OHB) concentration was measured to assess ketogenesis. BAC exhibited lower postprandial TAG [area under the curve (AUC0-480) = 671 (563-802) vs. 469 (354-623) mmol/L/min, P = 0.022] and VLDL-TAG [AUC0-480 = 288 ± 30 vs. 145 ± 27 mmol/L/min, P = 0.003] concentrations than WE. The appearance of meal-derived fatty acids in VLDL-TAG was lower in BAC than in WE (AUC0-480 = 133 ± 12 vs. 78 ± 13 mmol/L/min, P = 0.007). Following the second meal, BAC showed a trend for lower chylomicron-TAG concentration [AUC300-480 = 69 (51-93) vs. 43 (28-67) mmol/L/min, P = 0.057]. There were no ethnic differences in the appearance of chylomicron-TAG, cumulative fatty acid oxidation, and the NEFA:3-OHB ratio (P > 0.05). In conclusion, BAC exhibit lower postprandial TAG concentrations compared with WE men, driven by lower VLDL-TAG concentrations and possibly lower chylomicron-TAG in the late postprandial period. These findings suggest that postprandial fatty acid trafficking may be a less important determinant of cardiometabolic risk in BAC than in WE men.NEW & NOTEWORTHY Postprandial TAG is lower in Black African-Caribbean men than in White European men, and this is likely driven by lower meal-derived VLDL-TAG in Black African-Caribbean men. This observation could suggest that fatty acid trafficking may be a less important determinant of cardiometabolic risk in Black Africans than in White European men.

尽管空腹三酰甘油(TAG)浓度较低,但非洲-加勒比黑人(BAC)罹患心脏代谢疾病的风险却高于欧洲白人(WE)。然而,有关黑加勒比海人餐后脂肪酸代谢的数据却很有限。本研究确定了超重和肥胖的白种人与白种人之间餐后脂肪酸代谢的种族差异。WE(n=10)和 BAC(n=9)男性连续进食两顿中高脂肪餐,第一顿用 U-13C 棕榈酸酯标记。在 8 小时内测定血浆中极度低密度脂蛋白 (VLDL) -TAG、乳糜微粒 -TAG 和 NEFA 中源自膳食的脂肪酸的浓度和外观。利用 13CO2 富集间接量热法测定总脂肪酸和膳食衍生脂肪酸的氧化率,并测定血浆中 b-羟基丁酸(3-OHB)的浓度以评估酮体生成情况。BAC 的餐后 TAG(P=0.006)和 VLDL-TAG (P=0.002)浓度低于 WE。BAC 的 VLDL-TAG 中出现的餐源性脂肪酸低于 WE(P=0.004)。第二餐后,BAC 的乳糜微粒-TAG 浓度呈下降趋势(P=0.057)。乳糜微粒-TAG中出现的餐源性脂肪酸没有种族差异。WE和BAC的累积脂肪酸氧化和NEFA:3-OHB比率相似。总之,与 WE 男子相比,BAC 男子的餐后 TAG 浓度较低,其原因是 VLDL-TAG 浓度较低,也可能是餐后晚期乳糜微粒-TAG 浓度较低。在 BAC 中,VLDL-TAG 浓度较低的部分原因是 VLDL-TAG 中出现的餐源性脂肪酸较少。这些研究结果表明,与 WE 男子相比,BAC 男子餐后脂肪酸贩运对心脏代谢风险的决定作用可能较小。
{"title":"Ethnic differences in postprandial fatty acid trafficking and utilization between overweight and obese White European and Black African-Caribbean men.","authors":"Reuben M Reed, Fariba Shojaee-Moradie, Gráinne Whelehan, Nicola Jackson, Oliver C Witard, Margot Umpleby, Barbara A Fielding, Martin B Whyte, Louise M Goff","doi":"10.1152/ajpendo.00164.2024","DOIUrl":"10.1152/ajpendo.00164.2024","url":null,"abstract":"<p><p>Black African-Caribbean (BAC) populations are at greater risk of cardiometabolic disease than White Europeans (WE), despite exhibiting lower fasting triacylglycerol (TAG) concentrations. However, limited data exist regarding postprandial fatty acid metabolism in BAC populations. This study determined the ethnic differences in postprandial fatty acid metabolism between overweight and obese WE and BAC men. WE [<i>n</i> = 10, age 33.3 ± 1.7 yr; body mass index (BMI) = 26.8 (25.8-31.0) kg/m<sup>2</sup>] and BAC [<i>n</i> = 9, age 27.9 ± 1.0 yr; BMI = 27.5 (26.0-28.6) kg/m<sup>2</sup>] men consumed two consecutive (at 0 and 300 min) moderate-to-high-fat meals-the first labeled with [U-<sup>13</sup>C]palmitate. The plasma concentration and appearance of meal-derived fatty acids in very-low-density lipoprotein (VLDL)-TAG, chylomicron-TAG, and nonesterified fatty acid (NEFA) were determined over an 8-h postprandial period. Indirect calorimetry with <sup>13</sup>CO<sub>2</sub> enrichment determined total and meal-derived fatty acid oxidation rates, and plasma β-hydroxybutyrate (3-OHB) concentration was measured to assess ketogenesis. BAC exhibited lower postprandial TAG [area under the curve (AUC<sub>0-480</sub>) = 671 (563-802) vs. 469 (354-623) mmol/L/min, <i>P</i> = 0.022] and VLDL-TAG [AUC<sub>0-480</sub> = 288 ± 30 vs. 145 ± 27 mmol/L/min, <i>P</i> = 0.003] concentrations than WE. The appearance of meal-derived fatty acids in VLDL-TAG was lower in BAC than in WE (AUC<sub>0-480</sub> = 133 ± 12 vs. 78 ± 13 mmol/L/min, <i>P</i> = 0.007). Following the second meal, BAC showed a trend for lower chylomicron-TAG concentration [AUC<sub>300-480</sub> = 69 (51-93) vs. 43 (28-67) mmol/L/min, <i>P</i> = 0.057]. There were no ethnic differences in the appearance of chylomicron-TAG, cumulative fatty acid oxidation, and the NEFA:3-OHB ratio (<i>P</i> > 0.05). In conclusion, BAC exhibit lower postprandial TAG concentrations compared with WE men, driven by lower VLDL-TAG concentrations and possibly lower chylomicron-TAG in the late postprandial period. These findings suggest that postprandial fatty acid trafficking may be a less important determinant of cardiometabolic risk in BAC than in WE men.<b>NEW & NOTEWORTHY</b> Postprandial TAG is lower in Black African-Caribbean men than in White European men, and this is likely driven by lower meal-derived VLDL-TAG in Black African-Caribbean men. This observation could suggest that fatty acid trafficking may be a less important determinant of cardiometabolic risk in Black Africans than in White European men.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E585-E597"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintenance of thermogenic adipose tissues despite loss of the H3K27 acetyltransferases p300 or CBP. 尽管丧失了 H3K27 乙酰转移酶 p300 或 CBP,但生热脂肪组织仍能维持。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-14 DOI: 10.1152/ajpendo.00120.2024
Daniel Gamu, Makenna S Cameron, William T Gibson

