Pub Date : 2024-09-05Epub Date: 2024-08-05DOI: 10.1016/j.ajhg.2024.07.008
Marie Morimoto, Eunjin Ryu, Benjamin J Steger, Abhijit Dixit, Yoshihiko Saito, Juyeong Yoo, Amelie T van der Ven, Natalie Hauser, Peter J Steinbach, Kazumasa Oura, Alden Y Huang, Fanny Kortüm, Shinsuke Ninomiya, Elisabeth A Rosenthal, Hannah K Robinson, Katie Guegan, Jonas Denecke, Sankarasubramoney H Subramony, Callie J Diamonstein, Jie Ping, Mark Fenner, Elsa V Balton, Sam Strohbehn, Aimee Allworth, Michael J Bamshad, Mahi Gandhi, Katrina M Dipple, Elizabeth E Blue, Gail P Jarvik, C Christopher Lau, Ingrid A Holm, Monika Weisz-Hubshman, Benjamin D Solomon, Stanley F Nelson, Ichizo Nishino, David R Adams, Sukhyun Kang, William A Gahl, Camilo Toro, Kyungjae Myung, May Christine V Malicdan
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
DNA 复制的精确调控对细胞分裂和基因组完整性至关重要。复制因子 C(RFC)复合物是这一过程的核心,它包括五个亚基,可将增殖细胞核抗原加载到 DNA 上,以促进复制和修复蛋白的招募,并提高 DNA 聚合酶的处理能力。虽然 RFC1 在小脑共济失调、神经病变和前庭反射综合征(CANVAS)中的作用已众所周知,但 RFC2-5 亚基对人类孟德尔疾病的贡献在很大程度上还未被探索。我们的研究将编码 RFC 复合物核心亚基的 RFC4 的双等位基因变异与一种未确诊的疾病联系起来,这种疾病的特征是不协调、肌肉无力、听力受损和体重下降。我们在九个受影响的个体中发现了 RFC4 中罕见的、保守的、预测的致病变异,所有这些变异都可能破坏 RFC 复合物形成所不可或缺的 C 端结构域。对先前确定的 RFC 与增殖细胞核抗原结合的冷冻电镜结构的分析表明,这些变体破坏了 RFC4 内部的相互作用和/或破坏了 RFC 复合物的稳定性。使用 RFC4 缺陷 HeLa 细胞和原代成纤维细胞进行的细胞研究表明,RFC4 蛋白减少,其他 RFC 复合物亚基的稳定性受到影响,RFC 复合物的形成受到干扰。此外,对 RFC4 变体的功能研究证实,RFC 复合物的形成受到了削弱,细胞周期研究表明,DNA 复制和细胞周期进展受到了干扰。我们将硅学、结构、细胞和功能分析相结合的综合方法提供了令人信服的证据,证明双等位基因功能缺失的RFC4变体有助于这种多系统疾病的发病机制。这些见解拓宽了我们对 RFC 复合物及其在人类健康和疾病中作用的认识。
{"title":"Expanding the genetic and phenotypic landscape of replication factor C complex-related disorders: RFC4 deficiency is linked to a multisystemic disorder.","authors":"Marie Morimoto, Eunjin Ryu, Benjamin J Steger, Abhijit Dixit, Yoshihiko Saito, Juyeong Yoo, Amelie T van der Ven, Natalie Hauser, Peter J Steinbach, Kazumasa Oura, Alden Y Huang, Fanny Kortüm, Shinsuke Ninomiya, Elisabeth A Rosenthal, Hannah K Robinson, Katie Guegan, Jonas Denecke, Sankarasubramoney H Subramony, Callie J Diamonstein, Jie Ping, Mark Fenner, Elsa V Balton, Sam Strohbehn, Aimee Allworth, Michael J Bamshad, Mahi Gandhi, Katrina M Dipple, Elizabeth E Blue, Gail P Jarvik, C Christopher Lau, Ingrid A Holm, Monika Weisz-Hubshman, Benjamin D Solomon, Stanley F Nelson, Ichizo Nishino, David R Adams, Sukhyun Kang, William A Gahl, Camilo Toro, Kyungjae Myung, May Christine V Malicdan","doi":"10.1016/j.ajhg.2024.07.008","DOIUrl":"10.1016/j.ajhg.2024.07.008","url":null,"abstract":"<p><p>The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1970-1993"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.ajhg.2024.08.003
Elyse Kozlowski, Geoffrey S Ginsburg, Bruce R Korf
{"title":"A new annual feature of AJHG: All of Us Research Program year in review.","authors":"Elyse Kozlowski, Geoffrey S Ginsburg, Bruce R Korf","doi":"10.1016/j.ajhg.2024.08.003","DOIUrl":"10.1016/j.ajhg.2024.08.003","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"111 9","pages":"1797"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-20DOI: 10.1016/j.ajhg.2024.07.016
Paranchai Boonsawat, Reza Asadollahi, Dunja Niedrist, Katharina Steindl, Anaïs Begemann, Pascal Joset, Elizabeth J Bhoj, Dong Li, Elaine Zackai, Annalisa Vetro, Carmen Barba, Renzo Guerrini, Sandra Whalen, Boris Keren, Amjad Khan, Duan Jing, María Palomares Bralo, Emi Rikeros Orozco, Qin Hao, Britta Schlott Kristiansen, Bixia Zheng, Deirdre Donnelly, Virginia Clowes, Markus Zweier, Michael Papik, Gabriele Siegel, Valeria Sabatino, Martina Mocera, Anselm H C Horn, Heinrich Sticht, Anita Rauch
