首页 > 最新文献

American journal of human genetics最新文献

英文 中文
The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder. kdm6b相关神经发育障碍的临床和分子谱。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-11-06 Epub Date: 2025-10-18 DOI: 10.1016/j.ajhg.2025.10.010
Dmitrijs Rots, Taryn E Jakub, Crystal Keung, Adam Jackson, Siddharth Banka, Rolph Pfundt, Bert B A de Vries, Richard H van Jaarsveld, Saskia M J Hopman, Ellen van Binsbergen, Irene Valenzuela, Maja Hempel, Tatjana Bierhals, Fanny Kortüm, Francois Lecoquierre, Alice Goldenberg, Jens Michael Hertz, Charlotte Brasch Andersen, Maria Kibæk, Eloise J Prijoles, Roger E Stevenson, David B Everman, Wesley G Patterson, Linyan Meng, Charul Gijavanekar, Karl De Dios, Shenela Lakhani, Tess Levy, Matias Wagner, Dagmar Wieczorek, Paul J Benke, María Soledad Lopez Garcia, Renee Perrier, Sergio B Sousa, Pedro M Almeida, Maria José Simões, Bertrand Isidor, Wallid Deb, Andrew A Schmanski, Omar Abdul-Rahman, Christophe Philippe, Ange-Line Bruel, Laurence Faivre, Antonio Vitobello, Christel Thauvin, Jeroen J Smits, Livia Garavelli, Stefano G Caraffi, Francesca Peluso, Laura Davis-Keppen, Dylan Platt, Erin Royer, Lisette Leeuwen, Margje Sinnema, Alexander P A Stegmann, Constance T R M Stumpel, George E Tiller, Daniëlle G M Bosch, Stephanus T Potgieter, Shelagh Joss, Miranda Splitt, Simon Holden, Matina Prapa, Nicola Foulds, Sofia Douzgou, Kaija Puura, Regina Waltes, Andreas G Chiocchetti, Christine M Freitag, F Kyle Satterstrom, Silvia De Rubeis, Joseph Buxbaum, Bruce D Gelb, Aleksic Branko, Itaru Kushima, Jennifer Howe, Stephen W Scherer, Alessia Arado, Chiara Baldo, Olivier Patat, Demeer Bénédicte, Diego Lopergolo, Filippo M Santorelli, Tobias B Haack, Andreas Dufke, Miriam Bertrand, Ruth J Falb, Angelika Rieß, Peter Krieg, Stephanie Spranger, Maria Francesca Bedeschi, Maria Iascone, Sarah Josephi-Taylor, Tony Roscioli, Michael F Buckley, Jan Liebelt, Aditi I Dagli, Emmelien Aten, Anna C E Hurst, Alesha Hicks, Mohnish Suri, Ermal Aliu, Sunil Naik, Richard Sidlow, Juliette Coursimault, Gaël Nicolas, Hanna Küpper, Florence Petit, Veyan Ibrahim, Deniz Top, Francesca Di Cara, Raymond J Louie, Elliot Stolerman, Han G Brunner, Lisenka E L M Vissers, Jamie M Kramer, Tjitske Kleefstra
{"title":"The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder.","authors":"Dmitrijs Rots, Taryn E Jakub, Crystal Keung, Adam Jackson, Siddharth Banka, Rolph Pfundt, Bert B A de Vries, Richard H van Jaarsveld, Saskia M J Hopman, Ellen van Binsbergen, Irene Valenzuela, Maja Hempel, Tatjana Bierhals, Fanny Kortüm, Francois Lecoquierre, Alice Goldenberg, Jens Michael Hertz, Charlotte Brasch Andersen, Maria Kibæk, Eloise J Prijoles, Roger E Stevenson, David B Everman, Wesley G Patterson, Linyan Meng, Charul Gijavanekar, Karl De Dios, Shenela Lakhani, Tess Levy, Matias Wagner, Dagmar Wieczorek, Paul J Benke, María Soledad Lopez Garcia, Renee Perrier, Sergio B Sousa, Pedro M Almeida, Maria José Simões, Bertrand Isidor, Wallid Deb, Andrew A Schmanski, Omar Abdul-Rahman, Christophe Philippe, Ange-Line Bruel, Laurence Faivre, Antonio Vitobello, Christel Thauvin, Jeroen J Smits, Livia Garavelli, Stefano G Caraffi, Francesca Peluso, Laura Davis-Keppen, Dylan Platt, Erin Royer, Lisette Leeuwen, Margje Sinnema, Alexander P A Stegmann, Constance T R M Stumpel, George E Tiller, Daniëlle G M Bosch, Stephanus T Potgieter, Shelagh Joss, Miranda Splitt, Simon Holden, Matina Prapa, Nicola Foulds, Sofia