Brown and beige adipose tissues are specialized for thermogenesis and are important for energy balance in mice. Mounting evidence suggests that chromatin-modifying enzymes are integral for the development, maintenance, and functioning of thermogenic adipocytes. p300 and cAMP-response element binding protein (CREB)-binding protein (CBP) are histone acetyltransferases (HATs) responsible for writing the transcriptionally activating mark H3K27ac. Despite their homology, p300 and CBP do have unique tissue- and context-dependent roles, which have yet to be examined in brown and beige adipocytes specifically. We assessed the requirement of p300 or CBP in thermogenic fat using uncoupling protein 1 (Ucp1)-Cre-mediated knockdown in mice to determine whether their loss impacted tissue development, susceptibility to diet-induced obesity, and response to pharmacological induction via β3-agonism. Despite successful knockdown, brown adipose tissue mass and expression of thermogenic markers were unaffected by loss of either HAT. As such, knockout mice developed a comparable degree of diet-induced obesity and glucose intolerance to that of floxed controls. Furthermore, "browning" of white adipose tissue by the β3-adrenergic agonist CL-316,243 remained largely intact in knockout mice. Although p300 and CBP have nonoverlapping roles in other tissues, our results indicate that they are individually dispensable within thermogenic fats specifically, possibly due to functional compensation by one another.NEW & NOTEWORTHY The role of transcriptionally activating H3K27ac epigenetic mark has yet to be examined in mouse thermogenic fats specifically, which we achieved here via Ucp1-Cre-driven knockdown of the histone acetyltransferases (HAT) p300 or CBP under several metabolic contexts. Despite successful knockdown of either HAT, brown adipose tissue was maintained at room temperature. As such, knockout mice were indistinguishable to controls when fed an obesogenic diet or when given a β3-adrenergic receptor agonist to induce browning of white fat. Unlike other tissues, thermogenic fats are resilient to p300 or CBP ablation, likely due to sufficient functional overlap between them.

棕色和米色脂肪组织专门用于产热,对小鼠的能量平衡非常重要。越来越多的证据表明,染色质修饰酶是生热脂肪细胞发育、维持和发挥作用不可或缺的因素。p300 和 CREB 结合蛋白(CBP)是组蛋白乙酰转移酶(HAT),负责写入转录激活标记 H3K27ac。尽管它们具有同源性,但 p300 和 CBP 确实具有独特的组织和环境依赖性作用,这些作用尚未在棕色和米色脂肪细胞中进行专门研究。我们利用 Ucp1-Cre 介导的小鼠基因敲除技术评估了产热脂肪对 p300 或 CBP 的需求,以确定它们的缺失是否会影响组织发育、对饮食诱发肥胖的易感性以及对通过 b3-agonism 进行药物诱导的反应。尽管成功敲除了HAT,但棕色脂肪组织的质量和生热标志物的表达并没有受到HAT缺失的影响。因此,基因敲除小鼠在饮食诱发肥胖和葡萄糖不耐受方面的发展程度与基因缺失对照组相当。此外,b3-肾上腺素能激动剂 CL-316243 对白色脂肪组织的 "棕色化 "作用在基因敲除小鼠中基本保持不变。虽然 p300 和 CBP 在其他组织中的作用并不重叠,但我们的研究结果表明,它们在产热脂肪中是不可或缺的,这可能是由于它们之间的功能补偿作用。
{"title":"Maintenance of thermogenic adipose tissues despite loss of the H3K27 acetyltransferases p300 or CBP.","authors":"Daniel Gamu, Makenna S Cameron, William T Gibson","doi":"10.1152/ajpendo.00120.2024","DOIUrl":"10.1152/ajpendo.00120.2024","url":null,"abstract":"<p><p>Brown and beige adipose tissues are specialized for thermogenesis and are important for energy balance in mice. Mounting evidence suggests that chromatin-modifying enzymes are integral for the development, maintenance, and functioning of thermogenic adipocytes. p300 and cAMP-response element binding protein (CREB)-binding protein (CBP) are histone acetyltransferases (HATs) responsible for writing the transcriptionally activating mark H3K27ac. Despite their homology, p300 and CBP do have unique tissue- and context-dependent roles, which have yet to be examined in brown and beige adipocytes specifically. We assessed the requirement of p300 or CBP in thermogenic fat using uncoupling protein 1 (<i>Ucp1</i>)<i>-</i>Cre-mediated knockdown in mice to determine whether their loss impacted tissue development, susceptibility to diet-induced obesity, and response to pharmacological induction via β<sub>3</sub>-agonism. Despite successful knockdown, brown adipose tissue mass and expression of thermogenic markers were unaffected by loss of either HAT. As such, knockout mice developed a comparable degree of diet-induced obesity and glucose intolerance to that of floxed controls. Furthermore, \"browning\" of white adipose tissue by the β<sub>3</sub>-adrenergic agonist CL-316,243 remained largely intact in knockout mice. Although p300 and CBP have nonoverlapping roles in other tissues, our results indicate that they are individually dispensable within thermogenic fats specifically, possibly due to functional compensation by one another.<b>NEW & NOTEWORTHY</b> The role of transcriptionally activating H3K27ac epigenetic mark has yet to be examined in mouse thermogenic fats specifically, which we achieved here via <i>Ucp1</i>-Cre-driven knockdown of the histone acetyltransferases (HAT) p300 or CBP under several metabolic contexts. Despite successful knockdown of either HAT, brown adipose tissue was maintained at room temperature. As such, knockout mice were indistinguishable to controls when fed an obesogenic diet or when given a β<sub>3</sub>-adrenergic receptor agonist to induce browning of white fat. Unlike other tissues, thermogenic fats are resilient to p300 or CBP ablation, likely due to sufficient functional overlap between them.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E459-E468"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delayed and diminished postprandial lactate shuttling in healthy older men and women. 健康老年男性和女性的餐后乳酸穿梭延迟和减少。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-07 DOI: 10.1152/ajpendo.00183.2024
Jose A Arevalo, Robert G Leija, Adam D Osmond, Casey C Curl, Justin J Duong, Melvin J Huie, Umesh Masharani, George A Brooks

Lactate, a product of glycolysis, is formed under aerobic conditions. Extensive work has shown lactate flux in young and exercising humans; however, the effect of age is not known. We tested the hypothesis that postprandial lactate shuttling (PLS) would be diminished in older adults. We used [3-13C]lactate and [6,6-2H]glucose tracers, an oral glucose tolerance test (OGTT), and arterialized blood sampling to determine postprandial lactate rates of appearance (Ra), disappearance (Rd), and oxidation (Rox) in 15 young (28.1 ± 1.4 yr) and 13 older (70.6 ± 2.4 yr) healthy men and women. In young participants, fasting blood [lactate] (≈0.5 mM) rose after the glucose challenge, peaked at 15 min, dipped to a nadir at 30 min, and rose again peaking at 60 min (≈1.0 mM). Initial responses in lactate Ra of older participants were delayed and diminished until 90 min rising by 0.83 mg·kg-1·min-1. Lactate Rox was higher throughout the entire trial in young participants by a difference of ∼0.5 mg·kg-1·min-1. Initial peaks in lactate Ra and concentration in all volunteers demonstrated the presence of an enteric PLS following an OGTT. Notably, in the systemic, but not enteric, PLS phase, lactate Ra correlated highly with glucose Rd (r2 = 0.92). Correspondence of second peaks in lactate Ra and concentration and glucose Rd shows dependence of lactate Ra on glucose Rd. Although results show both enteric and systemic PLS phases in young and older study cohorts, metabolic responses were delayed and diminished in healthy older individuals.NEW & NOTEWORTHY We used isotope tracers, an oral glucose tolerance test, and arterialized blood sampling to determine postprandial lactate flux rates in healthy young and older men and women. Lactate rates of appearance and oxidation and the lactate-pyruvate exchange were delayed and diminished in both enteric and systemic postprandial lactate shuttle phases in older participants.