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
{"title":"Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/β-catenin signaling.","authors":"Paranchai Boonsawat, Reza Asadollahi, Dunja Niedrist, Katharina Steindl, Anaïs Begemann, Pascal Joset, Elizabeth J Bhoj, Dong Li, Elaine Zackai, Annalisa Vetro, Carmen Barba, Renzo Guerrini, Sandra Whalen, Boris Keren, Amjad Khan, Duan Jing, María Palomares Bralo, Emi Rikeros Orozco, Qin Hao, Britta Schlott Kristiansen, Bixia Zheng, Deirdre Donnelly, Virginia Clowes, Markus Zweier, Michael Papik, Gabriele Siegel, Valeria Sabatino, Martina Mocera, Anselm H C Horn, Heinrich Sticht, Anita Rauch","doi":"10.1016/j.ajhg.2024.07.016","DOIUrl":"10.1016/j.ajhg.2024.07.016","url":null,"abstract":"<p><p>Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1994-2011"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-20DOI: 10.1016/j.ajhg.2024.07.015
Nil Aygün, Celine Vuong, Oleh Krupa, Jessica Mory, Brandon D Le, Jordan M Valone, Dan Liang, Beck Shafie, Pan Zhang, Angelo Salinda, Cindy Wen, Michael J Gandal, Michael I Love, Luis de la Torre-Ubieta, Jason L Stein
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
{"title":"Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis.","authors":"Nil Aygün, Celine Vuong, Oleh Krupa, Jessica Mory, Brandon D Le, Jordan M Valone, Dan Liang, Beck Shafie, Pan Zhang, Angelo Salinda, Cindy Wen, Michael J Gandal, Michael I Love, Luis de la Torre-Ubieta, Jason L Stein","doi":"10.1016/j.ajhg.2024.07.015","DOIUrl":"10.1016/j.ajhg.2024.07.015","url":null,"abstract":"<p><p>The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1877-1898"},"PeriodicalIF":5.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.ajhg.2024.07.023
Elyse Kozlowski, Margaret M Farrell, Erika J Faust, C Scott Gallagher, Grant Jones, Erica Landis, Tamara R Litwin, Chris Lunt, Sana H Mian, Stephen C Mockrin, Anjene Musick, Theresa Patten, Janeth Sanchez, Sheri Schully, Geoffrey S Ginsburg
{"title":"All of Us Research Program year in review: 2023-2024.","authors":"Elyse Kozlowski, Margaret M Farrell, Erika J Faust, C Scott Gallagher, Grant Jones, Erica Landis, Tamara R Litwin, Chris Lunt, Sana H Mian, Stephen C Mockrin, Anjene Musick, Theresa Patten, Janeth Sanchez, Sheri Schully, Geoffrey S Ginsburg","doi":"10.1016/j.ajhg.2024.07.023","DOIUrl":"10.1016/j.ajhg.2024.07.023","url":null,"abstract":"","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"111 9","pages":"1800-1804"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-05DOI: 10.1016/j.ajhg.2024.07.007
Lap Sum Chan, Mykhaylo M Malakhov, Wei Pan
Mendelian randomization (MR) utilizes genome-wide association study (GWAS) summary data to infer causal relationships between exposures and outcomes, offering a valuable tool for identifying disease risk factors. Multivariable MR (MVMR) estimates the direct effects of multiple exposures on an outcome. This study tackles the issue of highly correlated exposures commonly observed in metabolomic data, a situation where existing MVMR methods often face reduced statistical power due to multicollinearity. We propose