首页 > 最新文献

American journal of physiology. Endocrinology and metabolism最新文献

英文 中文
Corrigendum for Lawenius et al., volume 322, 2022, p. E344–E354 Lawenius 等人的更正,第 322 卷,2022 年,第 E344-E354 页
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-05 DOI: 10.1152/ajpendo.00366.2021_cor
American Journal of Physiology-Endocrinology and Metabolism, Volume 326, Issue 4, Page E481-E481, April 2024.
美国生理学杂志-内分泌学和新陈代谢》,第 326 卷第 4 期,第 E481-E481 页,2024 年 4 月。
{"title":"Corrigendum for Lawenius et al., volume 322, 2022, p. E344–E354","authors":"","doi":"10.1152/ajpendo.00366.2021_cor","DOIUrl":"https://doi.org/10.1152/ajpendo.00366.2021_cor","url":null,"abstract":"American Journal of Physiology-Endocrinology and Metabolism, Volume 326, Issue 4, Page E481-E481, April 2024. <br/>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"299 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bout of aerobic exercise in the heat increases carbohydrate use but does not enhance the disposal of an oral glucose load, in healthy active individuals. 在高温下进行一段时间的有氧运动会增加碳水化合物的消耗,但并不会增强健康运动者对口服葡萄糖负荷的处理能力。
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-03 DOI: 10.1152/ajpendo.00312.2023
Ricardo Mora-Rodriguez, Alfonso Moreno-Cabañas, Laura Álvarez-Jimenez, Diego Mora-Gonzalez, Juan Fernando Ortega, Felix Morales-Palomo
American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print.
美国生理学-内分泌学和新陈代谢杂志》(American Journal of Physiology-Endocrinology and Metabolism),提前出版。
{"title":"A bout of aerobic exercise in the heat increases carbohydrate use but does not enhance the disposal of an oral glucose load, in healthy active individuals.","authors":"Ricardo Mora-Rodriguez, Alfonso Moreno-Cabañas, Laura Álvarez-Jimenez, Diego Mora-Gonzalez, Juan Fernando Ortega, Felix Morales-Palomo","doi":"10.1152/ajpendo.00312.2023","DOIUrl":"https://doi.org/10.1152/ajpendo.00312.2023","url":null,"abstract":"American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print. <br/>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"1 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SMEK1 ablation promotes glucose uptake and improves obesity-related metabolic dysfunction via AMPK signaling pathway SMEK1 消融可通过 AMPK 信号通路促进葡萄糖摄取并改善与肥胖相关的代谢功能障碍
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-03 DOI: 10.1152/ajpendo.00387.2023
Shijun Wei, Yu Song, Zhengbin Li, Ai Liu, Yunfang Xie, Shang Gao, Hongbiao Shi, Ping Sun, Zekun Wang, Yecheng Jin, Wenjie Sun, Xi Li, Jiangxia Li, Qiji Liu
American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print.
美国生理学-内分泌学和新陈代谢杂志》(American Journal of Physiology-Endocrinology and Metabolism),提前出版。
{"title":"SMEK1 ablation promotes glucose uptake and improves obesity-related metabolic dysfunction via AMPK signaling pathway","authors":"Shijun Wei, Yu Song, Zhengbin Li, Ai Liu, Yunfang Xie, Shang Gao, Hongbiao Shi, Ping Sun, Zekun Wang, Yecheng Jin, Wenjie Sun, Xi Li, Jiangxia Li, Qiji Liu","doi":"10.1152/ajpendo.00387.2023","DOIUrl":"https://doi.org/10.1152/ajpendo.00387.2023","url":null,"abstract":"American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print. <br/>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"64 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetics and diet shape the relationship between islet function and whole-body metabolism 遗传和饮食决定了胰岛功能与全身代谢之间的关系
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-03 DOI: 10.1152/ajpendo.00060.2024
Belinda Yau, Søren Madsen, Marin E. Healy, Kristen C. Cooke, Andreas M. Fritzen, Ida H. Thorius, Jacqueline Stöckli, David E. James, Melkam A. Kebede
American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print.