乳酸盐是糖酵解的产物,在有氧条件下形成。大量研究表明,乳酸盐通量存在于年轻人和运动人群中,但年龄的影响尚不清楚。我们测试了老年人餐后乳酸穿梭(PLS)会减少的假设。我们使用[3-13C]乳酸盐和[6,6-2H]-葡萄糖示踪剂、OGTT 和动脉采血法测定了 15 名年轻(28.1 ± 1.4 岁)和 13 名老年(70.6 ± 2.4 岁)健康男性和女性的餐后乳酸盐出现率(Ra)、消失率(Rd)和氧化率(Rox)。年轻参与者的空腹血液[乳酸][" 0.5 毫摩尔]在葡萄糖挑战后上升,15 分钟达到峰值,30 分钟降至最低点,60 分钟再次上升,达到峰值[" 1.0 毫摩尔]。年龄较大的参与者乳酸Ra的初始反应延迟并减弱,直到90分钟时才上升0.83毫克-千克-1-分钟-1。在整个试验过程中,年轻参与者的乳酸 Rox 较高,两者相差约 0.5 毫克-公斤-1-分钟-1。所有志愿者的乳酸 Ra 和乳酸浓度的初始峰值都表明,在 OGTT 之后存在肠道 PLS。值得注意的是,在全身而非肠道 PLS 阶段,乳酸 Ra 与葡萄糖 Rd 高度相关(r2 = 0.92)。乳酸盐 Ra 和浓度的第二个峰值与葡萄糖 Rd 的对应关系表明乳酸盐 Ra 依赖于葡萄糖 Rd。虽然研究结果表明年轻和年长的研究队列中都存在肠道和全身 PLS 阶段,但在健康的年长者中,新陈代谢反应延迟并减弱。
{"title":"Delayed and diminished postprandial lactate shuttling in healthy older men and women.","authors":"Jose A Arevalo, Robert G Leija, Adam D Osmond, Casey C Curl, Justin J Duong, Melvin J Huie, Umesh Masharani, George A Brooks","doi":"10.1152/ajpendo.00183.2024","DOIUrl":"10.1152/ajpendo.00183.2024","url":null,"abstract":"<p><p>Lactate, a product of glycolysis, is formed under aerobic conditions. Extensive work has shown lactate flux in young and exercising humans; however, the effect of age is not known. We tested the hypothesis that postprandial lactate shuttling (PLS) would be diminished in older adults. We used [3-<sup>13</sup>C]lactate and [6,6-<sup>2</sup>H]glucose tracers, an oral glucose tolerance test (OGTT), and arterialized blood sampling to determine postprandial lactate rates of appearance (Ra), disappearance (Rd), and oxidation (Rox) in 15 young (28.1 ± 1.4 yr) and 13 older (70.6 ± 2.4 yr) healthy men and women. In young participants, fasting blood [lactate] (≈0.5 mM) rose after the glucose challenge, peaked at 15 min, dipped to a nadir at 30 min, and rose again peaking at 60 min (≈1.0 mM). Initial responses in lactate Ra of older participants were delayed and diminished until 90 min rising by 0.83 mg·kg<sup>-1</sup>·min<sup>-1</sup>. Lactate Rox was higher throughout the entire trial in young participants by a difference of ∼0.5 mg·kg<sup>-1</sup>·min<sup>-1</sup>. Initial peaks in lactate Ra and concentration in all volunteers demonstrated the presence of an enteric PLS following an OGTT. Notably, in the systemic, but not enteric, PLS phase, lactate Ra correlated highly with glucose Rd (<i>r</i><sup>2</sup> = 0.92). Correspondence of second peaks in lactate Ra and concentration and glucose Rd shows dependence of lactate Ra on glucose Rd. Although results show both enteric and systemic PLS phases in young and older study cohorts, metabolic responses were delayed and diminished in healthy older individuals.<b>NEW & NOTEWORTHY</b> We used isotope tracers, an oral glucose tolerance test, and arterialized blood sampling to determine postprandial lactate flux rates in healthy young and older men and women. Lactate rates of appearance and oxidation and the lactate-pyruvate exchange were delayed and diminished in both enteric and systemic postprandial lactate shuttle phases in older participants.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E430-E440"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute hypoxic conditions preceding endotoxin administration result in an increased proinflammatory cytokine response in healthy men. 健康男性在服用内毒素之前的急性缺氧状态会导致促炎细胞因子反应的增加。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-14 DOI: 10.1152/ajpendo.00247.2024
Marie Jakobs, Bastian Tebbe, Anna Lena Friedel, Tina Schönberger, Harald Engler, Benjamin Wilde, Joachim Fandrey, Tina Hörbelt-Grünheidt, Manfred Schedlowski

Tissues often experience hypoxia at sites of inflammation due to malperfusion, massive immune cell recruitment, and increased oxygen consumption. Organisms adapt to these hypoxic conditions through the transcriptional activation of various genes. In fact, there is significant crosstalk between the transcriptional responses to hypoxia and inflammatory processes. This interaction, named inflammatory hypoxia, plays a crucial role in various diseases including malignancies, chronic inflammatory lung diseases, and sepsis. To further elucidate the crosstalk between hypoxia and inflammation in vivo and assess its potential for innovative therapies, our study aimed at investigating the impact of acute hypoxic conditions on inflammation-induced immune responses. To this end, we exposed healthy human subjects to hypoxia either before (hypoxia priming) or after a single intravenous (i.v.) injection of 0.4 ng/kg LPS. Our data show that hypoxia exposure prior to LPS injection (hypoxia priming) amplified the proinflammatory response. This was reflected by an increase in body temperature, plasma noradrenaline levels, and the production of proinflammatory cytokines (i.e., IL-6 and TNF-α), compared with LPS control conditions. These effects were not observed when participants were exposed to hypoxia after LPS administration, demonstrating that the interaction between hypoxia and inflammation highly depends on the timing of both stimuli. Our findings suggest that acute hypoxia (i.e., hypoxia priming) modulates transient inflammation, leading to an enhanced proinflammatory response in healthy human subjects. This highlights the need for further investigations to understand the pathology of various hypoxia-inducible factor (HIF)-associated inflammatory diseases and to develop suitable, innovative therapies.NEW & NOTEWORTHY To our knowledge, this is the first in vivo study investigating the effects of hypoxia preceding (hypoxia priming) or following LPS administration on the endotoxin-induced inflammatory response in healthy human subjects. The data show that hypoxia priming amplified the proinflammatory response, reflected by an increased body temperature, increased plasma noradrenaline levels, and higher production of proinflammatory cytokines (i.e., IL-6 and TNF-α) compared with LPS control conditions.