a robust extension of the MVMR framework that leverages constrained maximum likelihood (cML) and employs a Bayesian approach for identifying independent clusters of exposure signals. Applying our method to the UK Biobank metabolomic data for the largest Alzheimer disease (AD) cohort through a two-sample MR approach, we identified two independent signal clusters for AD: glutamine and lipids, with posterior inclusion probabilities (PIPs) of 95.0% and 81.5%, respectively. Our findings corroborate the hypothesized roles of glutamate and lipids in AD, providing quantitative support for their potential involvement.
孟德尔随机化(Mendelian randomization,MR)利用全基因组关联研究(GWAS)的汇总数据来推断暴露与结果之间的因果关系,为确定疾病风险因素提供了一种宝贵的工具。多变量 MR(MVMR)可估算多种暴露因素对结果的直接影响。本研究解决了代谢组数据中常见的高度相关暴露的问题,在这种情况下,现有的 MVMR 方法往往会因多重共线性而导致统计能力下降。我们提出了 MVMR 框架的稳健扩展,该框架利用受限最大似然法(cML),并采用贝叶斯方法识别独立的暴露信号群。通过双样本 MR 方法将我们的方法应用于英国生物库最大阿尔茨海默病(AD)队列的代谢组数据,我们发现了两个独立的 AD 信号集群:谷氨酰胺和脂质,其后纳入概率(PIPs)分别为 95.0% 和 81.5%。我们的研究结果证实了谷氨酸和脂质在 AD 中的假设作用,为它们的潜在参与提供了定量支持。
{"title":"A novel multivariable Mendelian randomization framework to disentangle highly correlated exposures with application to metabolomics.","authors":"Lap Sum Chan, Mykhaylo M Malakhov, Wei Pan","doi":"10.1016/j.ajhg.2024.07.007","DOIUrl":"10.1016/j.ajhg.2024.07.007","url":null,"abstract":"<p><p>Mendelian randomization (MR) utilizes genome-wide association study (GWAS) summary data to infer causal relationships between exposures and outcomes, offering a valuable tool for identifying disease risk factors. Multivariable MR (MVMR) estimates the direct effects of multiple exposures on an outcome. This study tackles the issue of highly correlated exposures commonly observed in metabolomic data, a situation where existing MVMR methods often face reduced statistical power due to multicollinearity. We propose a robust extension of the MVMR framework that leverages constrained maximum likelihood (cML) and employs a Bayesian approach for identifying independent clusters of exposure signals. Applying our method to the UK Biobank metabolomic data for the largest Alzheimer disease (AD) cohort through a two-sample MR approach, we identified two independent signal clusters for AD: glutamine and lipids, with posterior inclusion probabilities (PIPs) of 95.0% and 81.5%, respectively. Our findings corroborate the hypothesized roles of glutamate and lipids in AD, providing quantitative support for their potential involvement.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1834-1847"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-20DOI: 10.1016/j.ajhg.2024.07.014
Colin A Ellis, Karen L Oliver, Rebekah V Harris, Ruth Ottman, Ingrid E Scheffer, Heather C Mefford, Michael P Epstein, Samuel F Berkovic, Melanie Bahlo
Polygenic risk scores (PRSs) are an important tool for understanding the role of common genetic variants in human disease. Standard best practices recommend that PRSs be analyzed in cohorts that are independent of the genome-wide association study (GWAS) used to derive the scores without sample overlap or relatedness between the two cohorts. However, identifying sample overlap and relatedness can be challenging in an era of GWASs performed by large biobanks and international research consortia. Although most genomics researchers are aware of best practices and theoretical concerns