美国生理学-内分泌学和新陈代谢杂志》(American Journal of Physiology-Endocrinology and Metabolism),提前出版。
{"title":"Genetics and diet shape the relationship between islet function and whole-body metabolism","authors":"Belinda Yau, Søren Madsen, Marin E. Healy, Kristen C. Cooke, Andreas M. Fritzen, Ida H. Thorius, Jacqueline Stöckli, David E. James, Melkam A. Kebede","doi":"10.1152/ajpendo.00060.2024","DOIUrl":"https://doi.org/10.1152/ajpendo.00060.2024","url":null,"abstract":"American Journal of Physiology-Endocrinology and Metabolism, Ahead of Print. <br/>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"47 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycogen synthesis is required for adaptive thermogenesis in beige adipose tissue and affects diet-induced obesity 糖原合成是米色脂肪组织适应性产热的必要条件,并影响饮食诱发的肥胖症
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-03 DOI: 10.1152/ajpendo.00074.2024
Shixuan Zhuo, Meijuan Bai, Zinan Wang, Lingling Chen, Zixuan Li, Jinzhu Chen, Xiaoyi Ye, Cheng Guo, Yan Chen
Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 which encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with b3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.
糖原是肝脏和骨骼肌等不同组织中葡萄糖的一种能量储存形式。人们对糖原如何影响脂肪组织功能的了解仍不全面。冷暴露会提高棕色脂肪组织(BAT)和腹股沟白色脂肪组织(iWAT)中编码糖原合成酶 1 的 Gys1 的表达。我们使用一种小鼠模型分析了 Gys1 的体内功能,在该模型中,Gys1 在脂肪组织中被特异性地删除。在正常进食条件下,Gys1 基因缺失对体重和糖代谢的影响很小。在长期暴露于寒冷环境或使用 b3 肾上腺素能受体激动剂 CL-316,243 处理 iWAT 时,删除 Gys1 可抑制 UCP1 和其他产热相关基因的上调。Gys1 基因缺失也会降低 CL-316,243 对脂肪基质细胞(SVFs)中 UCP1 的刺激。Gys1 基因缺失会降低脂肪组织中的基础糖原含量和 CL-316,243 刺激的糖原累积。Gys1 基因缺失的小鼠高脂饮食引起的肥胖和胰岛素抵抗会加剧。Gys1缺失也会导致CL-316,243治疗后体重减轻。总之,我们的研究结果强调了糖原合成在米色脂肪组织适应性产热中的关键作用及其对饮食诱导的小鼠肥胖的影响。
{"title":"Glycogen synthesis is required for adaptive thermogenesis in beige adipose tissue and affects diet-induced obesity","authors":"Shixuan Zhuo, Meijuan Bai, Zinan Wang, Lingling Chen, Zixuan Li, Jinzhu Chen, Xiaoyi Ye, Cheng Guo, Yan Chen","doi":"10.1152/ajpendo.00074.2024","DOIUrl":"https://doi.org/10.1152/ajpendo.00074.2024","url":null,"abstract":"Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of <i>Gys1</i> which encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The <i>in vivo</i> function of <i>Gys1</i> was analyzed using a mouse model in which <i>Gys1</i> was deleted specifically in adipose tissues. Under normal chow conditions, <i>Gys1</i> deletion caused little changes to body weight and glucose metabolism. Deletion of <i>Gys1</i> abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with b3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (SVFs) was also reduced by <i>Gys1</i> deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by <i>Gys1</i> deletion. High-fat diet-induced obesity and insulin resistance were aggravated in <i>Gys1</i>-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of <i>Gys1</i>. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":"12 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice. 肝线粒体丙酮酸和氨基酸代谢紊乱会损害小鼠的糖元生成和耐力运动能力
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-01 Epub Date: 2024-02-14 DOI: 10.1152/ajpendo.00258.2023
Michael R Martino, Mohammad Habibi, Daniel Ferguson, Rita T Brookheart, John P Thyfault, Gretchen A Meyer, Louise Lantier, Curtis C Hughey, Brian N Finck

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.