在炎症部位,由于灌注不良、免疫细胞大量招募和耗氧量增加,组织经常会出现缺氧。生物体通过各种基因的转录激活来适应这些缺氧条件。事实上,低氧和炎症过程的转录反应之间存在着明显的相互影响。这种相互作用被命名为炎症性缺氧,在恶性肿瘤、慢性炎症性肺病和败血症等多种疾病中起着至关重要的作用。为了进一步阐明体内缺氧与炎症之间的相互影响,并评估其对创新疗法的潜力,我们的研究旨在调查急性缺氧条件对炎症诱导的免疫反应的影响。为此,我们让健康人在静脉注射 0.4 纳克/千克 LPS 之前(缺氧启动)或之后暴露于缺氧环境中。我们的数据显示,在注射 LPS 之前暴露于低氧环境(低氧启动)会扩大促炎反应。与 LPS 控制条件相比,体温、血浆去甲肾上腺素水平和促炎细胞因子(即 IL-6 和 TNF-α)的产生均有所增加。当参与者在服用 LPS 后暴露于低氧环境时,并没有观察到这些影响,这表明低氧和炎症之间的相互作用在很大程度上取决于两种刺激的时间。我们的研究结果表明,急性缺氧(即缺氧引物)会调节瞬时炎症,导致健康人的促炎症反应增强。这凸显了进一步研究的必要性,以了解各种与 HIF 相关的炎症性疾病的病理,并开发合适的创新疗法。
{"title":"Acute hypoxic conditions preceding endotoxin administration result in an increased proinflammatory cytokine response in healthy men.","authors":"Marie Jakobs, Bastian Tebbe, Anna Lena Friedel, Tina Schönberger, Harald Engler, Benjamin Wilde, Joachim Fandrey, Tina Hörbelt-Grünheidt, Manfred Schedlowski","doi":"10.1152/ajpendo.00247.2024","DOIUrl":"10.1152/ajpendo.00247.2024","url":null,"abstract":"<p><p>Tissues often experience hypoxia at sites of inflammation due to malperfusion, massive immune cell recruitment, and increased oxygen consumption. Organisms adapt to these hypoxic conditions through the transcriptional activation of various genes. In fact, there is significant crosstalk between the transcriptional responses to hypoxia and inflammatory processes. This interaction, named inflammatory hypoxia, plays a crucial role in various diseases including malignancies, chronic inflammatory lung diseases, and sepsis. To further elucidate the crosstalk between hypoxia and inflammation in vivo and assess its potential for innovative therapies, our study aimed at investigating the impact of acute hypoxic conditions on inflammation-induced immune responses. To this end, we exposed healthy human subjects to hypoxia either before (hypoxia priming) or after a single intravenous (i.v.) injection of 0.4 ng/kg LPS. Our data show that hypoxia exposure prior to LPS injection (hypoxia priming) amplified the proinflammatory response. This was reflected by an increase in body temperature, plasma noradrenaline levels, and the production of proinflammatory cytokines (i.e., IL-6 and TNF-α), compared with LPS control conditions. These effects were not observed when participants were exposed to hypoxia after LPS administration, demonstrating that the interaction between hypoxia and inflammation highly depends on the timing of both stimuli. Our findings suggest that acute hypoxia (i.e., hypoxia priming) modulates transient inflammation, leading to an enhanced proinflammatory response in healthy human subjects. This highlights the need for further investigations to understand the pathology of various hypoxia-inducible factor (HIF)-associated inflammatory diseases and to develop suitable, innovative therapies.<b>NEW & NOTEWORTHY</b> To our knowledge, this is the first in vivo study investigating the effects of hypoxia preceding (hypoxia priming) or following LPS administration on the endotoxin-induced inflammatory response in healthy human subjects. The data show that hypoxia priming amplified the proinflammatory response, reflected by an increased body temperature, increased plasma noradrenaline levels, and higher production of proinflammatory cytokines (i.e., IL-6 and TNF-α) compared with LPS control conditions.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E422-E429"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paternal obesity decreases infant MSC mitochondrial functional capacity. 父亲肥胖会降低婴儿间充质干细胞线粒体的功能能力。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-14 DOI: 10.1152/ajpendo.00239.2024
Filip Jevtovic, Alex Claiborne, Ericka M Biagioni, David N Collier, James E DeVente, Steven Mouro, Tomoko Kaneko-Tarui, Perrie F O-Tierney-Ginn, Laurie J Goodyear, Joseph A Houmard, Nicholas T Broskey, Linda E May

Besides the well-recognized influence of maternal health on fetal in utero development, recent epidemiological studies appoint paternal preconception metabolic health as a significant factor in shaping fetal metabolic programming and subsequently offspring metabolic health; however, mechanisms behind these adaptations remain confined to animal models. To elucidate the effects of paternal obesity (P-OB) on infant metabolism in humans, we examined mesenchymal stem cells (MSCs), which give rise to infant tissue, remain involved in mature tissue maintenance, and resemble the phenotype of the offspring donor. Here, we assessed mitochondrial functional capacity, content, and insulin action in MSC from infants of fathers with overweight [body mass index (BMI: 25-30 kg/m2); paternal overweight (P-OW)] or obesity (BMI ≥ 30 kg/m2; P-OB) while controlling for maternal intrauterine environment. Compared with P-OW, infant MSCs in the P-OB group had lower intact cell respiration, OXPHOS, and electron transport system capacity, independent of any changes in mitochondrial content. Furthermore, glucose handling, insulin action, lipid content, and oxidation were similar between groups. Importantly, infants in the P-OB group had a greater weight-to-length ratio, which could be in part due to changes in MSC metabolic functioning, which precedes and, therefore, influences infant growth trajectories. These data suggest that P-OB negatively influences infant MSC mitochondria. ClinicalTrials.gov Identifier: NCT03838146.NEW & NOTEWORTHY Paternal obesity decreases infant mesenchymal stem cell (MSC) basal and maximal respiration. Lower OXPHOS and electron transport system capacity could be explained by lower complex I and IV respiratory capacity but not changes in OXPHOS expression in infant MSC from fathers with obesity. Paternal obesity and altered MSC mitochondrial functional capacity are associated with a greater infant weight-to-length ratio at birth.

