首页 > 最新文献

Science China Physics, Mechanics & Astronomy最新文献

英文 中文
Multifractal-enriched mobility edges and emergent quantum phases in Rydberg atomic arrays Rydberg原子阵列中富多重分形迁移率边和涌现量子相
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-29 DOI: 10.1007/s11433-025-2774-2
Shan-Zhong Li, Yi-Cai Zhang, Yucheng Wang, Shanchao Zhang, Shi-Liang Zhu, Zhi Li

Anderson localization describes disorder-induced phase transitions, distinguishing between localized and extended states. In quasiperiodic systems, a third multifractal state emerges, characterized by unique energy and wave functions. However, the corresponding multifractal-enriched mobility edges and three-state-coexisting quantum phases have yet to be experimentally detected. In this work, we propose exactly solvable one-dimensional quasiperiodic lattice models that simultaneously host three-state-coexisting quantum phases, with their phase boundaries analytically derived via Avilas global theorem. Furthermore, we propose experimental protocols via Rydberg atom arrays to realize these states. Notably, we demonstrate a spectroscopic technique capable of measuring inverse participation ratios across real-space and dual-space domains, enabling simultaneous characterization of localized, extended, and multifractal quantum phases in systems with up to tens of qubits. Our work opens new avenues for the experimental exploration of Anderson localization and multifractal states in artificial quantum systems.

安德森局域化描述了无序引起的相变,区分了局域状态和扩展状态。在准周期系统中,出现了第三种多重分形状态,其特征是独特的能量和波函数。然而,相应的多分形富迁移率边和三态共存量子相尚未被实验检测到。在这项工作中,我们提出了精确可解的一维准周期晶格模型,该模型同时拥有三态共存的量子相,其相边界通过Avilas全局定理解析导出。此外,我们提出了利用里德伯原子阵列来实现这些状态的实验方案。值得注意的是,我们展示了一种光谱技术,能够测量跨实空间和双空间域的逆参与比,从而能够同时表征具有多达数十个量子比特的系统中的局部,扩展和多重分形量子相。我们的工作为人工量子系统中安德森局域化和多重分形态的实验探索开辟了新的途径。
{"title":"Multifractal-enriched mobility edges and emergent quantum phases in Rydberg atomic arrays","authors":"Shan-Zhong Li,&nbsp;Yi-Cai Zhang,&nbsp;Yucheng Wang,&nbsp;Shanchao Zhang,&nbsp;Shi-Liang Zhu,&nbsp;Zhi Li","doi":"10.1007/s11433-025-2774-2","DOIUrl":"10.1007/s11433-025-2774-2","url":null,"abstract":"<div><p>Anderson localization describes disorder-induced phase transitions, distinguishing between localized and extended states. In quasiperiodic systems, a third multifractal state emerges, characterized by unique energy and wave functions. However, the corresponding multifractal-enriched mobility edges and three-state-coexisting quantum phases have yet to be experimentally detected. In this work, we propose exactly solvable one-dimensional quasiperiodic lattice models that simultaneously host three-state-coexisting quantum phases, with their phase boundaries analytically derived via Avilas global theorem. Furthermore, we propose experimental protocols via Rydberg atom arrays to realize these states. Notably, we demonstrate a spectroscopic technique capable of measuring inverse participation ratios across real-space and dual-space domains, enabling simultaneous characterization of localized, extended, and multifractal quantum phases in systems with up to tens of qubits. Our work opens new avenues for the experimental exploration of Anderson localization and multifractal states in artificial quantum systems.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"69 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145316376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast surface diffusion driven by abnormal relaxation mode in the marginal glass-forming Fe-based metallic glasses 非晶化铁基金属玻璃中异常弛豫模式驱动的超快表面扩散
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-29 DOI: 10.1007/s11433-025-2775-1
Yebei Wang, Yunhe Gao, Jiajie Lv, Meichen Jian, Yue Huang, Yan Li, Wenlin Liu, Yu Tong, Yan Zhang, Yanping Wei, Xiao Jin, Juntao Huo, Junqiang Wang, Meng Gao

Atomic surface mobility of glasses plays an important role in understanding glass dynamics and determining many fundamental processes on the surface. However, the diffusion dynamics at the free surface in marginal glasses remains unknown due to limited glass formation ability. In this study, we systematically investigate surface diffusion and relaxation behavior in four marginal glass-forming Fe-based metallic glasses with great application potential. Surface diffusion rates in marginal glass- forming Fe-based metallic glasses are significantly faster than those of stable metallic glasses. For the first time, an abnormal βt relaxation mode with thermal activation character is identified between α and β relaxation. Strikingly, the activation energy of surface diffusion matches that of βt relaxation. A mechanism involving cooperative cluster motion associated with βt relaxation is proposed to explain the ultrafast surface diffusion. These results establish a direct correlation between surface diffusion and bulk relaxation, providing a basis for tailoring surface properties in metallic glasses.