Douzgou, Kaija Puura, Regina Waltes, Andreas G Chiocchetti, Christine M Freitag, F Kyle Satterstrom, Silvia De Rubeis, Joseph Buxbaum, Bruce D Gelb, Aleksic Branko, Itaru Kushima, Jennifer Howe, Stephen W Scherer, Alessia Arado, Chiara Baldo, Olivier Patat, Demeer Bénédicte, Diego Lopergolo, Filippo M Santorelli, Tobias B Haack, Andreas Dufke, Miriam Bertrand, Ruth J Falb, Angelika Rieß, Peter Krieg, Stephanie Spranger, Maria Francesca Bedeschi, Maria Iascone, Sarah Josephi-Taylor, Tony Roscioli, Michael F Buckley, Jan Liebelt, Aditi I Dagli, Emmelien Aten, Anna C E Hurst, Alesha Hicks, Mohnish Suri, Ermal Aliu, Sunil Naik, Richard Sidlow, Juliette Coursimault, Gaël Nicolas, Hanna Küpper, Florence Petit, Veyan Ibrahim, Deniz Top, Francesca Di Cara, Raymond J Louie, Elliot Stolerman, Han G Brunner, Lisenka E L M Vissers, Jamie M Kramer, Tjitske Kleefstra","doi":"10.1016/j.ajhg.2025.10.010","DOIUrl":"10.1016/j.ajhg.2025.10.010","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2814"},"PeriodicalIF":8.1,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12808979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145328158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The utility of ultra-deep RNA sequencing in Mendelian disorder diagnostics. 超深RNA测序在孟德尔疾病诊断中的应用。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-11-06 Epub Date: 2025-10-10 DOI: 10.1016/j.ajhg.2025.09.013
Sen Zhao, Jefferson C Sinson, Shenglan Li, Jill A Rosenfeld, Gladys Zapata, Kristina Macakova, Mezthly Pena, Becky Maywald, Kim C Worley, Lindsay C Burrage, Monika Weisz-Hubshman, Shamika Ketkar, William Craigen, Lisa Emrick, Tyson Clark, Gila Yanai Lithwick, Zohar Shipony, Christine Eng, Brendan Lee, Pengfei Liu

RNA sequencing (RNA-seq) has emerged as a powerful tool for resolving variants of uncertain significance (VUSs), particularly those affecting gene expression and splicing. However, most reference datasets and diagnostic protocols employ relatively modest sequencing depths (∼50-150 million reads), which may fail to detect low-abundance transcripts and rare splicing events critical for accurate diagnosis. We evaluated the diagnostic and translational utility of ultra-high-depth (up to ∼1 billion unique reads) RNA-seq in four clinically accessible tissues using the Ultima sequencing platform. After validating the performance of Ultima RNA-seq, we investigated how increasing sequencing depth affects gene and isoform detection, splicing variant discovery, and clinical interpretation of VUSs. Deep RNA-seq substantially improved sensitivity for detecting lowly expressed genes and isoforms, achieving near saturation for detection at 1 billion reads. In two probands with VUSs, pathogenic splicing abnormalities were undetectable at 50 million reads but emerged at 200 million reads, becoming even more pronounced at 1 billion reads. Using deep RNA-seq data, we constructed a resource, MRSD-deep, to estimate the minimum required sequencing depth to achieve desired coverage thresholds. MRSD-deep provided gene- and junction-level guidelines, helping labs select appropriate coverage targets for specific applications. Leveraging deep RNA-seq data on fibroblasts, we also built an expanded splicing-variation reference that successfully identified low-abundance splicing events missed by standard-depth data. Our findings underscore the diagnostic and research benefits of deep RNA-seq for Mendelian disease investigations.