运动会大量增加骨骼肌对葡萄糖的需求。这种需求不仅要通过肌肉糖原分解来满足,还要通过肝脏糖原分解和糖元生成加速肝脏葡萄糖的生成,为机械运动提供燃料,并防止运动过程中出现低血糖。运动时的肝糖原生成依赖于肌肉和肝脏内部及之间高度协调的反应。具体来说,运动会提高丙酮酸/乳酸或氨基酸等糖元生成前体从肌肉输送到肝脏、被肝脏提取并转化为葡萄糖的速度。在此,我们通过删除小鼠肝线粒体丙酮酸载体 2(MPC2)和/或丙氨酸转氨酶 2(ALT2),研究了中断葡萄糖生成效率和能力对运动表现的影响。我们发现,在跑步机运动测试中,单独缺失 MPC2 或 ALT2 不会显著影响力竭时间或运动后葡萄糖浓度,但肝脏中同时缺失 MPC2 和 ALT2 的小鼠(DKO)力竭速度更快,并且在运动中和运动后表现出更低的循环葡萄糖。利用²H/¹³C代谢通量分析表明,DKO小鼠在休息和运动时由于糖原分解和糖生成减少而表现出较低的内源性葡萄糖生成。伴随着葡萄糖生成减少的是较低的合成代谢通量、催化代谢通量和 TCA 循环通量。总之,这些研究结果表明,肝脏过渡到糖元生成模式对于防止低血糖和维持运动表现至关重要。这些结果还说明,正如卡希尔循环和科里循环所描述的那样,在运动过程中器官间需要相互协作。
{"title":"Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice.","authors":"Michael R Martino, Mohammad Habibi, Daniel Ferguson, Rita T Brookheart, John P Thyfault, Gretchen A Meyer, Louise Lantier, Curtis C Hughey, Brian N Finck","doi":"10.1152/ajpendo.00258.2023","DOIUrl":"10.1152/ajpendo.00258.2023","url":null,"abstract":"<p><p>Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of <sup>2</sup>H/<sup>1</sup>³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.<b>NEW & NOTEWORTHY</b> Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E515-E527"},"PeriodicalIF":4.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between serum β-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD. 肥胖症和非酒精性脂肪肝患者血清β-羟丁酸与肝脏脂肪酸氧化之间的关系
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-01 Epub Date: 2024-02-21 DOI: 10.1152/ajpendo.00336.2023
Mary P Moore, Grace Shryack, Isabella Alessi, Nicole Wieschhaus, Grace M Meers, Sarah A Johnson, Andrew A Wheeler, Jamal A Ibdah, Elizabeth J Parks, R Scott Rector

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum β-hydroxybutyrate (β-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum β-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum β-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum β-HB correlated with liver mitochondrial β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum β-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum β-hydroxybutyrate (β-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating β-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum β-HB. Our work supports serum β-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.