玻璃原子表面迁移率对于理解玻璃动力学和确定玻璃表面的许多基本过程起着重要的作用。然而,由于玻璃形成能力有限,边缘玻璃自由表面的扩散动力学仍然未知。本研究系统地研究了四种极具应用潜力的边缘成形铁基金属玻璃的表面扩散和弛豫行为。边缘成形铁基金属玻璃的表面扩散速率明显快于稳定型金属玻璃。首次在α和β弛豫之间发现了具有热活化特征的异常βt弛豫模式。引人注目的是,表面扩散的活化能与βt弛豫的活化能相匹配。提出了一种与βt弛豫相关的协同簇运动机制来解释超快表面扩散。这些结果建立了表面扩散和体弛豫之间的直接关系,为金属玻璃的表面特性定制提供了基础。
{"title":"Ultrafast surface diffusion driven by abnormal relaxation mode in the marginal glass-forming Fe-based metallic glasses","authors":"Yebei Wang,&nbsp;Yunhe Gao,&nbsp;Jiajie Lv,&nbsp;Meichen Jian,&nbsp;Yue Huang,&nbsp;Yan Li,&nbsp;Wenlin Liu,&nbsp;Yu Tong,&nbsp;Yan Zhang,&nbsp;Yanping Wei,&nbsp;Xiao Jin,&nbsp;Juntao Huo,&nbsp;Junqiang Wang,&nbsp;Meng Gao","doi":"10.1007/s11433-025-2775-1","DOIUrl":"10.1007/s11433-025-2775-1","url":null,"abstract":"<div><p>Atomic surface mobility of glasses plays an important role in understanding glass dynamics and determining many fundamental processes on the surface. However, the diffusion dynamics at the free surface in marginal glasses remains unknown due to limited glass formation ability. In this study, we systematically investigate surface diffusion and relaxation behavior in four marginal glass-forming Fe-based metallic glasses with great application potential. Surface diffusion rates in marginal glass- forming Fe-based metallic glasses are significantly faster than those of stable metallic glasses. For the first time, an abnormal <i>β</i><sub><i>t</i></sub> relaxation mode with thermal activation character is identified between <i>α</i> and <i>β</i> relaxation. Strikingly, the activation energy of surface diffusion matches that of <i>β</i><sub><i>t</i></sub> relaxation. A mechanism involving cooperative cluster motion associated with <i>β</i><sub><i>t</i></sub> relaxation is proposed to explain the ultrafast surface diffusion. These results establish a direct correlation between surface diffusion and bulk relaxation, providing a basis for tailoring surface properties in metallic glasses.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 12","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kirkwood-Dirac nonclassicality advantages on quantum steering 柯克伍德-狄拉克非经典性在量子转向上的优势
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-29 DOI: 10.1007/s11433-025-2785-2
Bingke Zheng, Zhihua Guo, Huaixin Cao, Zhihao Ma, Zhihua Chen, Shao-Ming Fei

The Kirkwood-Dirac (KD) distribution is a vital framework in quantum state characterization, which reveals nonclassical correlations through phase-space representations. In this work, we introduce trace-norm-based measures to assess the KD-nonclassicality of quantum states and derive the corresponding trade-off relations for qubit and qutrit systems. For a bipartite state shared by Alice and Bob and a set of measurements applied by Alice, the maximum value of the totally averaged quantum resource of Bob’s states is introduced with respect to a quantum resource quantifier. When the maximum value exceeds the upper bound in a trade-off relation, the bipartite state is said to exhibit nonlocal advantages of quantum resource (NAQR). We prove that a state exhibiting NAQR, such as nonlocal advantages of KD-nonclassicality (NAKDNC), is steerable from Alice to Bob. We demonstrate that NAKDNC of Werner states exhibit much more quantum steering than quantum coherence and quantum imaginarity do and also explore NAKDNC of the two-qutrit isotropic states. These findings emerge KD-nonclassicality as an independent nonclassical resource with operational relevance in quantum information protocols.

Kirkwood-Dirac (KD)分布是量子态表征的一个重要框架,它通过相空间表示揭示了非经典相关性。在这项工作中,我们引入了基于跟踪规范的度量来评估量子态的kd -非经典性,并推导了量子比特和量子系统的相应权衡关系。对于Alice和Bob共享的二部态和Alice应用的一组测量,引入了Bob状态的全平均量子资源的最大值。当在权衡关系中最大值超过上界时,二部态表现出量子资源的非局部优势(NAQR)。我们证明了一个表现出NAQR的状态,如kd -非经典性的非局部优势(NAKDNC),可以从Alice转向Bob。我们证明了Werner态的NAKDNC比量子相干性和量子虚性表现出更多的量子方向性,并探索了双量子位各向同性态的NAKDNC。这些发现表明kd -非经典性是量子信息协议中具有操作相关性的独立非经典资源。
{"title":"Kirkwood-Dirac nonclassicality advantages on quantum steering","authors":"Bingke Zheng,&nbsp;Zhihua Guo,&nbsp;Huaixin Cao,&nbsp;Zhihao Ma,&nbsp;Zhihua Chen,&nbsp;Shao-Ming Fei","doi":"10.1007/s11433-025-2785-2","DOIUrl":"10.1007/s11433-025-2785-2","url":null,"abstract":"<div><p>The Kirkwood-Dirac (KD) distribution is a vital framework in quantum state characterization, which reveals nonclassical correlations through phase-space representations. In this work, we introduce trace-norm-based measures to assess the KD-nonclassicality of quantum states and derive the corresponding trade-off relations for qubit and qutrit systems. For a bipartite state shared by Alice and Bob and a set of measurements applied by Alice, the maximum value of the totally averaged quantum resource of Bob’s states is introduced with respect to a quantum resource quantifier. When the maximum value exceeds the upper bound in a trade-off relation, the bipartite state is said to exhibit nonlocal advantages of quantum resource (NAQR). We prove that a state exhibiting NAQR, such as nonlocal advantages of KD-nonclassicality (NAKDNC), is steerable from Alice to Bob. We demonstrate that NAKDNC of Werner states exhibit much more quantum steering than quantum coherence and quantum imaginarity do and also explore NAKDNC of the two-qutrit isotropic states. These findings emerge KD-nonclassicality as an independent nonclassical resource with operational relevance in quantum information protocols.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"69 2","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145284472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitive constraints on coherent radio emission from five isolated white dwarfs 五颗孤立白矮星相干射电发射的敏感约束
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-29 DOI: 10.1007/s11433-025-2783-7
Lei Zhang, Alexander Wolszczan, Joshua Pritchard, Ryan S. Lynch, Di Li, Erbil Gügercinoğlu, Pei Wang, Andrew Zic, Yuanming Wang, Pavan A. Uttarkar, Shi Dai

Coherent, periodic radio emission from pulsars has been widely interpreted as evidence of neutron stars as strongly magnetized compact objects. In recent years, radio pulses have also been detected from white dwarfs (WDs) in tight binary systems, raising the question of whether isolated WDs could similarly host pulsar-like emission. We conducted the most sensitive search to date for coherent radio signals from five isolated, rapidly rotating, and magnetized WDs, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the Green Bank Telescope (GBT), and the Australia Telescope Compact Array (ATCA). No pulsed or continuum radio emission was detected down to μJy levels. These non-detections place the most stringent observational constraints yet on the existence of isolated WD pulsars. Our results suggest that either such emission is intrinsically weak, narrowly beamed, or requires binary-induced magnetospheric interactions absent in solitary systems. Comparison with the known radio-emitting WDs highlights the critical role of companion interaction in enabling detectable emission. This work expands on prior surveys by targeting sources with the most favorable physical conditions for WD pulsar-like activity and employing highly sensitive, targeted observations. Future observations with next-generation facilities such as the SKA will be essential to explore fainter or sporadic emission from massive, magnetic WDs and to investigate their potential as compact radio transients further.