RNA测序(RNA-seq)已成为解决不确定意义变异(VUSs)的有力工具,特别是那些影响基因表达和剪接的变异。然而,大多数参考数据集和诊断方案采用相对适度的测序深度(~ 50- 1.5亿reads),这可能无法检测到对准确诊断至关重要的低丰度转录本和罕见的剪接事件。我们使用Ultima测序平台评估了超高深度(高达10亿个独特reads) RNA-seq在四种临床可及组织中的诊断和转化效用。在验证了Ultima RNA-seq的性能后,我们研究了增加测序深度如何影响基因和异构体检测、剪接变异发现和VUSs的临床解释。Deep RNA-seq大大提高了检测低表达基因和同种异构体的灵敏度,在10亿reads的检测中达到接近饱和。在两个具有VUSs的先证中,致病性剪接异常在5000万reads时无法检测到,但在2亿reads时出现,在10亿reads时变得更加明显。利用深度RNA-seq数据,我们构建了一个资源MRSD-deep,以估计达到所需覆盖阈值所需的最小测序深度。MRSD-deep提供了基因和连接水平的指导,帮助实验室为特定的应用选择合适的覆盖目标。利用成纤维细胞的深度RNA-seq数据,我们还建立了一个扩展的剪接变异参考,成功地识别了标准深度数据遗漏的低丰度剪接事件。我们的研究结果强调了深度RNA-seq在孟德尔病研究中的诊断和研究价值。
{"title":"The utility of ultra-deep RNA sequencing in Mendelian disorder diagnostics.","authors":"Sen Zhao, Jefferson C Sinson, Shenglan Li, Jill A Rosenfeld, Gladys Zapata, Kristina Macakova, Mezthly Pena, Becky Maywald, Kim C Worley, Lindsay C Burrage, Monika Weisz-Hubshman, Shamika Ketkar, William Craigen, Lisa Emrick, Tyson Clark, Gila Yanai Lithwick, Zohar Shipony, Christine Eng, Brendan Lee, Pengfei Liu","doi":"10.1016/j.ajhg.2025.09.013","DOIUrl":"10.1016/j.ajhg.2025.09.013","url":null,"abstract":"<p><p>RNA sequencing (RNA-seq) has emerged as a powerful tool for resolving variants of uncertain significance (VUSs), particularly those affecting gene expression and splicing. However, most reference datasets and diagnostic protocols employ relatively modest sequencing depths (∼50-150 million reads), which may fail to detect low-abundance transcripts and rare splicing events critical for accurate diagnosis. We evaluated the diagnostic and translational utility of ultra-high-depth (up to ∼1 billion unique reads) RNA-seq in four clinically accessible tissues using the Ultima sequencing platform. After validating the performance of Ultima RNA-seq, we investigated how increasing sequencing depth affects gene and isoform detection, splicing variant discovery, and clinical interpretation of VUSs. Deep RNA-seq substantially improved sensitivity for detecting lowly expressed genes and isoforms, achieving near saturation for detection at 1 billion reads. In two probands with VUSs, pathogenic splicing abnormalities were undetectable at 50 million reads but emerged at 200 million reads, becoming even more pronounced at 1 billion reads. Using deep RNA-seq data, we constructed a resource, MRSD-deep, to estimate the minimum required sequencing depth to achieve desired coverage thresholds. MRSD-deep provided gene- and junction-level guidelines, helping labs select appropriate coverage targets for specific applications. Leveraging deep RNA-seq data on fibroblasts, we also built an expanded splicing-variation reference that successfully identified low-abundance splicing events missed by standard-depth data. Our findings underscore the diagnostic and research benefits of deep RNA-seq for Mendelian disease investigations.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2578-2590"},"PeriodicalIF":8.1,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12777520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons learned: Recommendations for reproducible paleogenomic data analyses 经验教训:关于可重复古基因组数据分析的建议
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-11-05 DOI: 10.1016/j.ajhg.2025.10.011
Yassine Souilmi, Adrien Oliva, Roberta Davidson, Matthew P. Williams, Shyamsundar Ravishankar, Xavier Roca-Rada, Vilma Peréz, Raymond Tobler, Bastien Llamas
{"title":"Lessons learned: Recommendations for reproducible paleogenomic data analyses","authors":"Yassine Souilmi, Adrien Oliva, Roberta Davidson, Matthew P. Williams, Shyamsundar Ravishankar, Xavier Roca-Rada, Vilma Peréz, Raymond Tobler, Bastien Llamas","doi":"10.1016/j.ajhg.2025.10.011","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.011","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"86 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origins and implications of intron retention quantitative trait loci in human tissues 人体组织中内含子保留数量性状位点的起源和意义
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-11-04 DOI: 10.1016/j.ajhg.2025.10.002
Eddie Park, Yi Xing
{"title":"Origins and implications of intron retention quantitative trait loci in human tissues","authors":"Eddie Park, Yi Xing","doi":"10.1016/j.ajhg.2025.10.002","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.002","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"26 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to create personalized gene editing platforms: Next steps toward interventional genetics 如何创建个性化的基因编辑平台:介入遗传学的下一步