about sample overlap and relatedness between GWAS and PRS cohorts, the prevailing assumption is that the risk of bias is small for very large GWASs. Here, we present two real-world examples demonstrating that sample overlap and relatedness is not a minor or theoretical concern but an important potential source of bias in PRS studies. Using a recently developed statistical adjustment tool, we found that excluding overlapping and related samples was equal to or more powerful than adjusting for overlap bias. Our goal is to make genomics researchers aware of the magnitude of risk of bias from sample overlap and relatedness and to highlight the need for mitigation tools, including independent validation cohorts in PRS studies, continued development of statistical adjustment methods, and tools for researchers to test their cohorts for overlap and relatedness with GWAS cohorts without sharing individual-level data.
{"title":"Inflation of polygenic risk scores caused by sample overlap and relatedness: Examples of a major risk of bias.","authors":"Colin A Ellis, Karen L Oliver, Rebekah V Harris, Ruth Ottman, Ingrid E Scheffer, Heather C Mefford, Michael P Epstein, Samuel F Berkovic, Melanie Bahlo","doi":"10.1016/j.ajhg.2024.07.014","DOIUrl":"10.1016/j.ajhg.2024.07.014","url":null,"abstract":"<p><p>Polygenic risk scores (PRSs) are an important tool for understanding the role of common genetic variants in human disease. Standard best practices recommend that PRSs be analyzed in cohorts that are independent of the genome-wide association study (GWAS) used to derive the scores without sample overlap or relatedness between the two cohorts. However, identifying sample overlap and relatedness can be challenging in an era of GWASs performed by large biobanks and international research consortia. Although most genomics researchers are aware of best practices and theoretical concerns about sample overlap and relatedness between GWAS and PRS cohorts, the prevailing assumption is that the risk of bias is small for very large GWASs. Here, we present two real-world examples demonstrating that sample overlap and relatedness is not a minor or theoretical concern but an important potential source of bias in PRS studies. Using a recently developed statistical adjustment tool, we found that excluding overlapping and related samples was equal to or more powerful than adjusting for overlap bias. Our goal is to make genomics researchers aware of the magnitude of risk of bias from sample overlap and relatedness and to highlight the need for mitigation tools, including independent validation cohorts in PRS studies, continued development of statistical adjustment methods, and tools for researchers to test their cohorts for overlap and relatedness with GWAS cohorts without sharing individual-level data.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1805-1809"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.ajhg.2024.08.004
Hua Ling,Karen S Raraigh,Elizabeth W Pugh,Melis A Aksit,Peng Zhang,Rhonda G Pace,Anna V Faino,Michael J Bamshad,Ronald L Gibson,Wanda O'Neal,Michael R Knowles,Scott M Blackman,Garry R Cutting,
To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, β = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, β = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.