脉冲星发出的连贯的、周期性的射电辐射被广泛地解释为中子星是强磁化致密物体的证据。近年来,射电脉冲也被从紧密双星系统中的白矮星(WDs)中探测到,这就提出了一个问题,即孤立的白矮星是否也能类似地发射脉冲星。我们使用500米口径球面射电望远镜(FAST)、格林班克望远镜(GBT)和澳大利亚望远镜紧凑型阵列(ATCA),对来自5个孤立的、快速旋转的磁化WDs的相干射电信号进行了迄今为止最灵敏的搜索。未检测到低至μJy水平的脉冲或连续无线电发射。这些未探测到的现象对孤立的WD脉冲星的存在提出了迄今为止最严格的观测限制。我们的研究结果表明,这种发射本质上是微弱的,窄束的,或者需要在孤立系统中不存在的二元诱导磁层相互作用。与已知的无线电发射WDs的比较突出了伴星相互作用在实现可探测发射方面的关键作用。这项工作扩展了先前的调查,目标是具有WD脉冲星活动最有利的物理条件的来源,并采用高灵敏度,有针对性的观测。未来使用下一代设施(如SKA)进行观测,对于探索大质量磁性WDs发出的微弱或零星辐射,以及进一步研究它们作为紧凑型无线电瞬变的潜力至关重要。
{"title":"Sensitive constraints on coherent radio emission from five isolated white dwarfs","authors":"Lei Zhang,&nbsp;Alexander Wolszczan,&nbsp;Joshua Pritchard,&nbsp;Ryan S. Lynch,&nbsp;Di Li,&nbsp;Erbil Gügercinoğlu,&nbsp;Pei Wang,&nbsp;Andrew Zic,&nbsp;Yuanming Wang,&nbsp;Pavan A. Uttarkar,&nbsp;Shi Dai","doi":"10.1007/s11433-025-2783-7","DOIUrl":"10.1007/s11433-025-2783-7","url":null,"abstract":"<div><p>Coherent, periodic radio emission from pulsars has been widely interpreted as evidence of neutron stars as strongly magnetized compact objects. In recent years, radio pulses have also been detected from white dwarfs (WDs) in tight binary systems, raising the question of whether isolated WDs could similarly host pulsar-like emission. We conducted the most sensitive search to date for coherent radio signals from five isolated, rapidly rotating, and magnetized WDs, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the Green Bank Telescope (GBT), and the Australia Telescope Compact Array (ATCA). No pulsed or continuum radio emission was detected down to μJy levels. These non-detections place the most stringent observational constraints yet on the existence of isolated WD pulsars. Our results suggest that either such emission is intrinsically weak, narrowly beamed, or requires binary-induced magnetospheric interactions absent in solitary systems. Comparison with the known radio-emitting WDs highlights the critical role of companion interaction in enabling detectable emission. This work expands on prior surveys by targeting sources with the most favorable physical conditions for WD pulsar-like activity and employing highly sensitive, targeted observations. Future observations with next-generation facilities such as the SKA will be essential to explore fainter or sporadic emission from massive, magnetic WDs and to investigate their potential as compact radio transients further.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 12","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observatory science with eXTP 天文台科学与eXTP
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-28 DOI: 10.1007/s11433-025-2799-0
Ping Zhou, Jirong Mao, Liang Zhang, Alessandro Patruno, Enrico Bozzo, Yanjun Xu, Andrea Santangelo, Silvia Zane, Shuangnan Zhang, Hua Feng, Yuri Cavecchi, Barbara de Marco, Junhui Fan, Xian Hou, Pengfei Jiang, Patrizia Romano, Gloria Sala, Lian Tao, Alexandra Veledina, Jacco Vink, Song Wang, Junxian Wang, Yidi Wang, Shanshan Weng, Qingwen Wu, Fei Xie, Guobao Zhang, Jin Zhang, Zhanhao Zhao, Shijie Zheng, Samuzal Barua, Yuehong Chen, Yupeng Chen, Shijiang Chen, Liang Chen, Yongyun Chen, Xin Cheng, Yiheng Chi, Lang Cui, Domitilla de Martino, Wei Deng, Lorenzo Ducci, Ruben Farinelli, Fabo Feng, Mingyu Ge, Minfeng Gu, Hengxiao Guo, Dawei Han, Xinke Hu, Yongfeng Huang, Jean in’t Zand, Long Ji, Jialai Kang, Yves Kini, Panping Li, Zhaosheng Li, Kuan Liu, Jiren Liu, Jieying Liu, Ming Lyu, Alessio Marino, Alex Markowitz, Mar Mezcua, Matt Middleton, Guobin Mou, C.-Y. Ng, Alessandro Papitto, Zhiyuan Pei, Jingqiang Peng, Juri Poutanen, Qingcang Shui, Scaringi Simone, Yang Su, Ying Tan, Xilu Wang, Pengju Wang, Di Wang, Fayin Wang, Junfeng Wang, Mengye Wang, Yusong Wang, Jiancheng Wu, Hubing Xiao, Dingrong Xiong, Xiaojie Xu, Rui Xue, Zhen Yan, Ming Yang, Chuyuan Yang, Wenxin Yang, Wentao Ye, Zhuoli Yu, Yuhai Yuan, Xiao Zhang, Lixia Zhang, Shujie Zhao, Qingchang Zhao, Yonggang Zheng, Wei Zheng, Wenwen Zuo

Scheduled for launch in 2030, the enhanced X-ray Timing and Polarization (eXTP) telescope is a Chinese space-based mission aimed at studying extreme conditions and phenomena in astrophysics. eXTP will feature three main payloads: Spectroscopy Focusing Array (SFA), Polarimetry Focusing Array (PFA), and a Wide-field Camera (W2C). This white paper outlines observatory science, incorporating key scientific advances and instrumental changes since the publication of the previous white paper. We will discuss perspectives of eXTP on the research domains of flare stars, supernova remnants, pulsar wind nebulae, cataclysmic variables, X-ray binaries, ultraluminous X-ray sources, active galactic nucleus (AGN), and pulsar-based positioning and timekeeping.