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-31 DOI: 10.1016/j.ajhg.2025.10.006
Rebecca C. Ahrens-Nicklas, Kiran Musunuru
{"title":"How to create personalized gene editing platforms: Next steps toward interventional genetics","authors":"Rebecca C. Ahrens-Nicklas, Kiran Musunuru","doi":"10.1016/j.ajhg.2025.10.006","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.006","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"25 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Clinical Pharmacogenetics Implementation Consortium’s consensus-based framework for assigning allele function 临床药物遗传学实施联盟基于共识的分配等位基因功能的框架
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-31 DOI: 10.1016/j.ajhg.2025.10.004
Bailey M. Tibben, Andrea Gaedigk, Li Gong, Katrin Sangkuhl, Michelle Whirl-Carrillo, Mary V. Relling, Roseann S. Donnelly, Teri E. Klein, Kelly E. Caudle
{"title":"The Clinical Pharmacogenetics Implementation Consortium’s consensus-based framework for assigning allele function","authors":"Bailey M. Tibben, Andrea Gaedigk, Li Gong, Katrin Sangkuhl, Michelle Whirl-Carrillo, Mary V. Relling, Roseann S. Donnelly, Teri E. Klein, Kelly E. Caudle","doi":"10.1016/j.ajhg.2025.10.004","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.004","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"153 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRCA1-, BRCA2-, and PALB2-related Fanconi anemia: Scope to expand disease phenotypic features and predict breast cancer risk in heterozygotes BRCA1-、BRCA2-和palb2相关范可尼贫血:扩大疾病表型特征和预测杂合子乳腺癌风险的范围
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-30 DOI: 10.1016/j.ajhg.2025.10.007
Sharon E. Johnatty, Emma Tudini, Michael T. Parsons, Kyriaki Michailidou, Maria Zanti, Daffodil M. Canson, Aimee L. Davidson, Tamar Berger, Rasim Ozgur Rosti, Christian P. Kratz, Reinhard Kalb, Lisa J. McReynolds, Neelam Giri, Marcy E. Richardson, Tina Pesaran, Jordi Surrallés, Roser Pujol, Babu Rao Vundinti, Merin George, Kara N. Maxwell, Kate Nathanson, Susan Domchek, Moisés Ó. Fiesco-Roa, Sara Frias, Benilde García-de-Teresa, Marjolijn Jongmans, Seema Lalani, Merel Maiburg, Katrina Prescott, Rachel Robinson, Sulekha Rajagopalan, Lot Snijders Blok, Suzanna E.L. Temple, Kathy Tucker, Arleen D. Auerbach, Maria I. Cancio, Jennifer A. Kennedy, Margaret L. MacMillan, Rebecca Tryon, John E. Wagner, Michael Walsh, Nicholas J. Boddicker, Chunling Hu, Jeffrey N. Weitzel, Alexander J.M. Dingemans, Johanna Hadler, Nitsan Rotenberg, Lobna Ramadane-Morchadi, Miguel de la Hoya, Paul James, Thomas Van Overeem Hansen, Maaike P.G. Vreeswijk, Logan C. Walker, Shyam K. Sharan, Douglas F. Easton, Fergus Couch, Agata Smogorzewska, Adam Nelson, Joanne Ngeow, Marc Tischkowitz, Encarnacion Gomez-Garcia, Amanda B. Spurdle
{"title":"BRCA1-, BRCA2-, and PALB2-related Fanconi anemia: Scope to expand disease phenotypic features and predict breast cancer risk in heterozygotes","authors":"Sharon E. Johnatty, Emma Tudini, Michael T. Parsons, Kyriaki Michailidou, Maria Zanti, Daffodil M. Canson, Aimee L. Davidson, Tamar Berger, Rasim Ozgur Rosti, Christian P. Kratz, Reinhard Kalb, Lisa J. McReynolds, Neelam Giri, Marcy E. Richardson, Tina Pesaran, Jordi Surrallés, Roser Pujol, Babu Rao Vundinti, Merin George, Kara N. Maxwell, Kate Nathanson, Susan Domchek, Moisés Ó. Fiesco-Roa, Sara Frias, Benilde García-de-Teresa, Marjolijn Jongmans, Seema Lalani, Merel Maiburg, Katrina Prescott, Rachel Robinson, Sulekha Rajagopalan, Lot Snijders Blok, Suzanna E.L. Temple, Kathy Tucker, Arleen D. Auerbach, Maria I. Cancio, Jennifer A. Kennedy, Margaret L. MacMillan, Rebecca Tryon, John E. Wagner, Michael Walsh, Nicholas J. Boddicker, Chunling Hu, Jeffrey N. Weitzel, Alexander J.M. Dingemans, Johanna Hadler, Nitsan Rotenberg, Lobna Ramadane-Morchadi, Miguel de la Hoya, Paul James, Thomas Van Overeem Hansen, Maaike P.G. Vreeswijk, Logan C. Walker, Shyam K. Sharan, Douglas F. Easton, Fergus Couch, Agata Smogorzewska, Adam Nelson, Joanne Ngeow, Marc Tischkowitz, Encarnacion Gomez-Garcia, Amanda B. Spurdle","doi":"10.1016/j.ajhg.2025.10.007","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.007","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"148 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145396744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using the ancestral recombination graph to study the history of rare variants in founder populations 利用祖先重组图研究创立者群体中罕见变异的历史