除了公认的母体健康对胎儿子宫内发育的影响外,最近的流行病学研究还发现,父亲孕前的代谢健康是影响胎儿代谢程序和后代代谢健康的重要因素;然而,这些适应性背后的机制仍局限于动物模型。为了阐明父亲肥胖(P-OB)对人类婴儿新陈代谢的影响,我们研究了间充质干细胞(MSCs),它们能产生婴儿组织,继续参与成熟组织的维护,并与后代供体的表型相似。在这里,我们评估了超重(体重指数25-30kg/m2)(P-OW)或肥胖(体重指数≥30kg/m2)(P-OB)父亲的婴儿间充质干细胞的线粒体功能能力、含量和胰岛素作用,同时控制了母体宫内环境。与P-OW组相比,P-OB组婴儿间充质干细胞的完整细胞呼吸、OXPHOS和电子传递系统能力较低,与线粒体含量的任何变化无关。此外,各组间的葡萄糖处理、胰岛素作用、脂质含量和氧化作用也相似。重要的是,P-OB 组婴儿的体重身长比更大,其部分原因可能是间充质干细胞代谢功能发生了变化,这种变化先于婴儿的生长轨迹,并因此影响了婴儿的生长轨迹。这些数据表明,P-OB 对婴儿间充质干细胞线粒体有负面影响。
{"title":"Paternal obesity decreases infant MSC mitochondrial functional capacity.","authors":"Filip Jevtovic, Alex Claiborne, Ericka M Biagioni, David N Collier, James E DeVente, Steven Mouro, Tomoko Kaneko-Tarui, Perrie F O-Tierney-Ginn, Laurie J Goodyear, Joseph A Houmard, Nicholas T Broskey, Linda E May","doi":"10.1152/ajpendo.00239.2024","DOIUrl":"10.1152/ajpendo.00239.2024","url":null,"abstract":"<p><p>Besides the well-recognized influence of maternal health on fetal in utero development, recent epidemiological studies appoint paternal preconception metabolic health as a significant factor in shaping fetal metabolic programming and subsequently offspring metabolic health; however, mechanisms behind these adaptations remain confined to animal models. To elucidate the effects of paternal obesity (P-OB) on infant metabolism in humans, we examined mesenchymal stem cells (MSCs), which give rise to infant tissue, remain involved in mature tissue maintenance, and resemble the phenotype of the offspring donor. Here, we assessed mitochondrial functional capacity, content, and insulin action in MSC from infants of fathers with overweight [body mass index (BMI: 25-30 kg/m<sup>2</sup>); paternal overweight (P-OW)] or obesity (BMI ≥ 30 kg/m<sup>2</sup>; P-OB) while controlling for maternal intrauterine environment. Compared with P-OW, infant MSCs in the P-OB group had lower intact cell respiration, OXPHOS, and electron transport system capacity, independent of any changes in mitochondrial content. Furthermore, glucose handling, insulin action, lipid content, and oxidation were similar between groups. Importantly, infants in the P-OB group had a greater weight-to-length ratio, which could be in part due to changes in MSC metabolic functioning, which precedes and, therefore, influences infant growth trajectories. These data suggest that P-OB negatively influences infant MSC mitochondria. ClinicalTrials.gov Identifier: NCT03838146.<b>NEW & NOTEWORTHY</b> Paternal obesity decreases infant mesenchymal stem cell (MSC) basal and maximal respiration. Lower OXPHOS and electron transport system capacity could be explained by lower complex I and IV respiratory capacity but not changes in OXPHOS expression in infant MSC from fathers with obesity. Paternal obesity and altered MSC mitochondrial functional capacity are associated with a greater infant weight-to-length ratio at birth.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E441-E448"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. 了解脂肪组织巨噬细胞和生命早期代谢编程的关键问题和差距。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-22 DOI: 10.1152/ajpendo.00140.2024
Kaitlyn B Hill, Gregory P Mullen, Prabhakara R Nagareddy, Kurt A Zimmerman, Michael C Rudolph

The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.

全球肥胖症的流行及其相关的并发症和早期死亡风险的增加,突出表明我们迫切需要加强对这一复杂疾病起源的了解。人们越来越清楚地认识到,新陈代谢在生命早期就已形成,而新陈代谢的形成会对健康产生终身影响。作为对生命早期刺激敏感的重要代谢器官,脂肪组织(AT)的正常发育对终生能量平衡至关重要。生命早期的营养物质,尤其是脂肪酸(FA),会对脂肪组织的发育产生重要影响,并塑造其功能和新陈代谢。人们越来越感兴趣的是,在产前和产后发育过程中,脂肪分解代谢过程中暴露于促炎性欧米伽-6(n6)和抗炎性欧米伽-3(n3)脂肪酸的动态反应。在美国母体饮食中,由于 n6-FA 的流行,"促炎 "n6-与 "抗炎 "n3-FA 的比例急剧上升。值得注意的是,脂肪间质巨噬细胞(ATM)是脂肪基质细胞中的一个重要群体,不仅在脂肪间质的形成和维持中发挥着重要作用,而且还是细胞间脂质和细胞因子信号转导的关键介质。尽管 ATM 和免疫代谢领域进展迅速,但研究主要集中在对肥胖饮食和成年期的反应上。因此,在确定促进新陈代谢健康的机制方面还存在很大差距,尤其是在建立 ATM 生理过程中的脂质暴露方面。我们的综述强调了目前对 ATM 多样性的理解、它们在 AT 中的关键作用、它们在生命早期代谢编程中的潜在作用以及对代谢和健康的广泛影响。
{"title":"Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming.","authors":"Kaitlyn B Hill, Gregory P Mullen, Prabhakara R Nagareddy, Kurt A Zimmerman, Michael C Rudolph","doi":"10.1152/ajpendo.00140.2024","DOIUrl":"10.1152/ajpendo.00140.2024","url":null,"abstract":"<p><p>The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (<i>n</i>6) and anti-inflammatory omega-3 (<i>n</i>3) FA exposures in AT. In the US maternal diet, the ratio of \"<i>pro-inflammatory</i>\" <i>n</i>6- to \"<i>anti-inflammatory</i>\" <i>n</i>3-FAs has grown dramatically due to the greater prevalence of <i>n</i>6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E478-E497"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency. GCN2 驱动肝脏综合应激反应的昼夜模式,并在氨基酸不足时维持全身代谢的昼夜节律。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI: 10.1152/ajpendo.00129.2024
Jordan L Levy, Emily T Mirek, Esther M Rodriguez, Maria J Tolentino, Brian A Zalma, Troy A Roepke, Ronald C Wek, Ruifeng Cao, Tracy G Anthony

Disruptions in circadian rhythms are associated with an increased risk of developing metabolic diseases. General control nonderepressible 2 (GCN2), a primary sensor of amino acid insufficiency and activator of the integrated stress response (ISR), has emerged as a conserved regulator of the circadian clock in multiple organisms. The objective of this study was to examine diurnal patterns in hepatic ISR activation in the liver and whole body rhythms in metabolism. We hypothesized that GCN2 activation cues hepatic ISR signaling over a natural 24-h feeding-fasting cycle. To address our objective, wild-type (WT) and whole body Gcn2 knockout (GCN2 KO) mice were housed in metabolic cages and provided free access to either a control or leucine-devoid diet (LeuD) for 8 days in total darkness. On the last day, blood and livers were collected at CT3 (CT = circadian time) and CT15. In livers of WT mice, GCN2 phosphorylation followed a diurnal pattern that was guided by intracellular branched-chain amino acid concentrations (r2 = 0.93). Feeding LeuD to WT mice increased hepatic ISR activation at CT15 only. Diurnal oscillations in hepatic ISR signaling, the hepatic transcriptome including lipid metabolic genes, and triglyceride concentrations were substantially reduced or absent in GCN2 KO mice. Furthermore, mice lacking GCN2 were unable to maintain circadian rhythms in whole body energy expenditure, respiratory exchange ratio, and physical activity when fed LeuD. In conclusion, GCN2 activation functions to maintain diurnal ISR activation in the liver and has a vital role in the mechanisms by which nutrient stress affects whole body metabolism.NEW & NOTEWORTHY This work reveals that the eIF2 kinase GCN2 functions to support diurnal patterns in the hepatic integrated stress response during natural feeding and is necessary to maintain circadian rhythms in energy expenditure, respiratory exchange ratio, and physical activity during amino acid stress.