增强型x射线定时和偏振望远镜(eXTP)计划于2030年发射,是中国的一项天基任务,旨在研究天体物理中的极端条件和现象。eXTP将有三个主要的有效载荷:光谱聚焦阵列(SFA)、偏振聚焦阵列(PFA)和宽视场相机(W2C)。本白皮书概述了天文台科学,包括自上一份白皮书出版以来的主要科学进展和仪器变化。我们将讨论eXTP在耀斑星、超新星遗迹、脉冲星风星云、灾变变星、x射线双星、超亮x射线源、活动星系核(AGN)以及基于脉冲星的定位和计时等研究领域的观点。
{"title":"Observatory science with eXTP","authors":"Ping Zhou,&nbsp;Jirong Mao,&nbsp;Liang Zhang,&nbsp;Alessandro Patruno,&nbsp;Enrico Bozzo,&nbsp;Yanjun Xu,&nbsp;Andrea Santangelo,&nbsp;Silvia Zane,&nbsp;Shuangnan Zhang,&nbsp;Hua Feng,&nbsp;Yuri Cavecchi,&nbsp;Barbara de Marco,&nbsp;Junhui Fan,&nbsp;Xian Hou,&nbsp;Pengfei Jiang,&nbsp;Patrizia Romano,&nbsp;Gloria Sala,&nbsp;Lian Tao,&nbsp;Alexandra Veledina,&nbsp;Jacco Vink,&nbsp;Song Wang,&nbsp;Junxian Wang,&nbsp;Yidi Wang,&nbsp;Shanshan Weng,&nbsp;Qingwen Wu,&nbsp;Fei Xie,&nbsp;Guobao Zhang,&nbsp;Jin Zhang,&nbsp;Zhanhao Zhao,&nbsp;Shijie Zheng,&nbsp;Samuzal Barua,&nbsp;Yuehong Chen,&nbsp;Yupeng Chen,&nbsp;Shijiang Chen,&nbsp;Liang Chen,&nbsp;Yongyun Chen,&nbsp;Xin Cheng,&nbsp;Yiheng Chi,&nbsp;Lang Cui,&nbsp;Domitilla de Martino,&nbsp;Wei Deng,&nbsp;Lorenzo Ducci,&nbsp;Ruben Farinelli,&nbsp;Fabo Feng,&nbsp;Mingyu Ge,&nbsp;Minfeng Gu,&nbsp;Hengxiao Guo,&nbsp;Dawei Han,&nbsp;Xinke Hu,&nbsp;Yongfeng Huang,&nbsp;Jean in’t Zand,&nbsp;Long Ji,&nbsp;Jialai Kang,&nbsp;Yves Kini,&nbsp;Panping Li,&nbsp;Zhaosheng Li,&nbsp;Kuan Liu,&nbsp;Jiren Liu,&nbsp;Jieying Liu,&nbsp;Ming Lyu,&nbsp;Alessio Marino,&nbsp;Alex Markowitz,&nbsp;Mar Mezcua,&nbsp;Matt Middleton,&nbsp;Guobin Mou,&nbsp;C.-Y. Ng,&nbsp;Alessandro Papitto,&nbsp;Zhiyuan Pei,&nbsp;Jingqiang Peng,&nbsp;Juri Poutanen,&nbsp;Qingcang Shui,&nbsp;Scaringi Simone,&nbsp;Yang Su,&nbsp;Ying Tan,&nbsp;Xilu Wang,&nbsp;Pengju Wang,&nbsp;Di Wang,&nbsp;Fayin Wang,&nbsp;Junfeng Wang,&nbsp;Mengye Wang,&nbsp;Yusong Wang,&nbsp;Jiancheng Wu,&nbsp;Hubing Xiao,&nbsp;Dingrong Xiong,&nbsp;Xiaojie Xu,&nbsp;Rui Xue,&nbsp;Zhen Yan,&nbsp;Ming Yang,&nbsp;Chuyuan Yang,&nbsp;Wenxin Yang,&nbsp;Wentao Ye,&nbsp;Zhuoli Yu,&nbsp;Yuhai Yuan,&nbsp;Xiao Zhang,&nbsp;Lixia Zhang,&nbsp;Shujie Zhao,&nbsp;Qingchang Zhao,&nbsp;Yonggang Zheng,&nbsp;Wei Zheng,&nbsp;Wenwen Zuo","doi":"10.1007/s11433-025-2799-0","DOIUrl":"10.1007/s11433-025-2799-0","url":null,"abstract":"<div><p>Scheduled for launch in 2030, the enhanced X-ray Timing and Polarization (eXTP) telescope is a Chinese space-based mission aimed at studying extreme conditions and phenomena in astrophysics. eXTP will feature three main payloads: Spectroscopy Focusing Array (SFA), Polarimetry Focusing Array (PFA), and a Wide-field Camera (W2C). This white paper outlines observatory science, incorporating key scientific advances and instrumental changes since the publication of the previous white paper. We will discuss perspectives of eXTP on the research domains of flare stars, supernova remnants, pulsar wind nebulae, cataclysmic variables, X-ray binaries, ultraluminous X-ray sources, active galactic nucleus (AGN), and pulsar-based positioning and timekeeping.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White papers on eXTP—the enhanced X-ray Timing and Polarimetry mission for launch in 2030 关于将于2030年发射的增强x射线计时和偏振测量任务的白皮书
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-26 DOI: 10.1007/s11433-025-2800-5
Shuang-Nan Zhang
{"title":"White papers on eXTP—the enhanced X-ray Timing and Polarimetry mission for launch in 2030","authors":"Shuang-Nan Zhang","doi":"10.1007/s11433-025-2800-5","DOIUrl":"10.1007/s11433-025-2800-5","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145135099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics of strong magnetism with eXTP 用eXTP研究强磁性物理
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1007/s11433-025-2796-y
Mingyu Ge, Long Ji, Roberto Taverna, Sergey Tsygankov, Yanjun Xu, Andrea Santangelo, Silvia Zane, Shuang-Nan Zhang, Hua Feng, Wei Chen, Quan Cheng, Xian Hou, Matteo Imbrogno, Gian Luca Israel, Ruth Kelly, Ling-Da Kong, Kuan Liu, Alexander Mushtukov, Juri Poutanen, Valery Suleimanov, Lian Tao, Hao Tong, Roberto Turolla, Weihua Wang, Wentao Ye, Qing-Chang Zhao, Nabil Brice, Jinjun Geng, Lin Lin, Wei-Yang Wang, Fei Xie, Shao-Lin Xiong, Shu Zhang, Yucong Fu, Dong Lai, Jian Li, Pan-Ping Li, Xiaobo Li, Xinyu Li, Honghui Liu, Jiren Liu, Jingqiang Peng, Qingcang Shui, Youli Tuo, Hongguang Wang, Wei Wang, Shanshan Weng, Yuan You, Xiaoping Zheng, Xia Zhou