非酒精性脂肪肝(NAFLD)的特点是脂质过度积累,并可发展为炎症(NASH)和纤维化。血清β-羟丁酸(β-HB)是生酮途径的产物,通常被用作肝脏脂肪酸氧化(FAO)的替代标志物。然而,这种关系在人类非酒精性脂肪肝中是否成立仍不确定。我们比较了空腹血清(β-HB)水平和肝线粒体棕榈酸酯氧化的直接测量值,并根据非酒精性脂肪肝的严重程度进行了分层(n = 142)。根据非酒精性脂肪肝活动评分(NAS)对患者进行分层:NAS=0(无病)、NAS=1-2(轻度)、NAS=3-4(中度)和NAS³5(晚期)。与无疾病相比,中度和晚期非酒精性脂肪肝与肝脏 HMGCS2 和血清 β-HB 的减少有关,但与 HMGCL mRNA 的减少无关。肝脏线粒体棕榈酸酯完全氧化的恶化与较低的 HMGCS2 mRNA 相对应,但与棕榈酸酯总(完全+不完全)氧化无关。有趣的是,我们发现肝脏 HMGCS2 mRNA 和血清 β-HB 与肝脏线粒体 β-HAD 活性和 CPT1A mRNA 相关。此外,较低的线粒体质量和线粒体周转标志物与肝脏中较低的 HMGCS2 呈正相关。这些数据表明,非酒精性脂肪肝患者肝脏的酮体生成和FAO发生率相当。我们的研究结果支持将血清β-HB作为非酒精性脂肪肝肝损伤和肝FAO的标志物。
{"title":"Relationship between serum β-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD.","authors":"Mary P Moore, Grace Shryack, Isabella Alessi, Nicole Wieschhaus, Grace M Meers, Sarah A Johnson, Andrew A Wheeler, Jamal A Ibdah, Elizabeth J Parks, R Scott Rector","doi":"10.1152/ajpendo.00336.2023","DOIUrl":"10.1152/ajpendo.00336.2023","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum β-hydroxybutyrate (β-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum β-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (<i>n</i> = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum β-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase <i>(HMGCL)</i> mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower <i>H</i>MGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver <i>HMGCS2</i> mRNA and serum β-HB correlated with liver mitochondrial β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and <i>CPT1A</i> mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower <i>HMGCS2</i> in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum β-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.<b>NEW & NOTEWORTHY</b> Serum β-hydroxybutyrate (β-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating β-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver <i>HMGCS2</i> mRNA and serum β-HB. Our work supports serum β-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E493-E502"},"PeriodicalIF":4.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139911811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of the immunometabolite protein modifications S-2-succinocysteine and 2,3-dicarboxypropylcysteine. 免疫代谢物蛋白质修饰 S-2-琥珀酰半胱氨酸和 2,3-二羧丙基半胱氨酸的定量。
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-01 Epub Date: 2024-02-07 DOI: 10.1152/ajpendo.00354.2023
J Hunter Cox, Richard S McCain, Emery Tran, Shoba Swaminathan, Holland H Smith, Gerardo G Piroli, Michael Shtutman, Michael D Walla, William E Cotham, Norma Frizzell

The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.

三羧酸(TCA)循环代谢产物富马酸盐会与氨基酸半胱氨酸发生非酶反应,生成 S-(2-琥珀酰)半胱氨酸(2SC),即蛋白质琥珀酸化。在脂多糖(LPS)刺激巨噬细胞和小胶质细胞的过程中,免疫代谢产物伊塔康酸会累积。衣康酸与半胱氨酸残基发生非酶反应,生成 2,3-二羧丙基半胱氨酸(2,3-DCP),称为蛋白质二羧丙基化。由于富马酸盐和伊他康酸盐的含量在活化的免疫细胞中会发生动态变化,因此 2SC 和 2,3-二氯丙醇的含量反映了这些代谢产物的丰度及其修饰蛋白质硫醇的能力。我们从蛋白质水解物中生成了 2SC 和 2,3-二氯丙醇的乙酯,并使用稳定同位素稀释质谱法测定了它们在 LPS 刺激的高侵袭性增殖不灭(HAPI)小胶质细胞中的丰度。)为了量化琥珀酰化和二羧丙基化的化学计量,用碘乙酸烷基化还原半胱氨酸,形成 S-羧甲基半胱氨酸(CMC),然后将其酯化。在经 LPS 处理的 HAPI 小胶质细胞中,伊塔康酸衍生的 2,3-二氯丙醇(而非富马酸衍生的 2SC)有所增加。化学计量学测量表明,在 LPS 刺激下,2,3-二氯丙醇占半胱氨酸总量的比例从 1.57% 增加到 9.07%。这种同时区分和量化 2SC 和 2,3-二氯丙醇的方法将在代谢性疾病的生理学研究中得到广泛应用。此外,我们发现现有的抗 2SC 抗体也能检测到结构相似的 2,3-二氯丙醇,因此 "琥珀酸分子 "可能更适合描述所识别的抗原。