昼夜节律紊乱与代谢性疾病发病风险的增加有关。一般控制非减压因子 2(GCN2)是氨基酸不足的主要传感器和综合应激反应(ISR)的激活因子,已成为多种生物中昼夜节律的保守调节因子。本研究的目的是考察肝脏中肝脏 ISR 激活的昼夜模式和全身代谢节律。我们假设 GCN2 的激活会在自然的 24 小时进食禁食周期中提示肝脏 ISR 信号转导。为了实现我们的目标,我们将野生型(WT)和全身Gcn2基因敲除(GCN2 KO)小鼠饲养在代谢笼中,让它们在完全黑暗的环境中自由摄入对照组或亮氨酸-去氧饮食(LeuD)8天。最后一天,在昼夜节律时间(CT)3和CT15采集血液和肝脏。在 WT 小鼠肝脏中,GCN2 磷酸化遵循细胞内支链氨基酸浓度引导的昼夜模式(r2=0.93)。给 WT 小鼠喂食 LeuD 只增加了 CT15 的肝 ISR 激活。在 GCN2 KO 小鼠中,肝脏 ISR 信号的昼夜振荡、包括脂质代谢基因在内的肝脏转录组以及甘油三酯浓度都大大降低或消失。此外,缺乏 GCN2 的小鼠在喂食 LeuD 时无法维持全身能量消耗、呼吸交换比和体力活动的昼夜节律。总之,GCN2 的激活功能可维持肝脏中昼夜节律的 ISR 激活,并在营养压力影响全身代谢的机制中发挥重要作用。
{"title":"GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency.","authors":"Jordan L Levy, Emily T Mirek, Esther M Rodriguez, Maria J Tolentino, Brian A Zalma, Troy A Roepke, Ronald C Wek, Ruifeng Cao, Tracy G Anthony","doi":"10.1152/ajpendo.00129.2024","DOIUrl":"10.1152/ajpendo.00129.2024","url":null,"abstract":"<p><p>Disruptions in circadian rhythms are associated with an increased risk of developing metabolic diseases. General control nonderepressible 2 (GCN2), a primary sensor of amino acid insufficiency and activator of the integrated stress response (ISR), has emerged as a conserved regulator of the circadian clock in multiple organisms. The objective of this study was to examine diurnal patterns in hepatic ISR activation in the liver and whole body rhythms in metabolism. We hypothesized that GCN2 activation cues hepatic ISR signaling over a natural 24-h feeding-fasting cycle. To address our objective, wild-type (WT) and whole body <i>Gcn2</i> knockout (GCN2 KO) mice were housed in metabolic cages and provided free access to either a control or leucine-devoid diet (LeuD) for 8 days in total darkness. On the last day, blood and livers were collected at <i>CT3</i> (CT = circadian time) and <i>CT15</i>. In livers of WT mice, GCN2 phosphorylation followed a diurnal pattern that was guided by intracellular branched-chain amino acid concentrations (<i>r</i><sup>2</sup> = 0.93). Feeding LeuD to WT mice increased hepatic ISR activation at <i>CT15</i> only. Diurnal oscillations in hepatic ISR signaling, the hepatic transcriptome including lipid metabolic genes, and triglyceride concentrations were substantially reduced or absent in GCN2 KO mice. Furthermore, mice lacking GCN2 were unable to maintain circadian rhythms in whole body energy expenditure, respiratory exchange ratio, and physical activity when fed LeuD. In conclusion, GCN2 activation functions to maintain diurnal ISR activation in the liver and has a vital role in the mechanisms by which nutrient stress affects whole body metabolism.<b>NEW & NOTEWORTHY</b> This work reveals that the eIF2 kinase GCN2 functions to support diurnal patterns in the hepatic integrated stress response during natural feeding and is necessary to maintain circadian rhythms in energy expenditure, respiratory exchange ratio, and physical activity during amino acid stress.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E563-E576"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secreted GDF15 maintains transcriptional responses during DNA damage-mediated senescence in human beta cells. 分泌的 GDF15 可在 DNA 损伤介导的人类 β 细胞衰老过程中维持转录反应。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI: 10.1152/ajpendo.00257.2024
Nayara Rampazzo Morelli, Camille Préfontaine, Jasmine Pipella, Peter J Thompson

Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-βH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including GDF15 itself and the prosurvival gene BCL2-like protein 1 (BCL2L1). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.NEW & NOTEWORTHY Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.

1 型糖尿病(T1D)是一种慢性代谢性疾病,由胰腺β细胞的自身免疫性破坏引起。在 T1D 的发展过程中,β 细胞会激活各种应激反应,包括衰老,其中涉及细胞周期停滞、促生存信号转导和一种称为衰老相关分泌表型(SASP)的促炎症分泌组。我们之前在一个DNA损伤介导的衰老模型中发现,生长与分化因子15(GDF15)是人胰岛和人EndoC-βH5β细胞中的主要SASP因子,该模型再现了T1D中衰老β细胞的特征。可溶性 GDF15 已被证明在与 T1D 相关的各种形式的应激过程中对人类和小鼠的 beta 细胞具有保护作用,因此我们假设分泌型 GDF15 可能在人类 beta 细胞 DNA 损伤介导的衰老过程中发挥促生存作用。我们发现,在一名 T1D 供体的胰岛制备物中,GDF15 分泌的升高与内源性衰老的 beta 细胞有关,这支持了我们的 DNA 损伤模型的有效性。通过抗体中和,我们发现分泌的内源性 GDF15 并不是衰老的人胰岛或 EndoC 细胞存活所必需的。相反,中和 GDF15 会导致特定衰老相关基因的表达减少,包括 GDF15 本身和前生存基因 BCL2L1。总之,这些数据表明,SASP因子GDF15不是维持衰老人胰岛活力所必需的,但它是维持衰老相关转录反应所必需的。
{"title":"Secreted GDF15 maintains transcriptional responses during DNA damage-mediated senescence in human beta cells.","authors":"Nayara Rampazzo Morelli, Camille Préfontaine, Jasmine Pipella, Peter J Thompson","doi":"10.1152/ajpendo.00257.2024","DOIUrl":"10.1152/ajpendo.00257.2024","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-βH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including <i>GDF15</i> itself and the prosurvival gene BCL2-like protein 1 (<i>BCL2L1</i>). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.<b>NEW & NOTEWORTHY</b> Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E552-E562"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of glucose tolerance and BMI on cardiovascular events and all-cause mortality in a healthy population: CA.ME.LI.A study 7 years follow-up. 葡萄糖耐量和体重指数对健康人群心血管事件和全因死亡率的协同效应。CA.ME.LI.A研究7年随访。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI: 10.1152/ajpendo.00181.2024
Monica Bignotto, Elena Bianco, Lucia Centofanti, Antonio Russo, Michele Dei Cas, Paola Zermiani, Camillo Morano, Federica Samartin, Emanuela Bertolini, Francesco Bifari, Cesare Berra, Massimo Zuin, Rita Paroni, Pier Maria Battezzati, Franco Folli