In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission, in its new configuration, for studies of strongly magnetized compact objects. We discuss the scientific potential of eXTP for quantum electrodynamic (QED) studies, especially leveraging the recent observations made with the NASA IXPE mission. Given eXTP’s unique combination of timing, spectroscopy, and polarimetry, we focus on the perspectives for physics and astrophysics studies of strongly magnetized compact objects, such as magnetars and accreting X-ray pulsars. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to launch in early 2030.

在本文中,我们提出了增强x射线计时和偏振(eXTP)任务的科学潜力,在其新的配置,研究强磁化致密物体。我们讨论了eXTP在量子电动力学(QED)研究中的科学潜力,特别是利用美国宇航局IXPE任务最近的观测结果。鉴于eXTP独特的时序、光谱学和偏振学组合,我们将重点放在强磁化致密物体(如磁星和吸积x射线脉冲星)的物理学和天体物理学研究方面。eXTP任务由中国科学院高能物理研究所领导的一个国际财团开发,预计将于2030年初发射。
{"title":"Physics of strong magnetism with eXTP","authors":"Mingyu Ge,&nbsp;Long Ji,&nbsp;Roberto Taverna,&nbsp;Sergey Tsygankov,&nbsp;Yanjun Xu,&nbsp;Andrea Santangelo,&nbsp;Silvia Zane,&nbsp;Shuang-Nan Zhang,&nbsp;Hua Feng,&nbsp;Wei Chen,&nbsp;Quan Cheng,&nbsp;Xian Hou,&nbsp;Matteo Imbrogno,&nbsp;Gian Luca Israel,&nbsp;Ruth Kelly,&nbsp;Ling-Da Kong,&nbsp;Kuan Liu,&nbsp;Alexander Mushtukov,&nbsp;Juri Poutanen,&nbsp;Valery Suleimanov,&nbsp;Lian Tao,&nbsp;Hao Tong,&nbsp;Roberto Turolla,&nbsp;Weihua Wang,&nbsp;Wentao Ye,&nbsp;Qing-Chang Zhao,&nbsp;Nabil Brice,&nbsp;Jinjun Geng,&nbsp;Lin Lin,&nbsp;Wei-Yang Wang,&nbsp;Fei Xie,&nbsp;Shao-Lin Xiong,&nbsp;Shu Zhang,&nbsp;Yucong Fu,&nbsp;Dong Lai,&nbsp;Jian Li,&nbsp;Pan-Ping Li,&nbsp;Xiaobo Li,&nbsp;Xinyu Li,&nbsp;Honghui Liu,&nbsp;Jiren Liu,&nbsp;Jingqiang Peng,&nbsp;Qingcang Shui,&nbsp;Youli Tuo,&nbsp;Hongguang Wang,&nbsp;Wei Wang,&nbsp;Shanshan Weng,&nbsp;Yuan You,&nbsp;Xiaoping Zheng,&nbsp;Xia Zhou","doi":"10.1007/s11433-025-2796-y","DOIUrl":"10.1007/s11433-025-2796-y","url":null,"abstract":"<div><p>In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission, in its new configuration, for studies of strongly magnetized compact objects. We discuss the scientific potential of eXTP for quantum electrodynamic (QED) studies, especially leveraging the recent observations made with the NASA IXPE mission. Given eXTP’s unique combination of timing, spectroscopy, and polarimetry, we focus on the perspectives for physics and astrophysics studies of strongly magnetized compact objects, such as magnetars and accreting X-ray pulsars. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to launch in early 2030.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects for time-domain and multi-messenger science with eXTP eXTP在时域和多信使科学中的应用前景
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1007/s11433-025-2782-2
Shu-Xu Yi, Wen Zhao, Ren-Xin Xu, Xue-Feng Wu, Giulia Stratta, Simone Dall’Osso, Yan-Jun Xu, Andrea Santangelo, Silvia Zane, Shuang-Nan Zhang, Hua Feng, Huan Yang, Junjie Mao, Junqiang Ge, Lijing Shao, Mi-Xiang Lan, He Gao, Lin Lin, Ning Jiang, Qingwen Wu, Tong Liu, Yun-Wei Yu, Xiang-Yu Wang, Jin Zhang, Dafne Guetta, Jin-Jun Geng, Di Xiao, Yong-Feng Huang, Yacheng Kang, Tian-Yong Cao, Zhen Zhang, Zhenwei Lyu, Zhen Pan, Yunfeng Chen, Yong Gao, Ang Li, Yu-Cong Fu, Shuo Xiao, Wei-Yang Wang, Fayin Wang, Zhenyin Zhao, Weihua Lei, Rong-Feng Shen, Lixin Dai, Guang-Lei Wu, Liang-Duan Liu, Bing Li, Xilong Fan, Xing-Jiang Zhu, Youjun Lu, Fan Xu, Kangfa Cheng, Da-Bin Lin, Xiao-Hong Zhao, Jun-Jie Wei, Bin-Bin Zhang, Ji-Rong Mao, Yongquan Xue, Xinwen Shu, Wenjie Zhang, Wei-Li Lin, Achille Fiore, Zhuo Li, Antonio Martin-Carrillo, Joseph Fisher, Fei Xie, Ye Li, Sandro Mereghetti, Shao-Lin Xiong, Yu-Han Yang, Eleonora Troja, Zi-Gao Dai, Da-Ming Wei, En-Wei Liang, J. E. Horvath, G. R. Cunha Sampaio, L. G. Barão, L. M. de Sá