{"title":"Quantification of the immunometabolite protein modifications S-2-succinocysteine and 2,3-dicarboxypropylcysteine.","authors":"J Hunter Cox, Richard S McCain, Emery Tran, Shoba Swaminathan, Holland H Smith, Gerardo G Piroli, Michael Shtutman, Michael D Walla, William E Cotham, Norma Frizzell","doi":"10.1152/ajpendo.00354.2023","DOIUrl":"10.1152/ajpendo.00354.2023","url":null,"abstract":"<p><p>The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore \"succinate moiety\" may better describe the antigen recognized.<b>NEW & NOTEWORTHY</b> Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E407-E416"},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating insulin sensitivity and β-cell function from the oral glucose tolerance test: validation of a new insulin sensitivity and secretion (ISS) model. 通过口服葡萄糖耐量试验估算胰岛素敏感性和 Beta 细胞功能:验证新的胰岛素敏感性和分泌(ISS)模型
IF 5.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-01 Epub Date: 2023-12-06 DOI: 10.1152/ajpendo.00189.2023
Joon Ha, Stephanie T Chung, Max Springer, Joon Young Kim, Phil Chen, Aaryan Chhabra, Melanie G Cree, Cecilia Diniz Behn, Anne E Sumner, Silva A Arslanian, Arthur S Sherman

Efficient and accurate methods to estimate insulin sensitivity (SI) and β-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived SI and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.NEW & NOTEWORTHY The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity (SI) and β-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.

高效准确地估算胰岛素敏感性(SI)和β细胞功能(BCF)的方法对于研究 2 型糖尿病的发病机制和治疗效果非常重要。现有的方法在灵敏度、输入数据和技术要求方面各不相同。口服葡萄糖耐量试验(OGTT)比静脉注射法更简单、更符合生理学原理,因此更受青睐。然而,目前针对 OGTT 得出的 SI 和 BCF 的分析方法也有不同的复杂程度;口服最小模型需要数学专业知识进行解卷积和微分方程拟合,而简单的代数代用指数(如松田指数、胰岛素生成指数)可能会产生非生理值。我们为临床研究开发了一种新的 ISS(胰岛素分泌和敏感性)模型,该模型可通过标准 OGTT 精确估算 SI 和 BCF,并注重有效性、易实施性和实用性。该模型是通过对葡萄糖和胰岛素进行一对微分方程拟合而开发的,无需解旋或 C 肽数据。该模型源于已发表的 T2D 进展纵向模拟模型,该模型表示葡萄糖-胰岛素平衡,包括挑战后肝糖生成抑制以及第一和第二阶段胰岛素分泌。ISS 模型在三个不同的队列中对整个生命周期进行了评估。新模型与静脉葡萄糖耐量试验和胰岛素钳夹的黄金标准估计值具有很强的相关性。ISS 模型在性能、保真度和复杂性之间取得了平衡,可提供可靠的 T2D 风险表型,因此在不同人群中具有广泛的适用性。
{"title":"Estimating insulin sensitivity and β-cell function from the oral glucose tolerance test: validation of a new insulin sensitivity and secretion (ISS) model.","authors":"Joon Ha, Stephanie T Chung, Max Springer, Joon Young Kim, Phil Chen, Aaryan Chhabra, Melanie G Cree, Cecilia Diniz Behn, Anne E Sumner, Silva A Arslanian, Arthur S Sherman","doi":"10.1152/ajpendo.00189.2023","DOIUrl":"10.1152/ajpendo.00189.2023","url":null,"abstract":"<p><p>Efficient and accurate methods to estimate insulin sensitivity (<i>S</i><sub>I</sub>) and β-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived <i>S</i><sub>I</sub> and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.