The CA.ME.LI.A (CArdiovascular risks, MEtabolic syndrome, LIver and Autoimmune disease) epidemiological study was conducted in Abbiategrasso (Milan, Italy) to identify risk factors for metabolic and cardiovascular disease in an apparently healthy population of northern Italy. The population (n = 2,545, 1,251 men, 1,254 women) was stratified according to body mass index [normal body weight (NBW): <25 kg/m2; overweight-obese (OWO): ≥25 kg/m2] and according to fasting blood glucose [normal fasting glucose: <100 mg/dL; impaired fasting glucose (IFG): 100-125 mg/dL; diabetes mellitus (DM): ≥126 mg/dL]. The incidence of cardiovascular (CV) events and overall mortality were studied by the Kaplan-Meier method using the log rank test. Univariate analysis was conducted with time-dependent Cox models. During the 7-yr follow-up period, 80 deaths and 149 CV events occurred. IFG [hazard ratio (HR): 2.81; confidence interval (CI): 1.37-5.77; P = 0.005], DM (HR: 4.88; CI: 1.47-16; P = 0.010), or OWO (HR: 2.78; CI:1.68-4.59; P < 0.001) all produced significant increases in CV events and deaths. In the combination IFG/OWO (HR: 5.51; CI: 3.34-9.08; P < 0.001), there was an apparent additive effect of the two conditions, whereas in the combination DM/OWO (HR: 12.71; CI: 7.48-22; P < 0.001), there was an apparent multiplicative effect on the risk for CV events and deaths. In males, the DM/NBW group had a higher incidence of cardiovascular events and deaths than the IFG/OWO group. In contrast, in females, the IFG/OWO group had a higher incidence of cardiovascular events and deaths than the DM/NBW group. In women, there was a greater incidence of CV events in the IFG/OWO group (HR: 6.23; CI: 2.88-13; P < 0.001) than in men in the same group (HR: 4.27; CI: 2.15-8.47; P < 0.001). Consistent with these data, also all-cause mortality was progressively increased by IFG/DM and OWO, with an apparently exponential effect in the combination DM/OWO (HR: 11.78; CI: 6.11-23; P < 0.001). IFG/DM and OWO, alone or in combination, had major effects in increasing mortality for all causes and CV events. The relative contributions of hyperglycemia and overweight/obesity on cardiovascular events and deaths were apparently, to a certain extent, sex dependent. Females were more affected by overweight/obesity either alone or combined with IFG, as compared with males.NEW & NOTEWORTHY For the first time, the combined effects of glucose tolerance and BMI have been investigated in an apparently healthy large population sample of a city in the north of Italy. We found that there are synergistic effects of glucose levels with BMI to increase not only cardiovascular events and deaths but also cancer-related deaths and all-cause mortality.

背景 CA.ME.LI.A.研究旨在确定健康人群中代谢和心血管疾病的风险因素。方法 根据体重指数(NBW < 25 kg/m2,OWO ≥ 25 kg/m2)和空腹血糖(NFG
{"title":"Synergistic effects of glucose tolerance and BMI on cardiovascular events and all-cause mortality in a healthy population: CA.ME.LI.A study 7 years follow-up.","authors":"Monica Bignotto, Elena Bianco, Lucia Centofanti, Antonio Russo, Michele Dei Cas, Paola Zermiani, Camillo Morano, Federica Samartin, Emanuela Bertolini, Francesco Bifari, Cesare Berra, Massimo Zuin, Rita Paroni, Pier Maria Battezzati, Franco Folli","doi":"10.1152/ajpendo.00181.2024","DOIUrl":"10.1152/ajpendo.00181.2024","url":null,"abstract":"<p><p>The CA.ME.LI.A (CArdiovascular risks, MEtabolic syndrome, LIver and Autoimmune disease) epidemiological study was conducted in Abbiategrasso (Milan, Italy) to identify risk factors for metabolic and cardiovascular disease in an apparently healthy population of northern Italy. The population (<i>n</i> = 2,545, 1,251 men, 1,254 women) was stratified according to body mass index [normal body weight (NBW): <25 kg/m<sup>2</sup>; overweight-obese (OWO): ≥25 kg/m<sup>2</sup>] and according to fasting blood glucose [normal fasting glucose: <100 mg/dL; impaired fasting glucose (IFG): 100-125 mg/dL; diabetes mellitus (DM): ≥126 mg/dL]. The incidence of cardiovascular (CV) events and overall mortality were studied by the Kaplan-Meier method using the log rank test. Univariate analysis was conducted with time-dependent Cox models. During the 7-yr follow-up period, 80 deaths and 149 CV events occurred. IFG [hazard ratio (HR): 2.81; confidence interval (CI): 1.37-5.77; <i>P</i> = 0.005], DM (HR: 4.88; CI: 1.47-16; <i>P</i> = 0.010), or OWO (HR: 2.78; CI:1.68-4.59; <i>P</i> < 0.001) all produced significant increases in CV events and deaths. In the combination IFG/OWO (HR: 5.51; CI: 3.34-9.08; <i>P</i> < 0.001), there was an apparent additive effect of the two conditions, whereas in the combination DM/OWO (HR: 12.71; CI: 7.48-22; <i>P</i> < 0.001), there was an apparent multiplicative effect on the risk for CV events and deaths. In males, the DM/NBW group had a higher incidence of cardiovascular events and deaths than the IFG/OWO group. In contrast, in females, the IFG/OWO group had a higher incidence of cardiovascular events and deaths than the DM/NBW group. In women, there was a greater incidence of CV events in the IFG/OWO group (HR: 6.23; CI: 2.88-13; <i>P</i> < 0.001) than in men in the same group (HR: 4.27; CI: 2.15-8.47; <i>P</i> < 0.001). Consistent with these data, also all-cause mortality was progressively increased by IFG/DM and OWO, with an apparently exponential effect in the combination DM/OWO (HR: 11.78; CI: 6.11-23; <i>P</i> < 0.001). IFG/DM and OWO, alone or in combination, had major effects in increasing mortality for all causes and CV events. The relative contributions of hyperglycemia and overweight/obesity on cardiovascular events and deaths were apparently, to a certain extent, sex dependent. Females were more affected by overweight/obesity either alone or combined with IFG, as compared with males.<b>NEW & NOTEWORTHY</b> For the first time, the combined effects of glucose tolerance and BMI have been investigated in an apparently healthy large population sample of a city in the north of Italy. We found that there are synergistic effects of glucose levels with BMI to increase not only cardiovascular events and deaths but also cancer-related deaths and all-cause mortality.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E498-E511"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. 糖原合成酶 I 的小分子抑制剂可降低肌糖原含量并改善庞贝氏症小鼠模型的生物标志物。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-01 Epub Date: 2024-08-22 DOI: 10.1152/ajpendo.00175.2024
Rafael Calais Gaspar, Ikki Sakuma, Ali Nasiri, Brandon T Hubbard, Traci E LaMoia, Brooks P Leitner, Samnang Tep, Yannan Xi, Eric M Green, Julie C Ullman, Kitt Falk Petersen, Gerald I Shulman

Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, leading to the abnormal accumulation of glycogen, which results in progressive muscle weakness and metabolic dysregulation. In this study, we investigated the hypothesis that the small molecule inhibition of glycogen synthase I (GYS1) may reduce muscle glycogen content and improve metabolic dysregulation in a mouse model of Pompe disease. To address this hypothesis, we studied four groups of male mice: a control group of wild-type (WT) B6129SF1/J mice fed either regular chow or a GYS1 inhibitor (MZ-101) diet (WT-GYS1), and Pompe model mice B6;129-Gaatm1Rabn/J fed either regular chow (GAA-KO) or MZ-101 diet (GAA-GYS1) for 7 days. Our findings revealed that GAA-KO mice exhibited abnormal glycogen accumulation in the gastrocnemius, heart, and diaphragm. In contrast, inhibiting GYS1 reduced glycogen levels in all tissues compared with GAA-KO mice. Furthermore, GAA-KO mice displayed reduced spontaneous activity during the dark cycle compared with WT mice, whereas GYS1 inhibition counteracted this effect. Compared with GAA-KO mice, GAA-GYS1 mice exhibited improved glucose tolerance and whole body insulin sensitivity. These improvements in insulin sensitivity could be attributed to increased AMP-activated protein kinase phosphorylation in the gastrocnemius of WT-GYS1 and GAA-GYS1 mice. Additionally, the GYS1 inhibitor led to a reduction in the phosphorylation of GSS641 and the LC3 autophagy marker. Together, our results suggest that targeting GYS1 could serve as a potential strategy for treating glycogen storage disorders and metabolic dysregulation.NEW & NOTEWORTHY We investigated the effects of small molecule inhibition of glycogen synthase I (GYS1) on glucose metabolism in a mouse model of Pompe disease. GYS1 inhibition reduces abnormal glycogen accumulation and molecular biomarkers associated with Pompe disease while also improving glucose intolerance. Our results collectively demonstrate that the GYS1 inhibitor represents a novel approach to substrate reduction therapy for Pompe disease.

庞贝氏症是一种罕见的遗传性疾病,由缺乏酸性α-葡萄糖苷酶(GAA)引起。这种酶负责分解糖原,导致糖原异常积累,从而导致进行性肌无力和代谢失调。在本研究中,我们研究了小分子抑制糖原合成酶 I (GYS1) 可降低肌糖原含量并改善庞贝氏症小鼠模型代谢失调的假设。针对这一假设,我们对四组雄性小鼠进行了研究:野生型 B6129SF1/J 小鼠对照组,喂食普通饲料(WT)或 GYS1 抑制剂(MZ-101)饲料(WT-GYS1);庞贝氏症模型小鼠 B6;129-Gaatm1Rabn/J,喂食普通饲料(GAA-KO)或 MZ-101 饲料(GAA-GYS1)7 天。我们的研究结果表明,GAA-KO 小鼠的腓肠肌、心脏和膈肌表现出异常的糖原累积。相反,与 GAA-KO 小鼠相比,抑制 GYS1 可降低所有组织中的糖原水平。此外,与 WT 小鼠相比,GAA-KO 小鼠在暗周期中的自发活动减少,而抑制 GYS1 则可抵消这种影响。与 GAA-KO 小鼠相比,GAA-GYS1 小鼠的葡萄糖耐量和全身胰岛素敏感性都有所提高。胰岛素敏感性的这些改善可归因于 WT-GYS1 和 GAA-GYS1 小鼠腓肠肌中 AMPK 磷酸化的增加。此外,GYS1 抑制剂导致 GSS641 和 LC3 自噬标记物的磷酸化减少。总之,我们的研究结果表明,靶向 GYS1 可作为治疗糖原贮积症和代谢失调的一种潜在策略。
{"title":"Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease.","authors":"Rafael Calais Gaspar, Ikki Sakuma, Ali Nasiri, Brandon T Hubbard, Traci E LaMoia, Brooks P Leitner, Samnang Tep, Yannan Xi, Eric M Green, Julie C Ullman, Kitt Falk Petersen, Gerald I Shulman","doi":"10.1152/ajpendo.00175.2024","DOIUrl":"10.1152/ajpendo.00175.2024","url":null,"abstract":"<p><p>Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, leading to the abnormal accumulation of glycogen, which results in progressive muscle weakness and metabolic dysregulation. In this study, we investigated the hypothesis that the small molecule inhibition of glycogen synthase I (GYS1) may reduce muscle glycogen content and improve metabolic dysregulation in a mouse model of Pompe disease. To address this hypothesis, we studied four groups of male mice: a control group of wild-type (WT) B6129SF1/J mice fed either regular chow or a GYS1 inhibitor (MZ-101) diet (WT-GYS1), and Pompe model mice B6;129-Gaatm1Rabn/J fed either regular chow (GAA-KO) or MZ-101 diet (GAA-GYS1) for 7 days. Our findings revealed that GAA-KO mice exhibited abnormal glycogen accumulation in the gastrocnemius, heart, and diaphragm. In contrast, inhibiting GYS1 reduced glycogen levels in all tissues compared with GAA-KO mice. Furthermore, GAA-KO mice displayed reduced spontaneous activity during the dark cycle compared with WT mice, whereas GYS1 inhibition counteracted this effect. Compared with GAA-KO mice, GAA-GYS1 mice exhibited improved glucose tolerance and whole body insulin sensitivity. These improvements in insulin sensitivity could be attributed to increased AMP-activated protein kinase phosphorylation in the gastrocnemius of WT-GYS1 and GAA-GYS1 mice. Additionally, the GYS1 inhibitor led to a reduction in the phosphorylation of GS<sup>S641</sup> and the LC3 autophagy marker. Together, our results suggest that targeting GYS1 could serve as a potential strategy for treating glycogen storage disorders and metabolic dysregulation.<b>NEW & NOTEWORTHY</b> We investigated the effects of small molecule inhibition of glycogen synthase I (GYS1) on glucose metabolism in a mouse model of Pompe disease. GYS1 inhibition reduces abnormal glycogen accumulation and molecular biomarkers associated with Pompe disease while also improving glucose intolerance. Our results collectively demonstrate that the GYS1 inhibitor represents a novel approach to substrate reduction therapy for Pompe disease.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E524-E532"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Endocrinology and metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1