In this new era of time-domain and multi-messenger astronomy, various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations, which provide the excellent opportunity to study the physics in the extreme environments. The enhanced X-ray Timing and Polarimetry mission (eXTP), planned to be launched in 2030, has several key advantages, including advanced polarimetry, high sensitivity & large effective area, and wide energy range coverage, which make it a groundbreaking project in high-energy astrophysics. In this article, we briefly introduce the potential time-domain and multi-messenger targets for eXTP, including gravitational-wave (GW) counterparts, gamma-ray bursts (GRBs), magnetars and fast radio bursts (FRBs), tidal disruption events (TDEs), supernovae, high energy neutrinos and TeV active galactic nucleus (AGNs), and so on. We discuss the advantages of future eXTP observations for detecting these sources, their detection capabilities, the abilities to distinguish theoretical models, and their applications in gravity and cosmology.

在这个时域和多信使天文学的新时代,由于观测的快速发展,各种新的瞬态和新现象不断被发现,这为研究极端环境下的物理提供了极好的机会。计划于2030年发射的增强型x射线计时和偏振测量任务(eXTP)具有几个关键优势,包括先进的偏振测量、高灵敏度、大有效面积和宽能量范围覆盖,使其成为高能天体物理学领域的开创性项目。本文简要介绍了eXTP的潜在时域目标和多信使目标,包括引力波(GW)对应体、伽马射线暴(GRBs)、磁星和快速射电暴(FRBs)、潮汐破坏事件(TDEs)、超新星、高能中微子和TeV活动星系核(agn)等。我们讨论了未来eXTP观测探测这些源的优势,它们的探测能力,区分理论模型的能力,以及它们在重力和宇宙学中的应用。
{"title":"Prospects for time-domain and multi-messenger science with eXTP","authors":"Shu-Xu Yi,&nbsp;Wen Zhao,&nbsp;Ren-Xin Xu,&nbsp;Xue-Feng Wu,&nbsp;Giulia Stratta,&nbsp;Simone Dall’Osso,&nbsp;Yan-Jun Xu,&nbsp;Andrea Santangelo,&nbsp;Silvia Zane,&nbsp;Shuang-Nan Zhang,&nbsp;Hua Feng,&nbsp;Huan Yang,&nbsp;Junjie Mao,&nbsp;Junqiang Ge,&nbsp;Lijing Shao,&nbsp;Mi-Xiang Lan,&nbsp;He Gao,&nbsp;Lin Lin,&nbsp;Ning Jiang,&nbsp;Qingwen Wu,&nbsp;Tong Liu,&nbsp;Yun-Wei Yu,&nbsp;Xiang-Yu Wang,&nbsp;Jin Zhang,&nbsp;Dafne Guetta,&nbsp;Jin-Jun Geng,&nbsp;Di Xiao,&nbsp;Yong-Feng Huang,&nbsp;Yacheng Kang,&nbsp;Tian-Yong Cao,&nbsp;Zhen Zhang,&nbsp;Zhenwei Lyu,&nbsp;Zhen Pan,&nbsp;Yunfeng Chen,&nbsp;Yong Gao,&nbsp;Ang Li,&nbsp;Yu-Cong Fu,&nbsp;Shuo Xiao,&nbsp;Wei-Yang Wang,&nbsp;Fayin Wang,&nbsp;Zhenyin Zhao,&nbsp;Weihua Lei,&nbsp;Rong-Feng Shen,&nbsp;Lixin Dai,&nbsp;Guang-Lei Wu,&nbsp;Liang-Duan Liu,&nbsp;Bing Li,&nbsp;Xilong Fan,&nbsp;Xing-Jiang Zhu,&nbsp;Youjun Lu,&nbsp;Fan Xu,&nbsp;Kangfa Cheng,&nbsp;Da-Bin Lin,&nbsp;Xiao-Hong Zhao,&nbsp;Jun-Jie Wei,&nbsp;Bin-Bin Zhang,&nbsp;Ji-Rong Mao,&nbsp;Yongquan Xue,&nbsp;Xinwen Shu,&nbsp;Wenjie Zhang,&nbsp;Wei-Li Lin,&nbsp;Achille Fiore,&nbsp;Zhuo Li,&nbsp;Antonio Martin-Carrillo,&nbsp;Joseph Fisher,&nbsp;Fei Xie,&nbsp;Ye Li,&nbsp;Sandro Mereghetti,&nbsp;Shao-Lin Xiong,&nbsp;Yu-Han Yang,&nbsp;Eleonora Troja,&nbsp;Zi-Gao Dai,&nbsp;Da-Ming Wei,&nbsp;En-Wei Liang,&nbsp;J. E. Horvath,&nbsp;G. R. Cunha Sampaio,&nbsp;L. G. Barão,&nbsp;L. M. de Sá","doi":"10.1007/s11433-025-2782-2","DOIUrl":"10.1007/s11433-025-2782-2","url":null,"abstract":"<div><p>In this new era of time-domain and multi-messenger astronomy, various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations, which provide the excellent opportunity to study the physics in the extreme environments. The enhanced