<b>NEW & NOTEWORTHY</b> The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity (<i>S</i><sub>I</sub>) and β-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E454-E471"},"PeriodicalIF":5.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of exogenous lactate on lipid, protein, and glucose metabolism-a randomized crossover trial in healthy males. 外源性乳酸盐对脂质、蛋白质和葡萄糖代谢的影响--一项针对健康男性的随机交叉试验。
IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-04-01 Epub Date: 2024-02-07 DOI: 10.1152/ajpendo.00301.2023
Mette G B Pedersen, Nikolaj Rittig, Maj Bangshaab, Kristoffer Berg-Hansen, Nigopan Gopalasingam, Lars C Gormsen, Esben Søndergaard, Niels Møller

Lactate may inhibit lipolysis and thus enhance insulin sensitivity, but there is a lack of metabolic human studies. This study aimed to determine how hyperlactatemia affects lipolysis, glucose- and protein metabolism, and insulin sensitivity in healthy men. In a single-blind, randomized, crossover design, eight healthy men were studied after an overnight fast on two occasions: 1) during a sodium-lactate infusion (LAC) and 2) during a sodium-matched NaCl infusion (CTR). Both days consisted of a 3-h postabsorptive period followed by a 3-h hyperinsulinemic-euglycemic clamp (HEC). Lipolysis rate, endogenous glucose production (EGP), and delta glucose rate of disappearance (ΔRdglu) were evaluated using [9,10-3H]palmitate and [3-3H]glucose tracers. In addition, whole body- and forearm protein metabolism was assessed using [15N]phenylalanine, [2H4]tyrosine, [15N]tyrosine, and [13C]urea tracers. In the postabsorptive period, plasma lactate increased to 2.7 ± 0.5 mmol/L during LAC vs. 0.6 ± 0.3 mmol/L during CTR (P < 0.001). In the postabsorptive period, palmitate flux was 30% lower during LAC compared with CTR (84 ± 32 µmol/min vs. 120 ± 35 µmol/min, P = 0.003). During the HEC, palmitate flux was suppressed similarly during both interventions (P = 0.7). EGP, ΔRdglu, and M value were similar during LAC and CTR. During HEC, LAC increased whole body phenylalanine flux (P = 0.02) and protein synthesis (P = 0.03) compared with CTR; LAC did not affect forearm protein metabolism compared with CTR. Lactate infusion inhibited lipolysis by 30% under postabsorptive conditions but did not affect glucose metabolism or improve insulin sensitivity. In addition, whole body phenylalanine flux was increased. Clinical trial registrations: NCT04710875.NEW & NOTEWORTHY Lactate is a decisive intermediary metabolite, serving as an energy substrate and a signaling molecule. The present study examines the effects of lactate on substrate metabolism and insulin sensitivity in healthy males. Hyperlactatemia reduces lipolysis by 30% without affecting insulin sensitivity and glucose metabolism. In addition, hyperlactatemia increases whole body amino acid turnover rate.