{"title":"Genetic modifiers of body mass index in individuals with cystic fibrosis.","authors":"Hua Ling,Karen S Raraigh,Elizabeth W Pugh,Melis A Aksit,Peng Zhang,Rhonda G Pace,Anna V Faino,Michael J Bamshad,Ronald L Gibson,Wanda O'Neal,Michael R Knowles,Scott M Blackman,Garry R Cutting,","doi":"10.1016/j.ajhg.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.ajhg.2024.08.004","url":null,"abstract":"To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, β = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, β = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"7 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-21DOI: 10.1016/j.ajhg.2024.07.017
K Alaine Broadaway, Sarah M Brotman, Jonathan D Rosen, Kevin W Currin, Abdalla A Alkhawaja, Amy S Etheridge, Fred Wright, Paul Gallins, Dereje Jima, Yi-Hui Zhou, Michael I Love, Federico Innocenti, Karen L Mohlke
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
{"title":"Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits.","authors":"K Alaine Broadaway, Sarah M Brotman, Jonathan D Rosen, Kevin W Currin, Abdalla A Alkhawaja, Amy S Etheridge, Fred Wright, Paul Gallins, Dereje Jima, Yi-Hui Zhou, Michael I Love, Federico Innocenti, Karen L Mohlke","doi":"10.1016/j.ajhg.2024.07.017","DOIUrl":"10.1016/j.ajhg.2024.07.017","url":null,"abstract":"<p><p>Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1899-1913"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05Epub Date: 2024-08-13DOI: 10.1016/j.ajhg.2024.07.013
Michael T Parsons, Miguel de la Hoya, Marcy E Richardson, Emma Tudini, Michael Anderson, Windy Berkofsky-Fessler, Sandrine M Caputo, Raymond C Chan, Melissa S Cline, Bing-Jian Feng, Cristina Fortuno, Encarna Gomez-Garcia, Johanna Hadler, Susan Hiraki, Megan Holdren, Claude Houdayer, Kathleen Hruska, Paul James, Rachid Karam, Huei San Leong, Alexandra Martins, Arjen R Mensenkamp, Alvaro N Monteiro, Vaishnavi Nathan, Robert O'Connor, Inge Sokilde Pedersen, Tina Pesaran, Paolo Radice, Gunnar Schmidt, Melissa Southey, Sean Tavtigian, Bryony A Thompson, Amanda E Toland, Clare Turnbull, Maartje J Vogel, Jamie Weyandt, George A R Wiggins, Lauren Zec, Fergus J Couch, Logan C Walker, Maaike P G Vreeswijk, David E Goldgar, Amanda B Spurdle
The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.
{"title":"Evidence-based recommendations for gene-specific ACMG/AMP variant classification from the ClinGen ENIGMA BRCA1 and BRCA2 Variant Curation Expert Panel.","authors":"Michael T Parsons, Miguel de la Hoya, Marcy E Richardson, Emma Tudini, Michael Anderson, Windy Berkofsky-Fessler, Sandrine M Caputo, Raymond C Chan, Melissa S Cline, Bing-Jian Feng, Cristina Fortuno, Encarna Gomez-Garcia, Johanna Hadler, Susan Hiraki, Megan Holdren, Claude Houdayer, Kathleen Hruska, Paul James, Rachid Karam, Huei San Leong, Alexandra Martins, Arjen R Mensenkamp, Alvaro N Monteiro, Vaishnavi Nathan, Robert O'Connor, Inge Sokilde Pedersen, Tina Pesaran, Paolo Radice, Gunnar Schmidt, Melissa Southey, Sean Tavtigian, Bryony A Thompson, Amanda E Toland, Clare Turnbull, Maartje J Vogel, Jamie Weyandt, George A R Wiggins, Lauren Zec, Fergus J Couch, Logan C Walker, Maaike P G Vreeswijk, David E Goldgar, Amanda B Spurdle","doi":"10.1016/j.ajhg.2024.07.013","DOIUrl":"10.1016/j.ajhg.2024.07.013","url":null,"abstract":"<p><p>The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2044-2058"},"PeriodicalIF":8.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}