X-ray Timing and Polarimetry mission (eXTP), planned to be launched in 2030, has several key advantages, including advanced polarimetry, high sensitivity &amp; large effective area, and wide energy range coverage, which make it a groundbreaking project in high-energy astrophysics. In this article, we briefly introduce the potential time-domain and multi-messenger targets for eXTP, including gravitational-wave (GW) counterparts, gamma-ray bursts (GRBs), magnetars and fast radio bursts (FRBs), tidal disruption events (TDEs), supernovae, high energy neutrinos and TeV active galactic nucleus (AGNs), and so on. We discuss the advantages of future eXTP observations for detecting these sources, their detection capabilities, the abilities to distinguish theoretical models, and their applications in gravity and cosmology.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The enhanced X-ray Timing and Polarimetry mission—eXTP for launch in 2030 增强的x射线计时和偏振测量任务- extp将于2030年发射
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-24 DOI: 10.1007/s11433-025-2786-6
Shuang-Nan Zhang, Andrea Santangelo, Yupeng Xu, Hua Feng, Fangjun Lu, Yong Chen, Mingyu Ge, Kirpal Nandra, Xin Wu, Marco Feroci, Margarita Hernanz, Congzhan Liu, Huilin He, Yusa Wang, Weichun Jiang, Weiwei Cui, Yanji Yang, Juan Wang, Wei Li, Hong Li, Yuanyuan Du, Xiaohua Liu, Bin Meng, Xiangyang Wen, Aimei Zhang, Jia Ma, Maoshun Li, Gang Li, Liqiang Qi, Jianchao Sun, Tao Luo, Hongwei Liu, Xiaojing Liu, Fan Zhang, Laidan Luo, Yuxuan Zhu, Zijian Zhao, Liang Sun, Xiongtao Yang, Qiong Wu, Jiechen Jiang, Haoli Shi, Jiangtao Liu, Yanbing Xu, Sheng Yang, Laiyu Zhang, Dawei Han, Na Gao, Jia Huo, Ziliang Zhang, Hao Wang, Xiaofan Zhao, Shuo Wang, Zhenjie Li, Ziyu Bao, Yaoguang Liu, Ke Wang, Na Wang, Bo Wang, Langping Wang, Dianlong Wang, Fei Ding, Lizhi Sheng, Pengfei Qiang, Yongqing Yan, Yongan Liu, Zhenyu Wu, Yichen Liu, Hao Chen, Yacong Zhang, Hongbang Liu, Alexander Altmann, Thomas Bechteler, Vadim Burwitz, Carlo Fiorini, Peter Friedrich, Norbert Meidinger, Rafael Strecker, Luca Baldini, Ronaldo Bellazzini, Raffaella Bonino, Andrea Frassà, Luca Latronico, Simone Maldera, Alberto Manfreda, Massimo Minuti, Melissa Pesce-Rollins, Carmelo Sgrò, Stefano Tugliani, Giovanni Pareschi, Stefano Basso, Giorgia Sironi, Daniele Spiga, Gianpiero Tagliaferri, Andrii Tykhonov, Stèphane Paltani, Enrico Bozzo, Christoph Tenzer, Jörg Bayer, Youli Tuo, Honghui Liu, Yonghe Zhang, Zhiming Cai, Huaqiu Liu, Wen Chen, Chunhong Wang, Tao He, Yehai Chen, Chengbo Qiu, Ye Zhang, Jianchao Feng, Xiaofei Zhu, Heng Zhou, Shijie Zheng, Liming Song, Haoli Shi, Jinzhou Wang, Shumei Jia, Zewen Jiang, Xiaobo Li, Haisheng Zhao, Ju Guan, Juan Zhang, Chengkui Li, Yue Huang, Jinyuan Liao, Yuan You, Hongmei Zhang, Wenshuai Wang, Shuang Wang, Ge Ou, Hao Hu, Jingyan Shi, Tao Cui, Xiaowei Jiang, Yaodong Cheng, Haibo Li, Yanjun Xu, Silvia Zane, Cosimo Bambi, Qingcui Bu, Simone Dall’Osso, Alessandra De Rosa, Lijun Gou, Sebastien Guillot, Long Ji, Ang Li, Jirong Mao, Alessandro Patruno, Giulia Stratta, Roberto Taverna, Sergey Tsygankov, Phil Uttley, Anna L. Watts, Xuefeng Wu, Renxin Xu, Shuxu Yi, Guobao Zhang, Liang Zhang, Wen Zhao, Ping Zhou