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-30 DOI: 10.1016/j.ajhg.2025.10.005
Alejandro Mejia-Garcia, Alex Diaz-Papkovich, Guillaume Sillon, Daniela D'Agostino, Anne-Laure Chong, George Chong, Ken Sin Lo, Laurence Baret, Nancy Hamel, Vincent Chapdelaine, William D. Foulkes, Daniel Taliun, Adam J. Shapiro, Guillaume Lettre, Simon Gravel
{"title":"Using the ancestral recombination graph to study the history of rare variants in founder populations","authors":"Alejandro Mejia-Garcia, Alex Diaz-Papkovich, Guillaume Sillon, Daniela D'Agostino, Anne-Laure Chong, George Chong, Ken Sin Lo, Laurence Baret, Nancy Hamel, Vincent Chapdelaine, William D. Foulkes, Daniel Taliun, Adam J. Shapiro, Guillaume Lettre, Simon Gravel","doi":"10.1016/j.ajhg.2025.10.005","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.005","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"22 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the nervous system requirements of Alzheimer disease risk genes in Drosophila 揭示果蝇阿尔茨海默病风险基因的神经系统需求
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-29 DOI: 10.1016/j.ajhg.2025.10.003
Jennifer M. Deger, Shabab B. Hannan, Mingxue Gu, Colleen E. Strohlein, Lindsey D. Goodman, Sasidhar Pasupuleti, Zahid Shaik, Liwen Ma, Yarong Li, Jiayang Li, Morgan C. Stephens, Michal Tyrlík, Zhandong Liu, Ismael Al-Ramahi, Juan Botas, Chad A. Shaw, Oguz Kanca, Hugo J. Bellen, Joshua M. Shulman
{"title":"Revealing the nervous system requirements of Alzheimer disease risk genes in Drosophila","authors":"Jennifer M. Deger, Shabab B. Hannan, Mingxue Gu, Colleen E. Strohlein, Lindsey D. Goodman, Sasidhar Pasupuleti, Zahid Shaik, Liwen Ma, Yarong Li, Jiayang Li, Morgan C. Stephens, Michal Tyrlík, Zhandong Liu, Ismael Al-Ramahi, Juan Botas, Chad A. Shaw, Oguz Kanca, Hugo J. Bellen, Joshua M. Shulman","doi":"10.1016/j.ajhg.2025.10.003","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.003","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"43 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145383232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logica: A likelihood framework for cross-ancestry local genetic correlation estimation using summary statistics. 逻辑:一个使用汇总统计进行跨祖先局部遗传相关估计的似然框架。
IF 9.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-10-23 DOI: 10.1016/j.ajhg.2025.10.001
Boran Gao,Zheng Li,Xiang Zhou
Understanding genetic architecture across ancestries through genetic correlation analysis is critical for determining the degree to which genetic factors underlying diseases or complex traits are shared or differ among populations. Current methods for genetic correlation analysis primarily rely on method of moments approaches and focus on estimating the global genetic correlation across the entire genome. However, these methods often overlook important local genomic complexities and inadequately model the intricate linkage disequilibrium (LD) structures that vary substantially across ancestries. Here, we present Logica (local genetic correlation across ancestries), a method specifically designed to estimate local genetic correlations across ancestries and in admixed populations. Logica employs a bivariate linear mixed model that explicitly accounts for diverse LD patterns across ancestries, operates on genome-wide association study summary statistics, and utilizes a maximum-likelihood framework for robust inference. An important by-product of Logica is a joint heritability test across ancestries that yields well-calibrated p values-an aspect that existing approaches often struggle with. We conducted comprehensive evaluations of Logica through realistic simulations and analyses of 13 complex traits from multiple biobanks. Simulations showed that Logica achieves improved accuracy in local genetic correlation estimation (with mean squared errors 2.23-4.13 times lower) and enhanced power for detecting genetically correlated regions (8%-40% increase with controlled false discovery rate [FDR] at 5%). In real data, Logica produced valid genetic correlation estimates across all genomic regions, whereas existing methods failed in 23%-39% of regions. Additionally, Logica exhibited better FDR control (14%-58% improvement), identifying genetically correlated regions with greater functional relevance.