背景:乳酸可抑制脂肪分解,从而增强胰岛素敏感性,但目前还缺乏对人体代谢的研究。本研究旨在确定高乳酸血症如何影响健康男性的脂肪分解、葡萄糖和蛋白质代谢以及胰岛素敏感性。研究方法采用单盲、随机、交叉设计的方法,对 8 名健康男性在一夜禁食后进行了两次研究:1)钠-乳酸盐输注(LAC)期间;2)钠匹配氯化钠输注(CTR)期间。这两天都包括 3 小时的吸收后时间,然后是 3 小时的高胰岛素血糖钳夹(HEC)。使用[9,10-3H]棕榈酸酯和[3-3H]葡萄糖示踪剂评估了脂肪分解率、内源性葡萄糖生成(EGP)和δ葡萄糖消失率(ΔRdglu)。此外,还使用[15N]苯丙氨酸、[2H4]酪氨酸、[15N]酪氨酸和[13C]尿素示踪剂评估了全身和前臂的蛋白质代谢。结果:在吸收后阶段,LAC期间血浆乳酸增至2.7±0.5 mmol/L,而CTR期间为0.6±0.3 mmol/L(pglu和M值在LAC和CTR期间相似)。在 HEC 期间,与 CTR 相比,LAC 增加了全身苯丙氨酸通量(p=0.02)和蛋白质合成(p=0.03);与 CTR 相比,LAC 不影响前臂蛋白质代谢。结论在吸收后条件下,输注乳酸可抑制脂肪分解 30%,但不会影响糖代谢或改善胰岛素敏感性。此外,全身苯丙氨酸通量增加。临床试验注册:NCT04710875。
{"title":"Effects of exogenous lactate on lipid, protein, and glucose metabolism-a randomized crossover trial in healthy males.","authors":"Mette G B Pedersen, Nikolaj Rittig, Maj Bangshaab, Kristoffer Berg-Hansen, Nigopan Gopalasingam, Lars C Gormsen, Esben Søndergaard, Niels Møller","doi":"10.1152/ajpendo.00301.2023","DOIUrl":"10.1152/ajpendo.00301.2023","url":null,"abstract":"<p><p>Lactate may inhibit lipolysis and thus enhance insulin sensitivity, but there is a lack of metabolic human studies. This study aimed to determine how hyperlactatemia affects lipolysis, glucose- and protein metabolism, and insulin sensitivity in healthy men. In a single-blind, randomized, crossover design, eight healthy men were studied after an overnight fast on two occasions: <i>1</i>) during a sodium-lactate infusion (LAC) and <i>2</i>) during a sodium-matched NaCl infusion (CTR). Both days consisted of a 3-h postabsorptive period followed by a 3-h hyperinsulinemic-euglycemic clamp (HEC). Lipolysis rate, endogenous glucose production (EGP), and delta glucose rate of disappearance (ΔRd<sub>glu</sub>) were evaluated using [9,10-<sup>3</sup>H]palmitate and [3-<sup>3</sup>H]glucose tracers. In addition, whole body- and forearm protein metabolism was assessed using [<sup>15</sup>N]phenylalanine, [<sup>2</sup>H<sub>4</sub>]tyrosine, [<sup>15</sup>N]tyrosine, and [<sup>13</sup>C]urea tracers. In the postabsorptive period, plasma lactate increased to 2.7 ± 0.5 mmol/L during LAC vs. 0.6 ± 0.3 mmol/L during CTR (<i>P</i> < 0.001). In the postabsorptive period, palmitate flux was 30% lower during LAC compared with CTR (84 ± 32 µmol/min vs. 120 ± 35 µmol/min, <i>P</i> = 0.003). During the HEC, palmitate flux was suppressed similarly during both interventions (<i>P</i> = 0.7). EGP, ΔRd<sub>glu</sub>, and <i>M</i> value were similar during LAC and CTR. During HEC, LAC increased whole body phenylalanine flux (<i>P</i> = 0.02) and protein synthesis (<i>P</i> = 0.03) compared with CTR; LAC did not affect forearm protein metabolism compared with CTR. Lactate infusion inhibited lipolysis by 30% under postabsorptive conditions but did not affect glucose metabolism or improve insulin sensitivity. In addition, whole body phenylalanine flux was increased. Clinical trial registrations: NCT04710875.<b>NEW & NOTEWORTHY</b> Lactate is a decisive intermediary metabolite, serving as an energy substrate and a signaling molecule. The present study examines the effects of lactate on substrate metabolism and insulin sensitivity in healthy males. Hyperlactatemia reduces lipolysis by 30% without affecting insulin sensitivity and glucose metabolism. In addition, hyperlactatemia increases whole body amino acid turnover rate.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E443-E453"},"PeriodicalIF":4.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Endocrinology and metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1