In this paper, we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of quantum electro-dynamics, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s, as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects. After briefly introducing the history and a summary of the scientific objectives of the eXTP mission, this paper presents a comprehensive overview of: (1) the cutting-edge technology, technical specifications, and anticipated performance of the mission’s scientific instruments; (2) the full mission profile, encompassing spacecraft design, operational capabilities, and ground segment infrastructure.

在本文中,我们介绍了增强型x射线定时和偏振测量任务的现状,该任务已完全批准于2030年发射。eXTP是一项空间科学任务,旨在研究物质密度、重力和磁力等极端条件下的基础物理学。该任务旨在确定超核密度下物质的状态方程,测量量子电动力学的影响,并了解强场重力下物质的动力学。除了研究基础物理之外,eXTP任务还准备在本世纪30年代成为时域和多信使天文学的领先天文台,并提供对各种银河系和星系外物体的前所未有的高质量观测。在简要介绍了eXTP任务的历史和科学目标的基础上,本文对eXTP任务的前沿技术、技术指标和预期的科学仪器性能进行了全面概述;(2)完整的任务概况,包括航天器设计、操作能力和地面部分基础设施。
{"title":"The enhanced X-ray Timing and Polarimetry mission—eXTP for launch in 2030","authors":"Shuang-Nan Zhang,&nbsp;Andrea Santangelo,&nbsp;Yupeng Xu,&nbsp;Hua Feng,&nbsp;Fangjun Lu,&nbsp;Yong Chen,&nbsp;Mingyu Ge,&nbsp;Kirpal Nandra,&nbsp;Xin Wu,&nbsp;Marco Feroci,&nbsp;Margarita Hernanz,&nbsp;Congzhan Liu,&nbsp;Huilin He,&nbsp;Yusa Wang,&nbsp;Weichun Jiang,&nbsp;Weiwei Cui,&nbsp;Yanji Yang,&nbsp;Juan Wang,&nbsp;Wei Li,&nbsp;Hong Li,&nbsp;Yuanyuan Du,&nbsp;Xiaohua Liu,&nbsp;Bin Meng,&nbsp;Xiangyang Wen,&nbsp;Aimei Zhang,&nbsp;Jia Ma,&nbsp;Maoshun Li,&nbsp;Gang Li,&nbsp;Liqiang Qi,&nbsp;Jianchao Sun,&nbsp;Tao Luo,&nbsp;Hongwei Liu,&nbsp;Xiaojing Liu,&nbsp;Fan Zhang,&nbsp;Laidan Luo,&nbsp;Yuxuan Zhu,&nbsp;Zijian Zhao,&nbsp;Liang Sun,&nbsp;Xiongtao Yang,&nbsp;Qiong Wu,&nbsp;Jiechen Jiang,&nbsp;Haoli Shi,&nbsp;Jiangtao Liu,&nbsp;Yanbing Xu,&nbsp;Sheng Yang,&nbsp;Laiyu Zhang,&nbsp;Dawei Han,&nbsp;Na Gao,&nbsp;Jia Huo,&nbsp;Ziliang Zhang,&nbsp;Hao Wang,&nbsp;Xiaofan Zhao,&nbsp;Shuo Wang,&nbsp;Zhenjie Li,&nbsp;Ziyu Bao,&nbsp;Yaoguang Liu,&nbsp;Ke Wang,&nbsp;Na Wang,&nbsp;Bo Wang,&nbsp;Langping Wang,&nbsp;Dianlong Wang,&nbsp;Fei Ding,&nbsp;Lizhi Sheng,&nbsp;Pengfei Qiang,&nbsp;Yongqing Yan,&nbsp;Yongan Liu,&nbsp;Zhenyu Wu,&nbsp;Yichen Liu,&nbsp;Hao Chen,&nbsp;Yacong Zhang,&nbsp;Hongbang Liu,&nbsp;Alexander Altmann,&nbsp;Thomas Bechteler,&nbsp;Vadim Burwitz,&nbsp;Carlo Fiorini,&nbsp;Peter Friedrich,&nbsp;Norbert Meidinger,&nbsp;Rafael Strecker,&nbsp;Luca Baldini,&nbsp;Ronaldo Bellazzini,&nbsp;Raffaella Bonino,&nbsp;Andrea Frassà,&nbsp;Luca Latronico,&nbsp;Simone Maldera,&nbsp;Alberto Manfreda,&nbsp;Massimo Minuti,&nbsp;Melissa Pesce-Rollins,&nbsp;Carmelo Sgrò,&nbsp;Stefano Tugliani,&nbsp;Giovanni Pareschi,&nbsp;Stefano Basso,&nbsp;Giorgia Sironi,&nbsp;Daniele Spiga,&nbsp;Gianpiero Tagliaferri,&nbsp;Andrii Tykhonov,&nbsp;Stèphane Paltani,&nbsp;Enrico Bozzo,&nbsp;Christoph Tenzer,&nbsp;Jörg Bayer,&nbsp;Youli Tuo,&nbsp;Honghui Liu,&nbsp;Yonghe Zhang,&nbsp;Zhiming Cai,&nbsp;Huaqiu Liu,&nbsp;Wen Chen,&nbsp;Chunhong Wang,&nbsp;Tao He,&nbsp;Yehai Chen,&nbsp;Chengbo Qiu,&nbsp;Ye Zhang,&nbsp;Jianchao Feng,&nbsp;Xiaofei Zhu,&nbsp;Heng Zhou,&nbsp;Shijie Zheng,&nbsp;Liming Song,&nbsp;Haoli Shi,&nbsp;Jinzhou Wang,&nbsp;Shumei Jia,&nbsp;Zewen Jiang,&nbsp;Xiaobo Li,&nbsp;Haisheng Zhao,&nbsp;Ju Guan,&nbsp;Juan Zhang,&nbsp;Chengkui Li,&nbsp;Yue Huang,&nbsp;Jinyuan Liao,&nbsp;Yuan You,&nbsp;Hongmei Zhang,&nbsp;Wenshuai Wang,&nbsp;Shuang Wang,&nbsp;Ge Ou,&nbsp;Hao Hu,&nbsp;Jingyan Shi,&nbsp;Tao Cui,&nbsp;Xiaowei Jiang,&nbsp;Yaodong Cheng,&nbsp;Haibo Li,&nbsp;Yanjun Xu,&nbsp;Silvia Zane,&nbsp;Cosimo Bambi,&nbsp;Qingcui Bu,&nbsp;Simone Dall’Osso,&nbsp;Alessandra De Rosa,&nbsp;Lijun Gou,&nbsp;Sebastien Guillot,&nbsp;Long Ji,&nbsp;Ang Li,&nbsp;Jirong Mao,&nbsp;Alessandro Patruno,&nbsp;Giulia Stratta,&nbsp;Roberto Taverna,&nbsp;Sergey Tsygankov,&nbsp;Phil Uttley,&nbsp;Anna L. Watts,&nbsp;Xuefeng Wu,&nbsp;Renxin Xu,&nbsp;Shuxu Yi,&nbsp;Guobao Zhang,&nbsp;Liang Zhang,&nbsp;Wen Zhao,&nbsp;Ping Zhou","doi":"10.1007/s11433-025-2786-6","DOIUrl":"10.1007/s11433-025-2786-6","url":null,"abstract":"<div><p>In this paper, we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of quantum electro-dynamics, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s, as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects. After briefly introducing the history and a summary of the scientific objectives of the eXTP mission, this paper presents a comprehensive overview of: (1) the cutting-edge technology, technical specifications, and anticipated performance of the mission’s scientific instruments; (2) the full mission profile, encompassing spacecraft design, operational capabilities, and ground segment infrastructure.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145316550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant nonlinear Nernst effect observed in time-reversal-invariant but inversion symmetry breaking materials 在时间逆不变但逆对称性破缺的材料中观察到的巨大非线性能思特效应
IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-09-23 DOI: 10.1007/s11433-025-2749-y
Gang Su
{"title":"Giant nonlinear Nernst effect observed in time-reversal-invariant but inversion symmetry breaking materials","authors":"Gang Su","doi":"10.1007/s11433-025-2749-y","DOIUrl":"10.1007/s11433-025-2749-y","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"69 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science China Physics, Mechanics & Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1