通过遗传相关分析了解不同祖先的遗传结构对于确定疾病或复杂性状的遗传因素在人群中共享或不同的程度至关重要。现有的遗传相关分析方法主要依赖矩量法,并且侧重于估计整个基因组的全局遗传相关性。然而,这些方法往往忽略了重要的局部基因组复杂性,并且不能充分地模拟复杂的连锁不平衡(LD)结构,这些结构在不同祖先之间存在很大差异。在这里,我们提出了Logica(跨祖先的局部遗传相关性),这是一种专门用于估计跨祖先和混合群体的局部遗传相关性的方法。Logica采用双变量线性混合模型,该模型明确说明了跨祖先的不同LD模式,对全基因组关联研究汇总统计进行操作,并利用最大似然框架进行稳健推断。Logica的一个重要副产品是跨祖先的联合遗传性测试,它产生了校准良好的p值——这是现有方法经常难以做到的。通过对多个生物库中13个复杂性状的模拟和分析,对Logica进行了综合评价。仿真结果表明,Logica在局部遗传相关估计方面实现了更高的准确性(均方误差降低2.23-4.13倍),在检测遗传相关区域方面实现了更高的能力(在控制错误发现率[FDR]为5%的情况下,提高了8%-40%)。在实际数据中,Logica在所有基因组区域中产生了有效的遗传相关性估计,而现有方法在23%-39%的区域中失败。此外,Logica表现出更好的FDR控制(改善14%-58%),识别出具有更大功能相关性的遗传相关区域。
{"title":"Logica: A likelihood framework for cross-ancestry local genetic correlation estimation using summary statistics.","authors":"Boran Gao,Zheng Li,Xiang Zhou","doi":"10.1016/j.ajhg.2025.10.001","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.10.001","url":null,"abstract":"Understanding genetic architecture across ancestries through genetic correlation analysis is critical for determining the degree to which genetic factors underlying diseases or complex traits are shared or differ among populations. Current methods for genetic correlation analysis primarily rely on method of moments approaches and focus on estimating the global genetic correlation across the entire genome. However, these methods often overlook important local genomic complexities and inadequately model the intricate linkage disequilibrium (LD) structures that vary substantially across ancestries. Here, we present Logica (local genetic correlation across ancestries), a method specifically designed to estimate local genetic correlations across ancestries and in admixed populations. Logica employs a bivariate linear mixed model that explicitly accounts for diverse LD patterns across ancestries, operates on genome-wide association study summary statistics, and utilizes a maximum-likelihood framework for robust inference. An important by-product of Logica is a joint heritability test across ancestries that yields well-calibrated p values-an aspect that existing approaches often struggle with. We conducted comprehensive evaluations of Logica through realistic simulations and analyses of 13 complex traits from multiple biobanks. Simulations showed that Logica achieves improved accuracy in local genetic correlation estimation (with mean squared errors 2.23-4.13 times lower) and enhanced power for detecting genetically correlated regions (8%-40% increase with controlled false discovery rate [FDR] at 5%). In real data, Logica produced valid genetic correlation estimates across all genomic regions, whereas existing methods failed in 23%-39% of regions. Additionally, Logica exhibited better FDR control (14%-58% improvement), identifying genetically correlated regions with greater functional relevance.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"54 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145357919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of human genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1