首页 > 最新文献

The Protein Journal最新文献

英文 中文
Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141 死前应激通过丙酮酸激酶 M1 K141 的去乙酰化调节肌肉的死后糖酵解
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-11 DOI: 10.1007/s10930-023-10178-6
Shengwang Jiang, Qingwu W. Shen

It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.

众所周知,屠宰前(宰前)的应激,如粗暴处理、运输、不利的环境、身体不适、缺乏连贯的例行公事和饲料质量差,对肉质有很大影响。宰前应激导致的劣质肉的特点是 pH 值低、外观苍白、渗出和质地松软。先前的研究表明,死前应激在调节死后肌肉(PM)中的蛋白质乙酰化和糖酵解中起着关键作用。然而,其潜在的分子和生化机制尚不清楚。在这项研究中,我们使用从 ICR 小鼠身上分离的小鼠背阔肌和用盐酸肾上腺素处理的小鼠肌肉细胞系 C2C12 研究了死前应激与蛋白质乙酰化和糖酵解之间的关系。由于应激动物肾上腺素分泌增加,因此本研究采用腹腔注射盐酸肾上腺素的方法模拟小鼠宰前应激,以方便实验操作和节约实验成本。我们的研究结果表明,丙酮酸激酶 M1(PKM1)形式的蛋白质乙酰化在宰前应激时显著减少,乙酰化的减少随后导致 PKM1 酶活性的增加,从而引起 PM 肌肉中糖酵解的增加。通过分子方法,我们确定了 PKM1 中的赖氨酸 141 是乙酰化的关键残基。我们的研究结果为今后控制或改善肉质提供了有益的启示。
{"title":"Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141","authors":"Shengwang Jiang, Qingwu W. Shen","doi":"10.1007/s10930-023-10178-6","DOIUrl":"https://doi.org/10.1007/s10930-023-10178-6","url":null,"abstract":"<p>It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C<sub>2</sub>C<sub>12</sub> treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Investigation of the Subtle Structural Discrepancies between Oryza Sativa Recombinant and Plasma-Derived Human Serum Albumins to Design a Novel Nanoparticle as a Taxane Delivery System 研究重组人血清白蛋白与血浆衍生人血清白蛋白之间的微妙结构差异,设计一种新型纳米颗粒作为紫杉类药物递送系统
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-04-06 DOI: 10.1007/s10930-024-10194-0

Abstract

To solve the large size faultiness of Oryza sativa recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.

摘要 为解决重组人血清白蛋白纳米粒(OsrHSA NP)粒径过大的问题,本研究深入分析了OsrHSA与血浆来源人血清白蛋白(pdHSA)的结构差异。结果表明,OsrHSA 和 pdHSA 在 IA 和 IIA 子域存在一些微妙的结构差异,包括肽链骨架、二硫键和一些氨基酸。首先,通过文献对比研究了结构差异,推断结构差异是由于脂肪酸(FA)与 OsrHSA 在亚域 IA 和 IIA 的第 2 位点结合造成的。为了在 OsrHSA 中形成一个容纳脂肪酸分子的空腔,亚域 IA 和 IIA 的肽链骨架结构会发生变化,伴随着亚域 IA 和 IIA 中一些氨基酸的二硫键构象转变和侧链结构变化。这些变化导致亚域 IA 和 IIA 中的色氨酸(Trp)和酪氨酸(Tyr)残基暴露,分子表面的净负电荷减少。前者会促进更多的 OsrHSA 分子聚集,后者会削弱静电排斥力。因此,当二甲基亚砜(DMSO)浓度为 30% (v/v) 时,OsrHSA NP 的尺寸比 pdHSA NP 更大(175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm)。本研究改进了制备 OsrHSA NP 的实验方案。改进后的制备方案有两个变化:pH 值为 8.2 的 PBS 缓冲液和浓度为 63% 的二甲基亚砜。结果表明,改进后的OsrHSA NP载体与pdHSA NP载体相当。紫杉醇负载的改进型OsrHSA NP的尺寸和载药量分别为53.57±3.63 nm和7.25±0.46%(w/w),多西他赛负载的改进型OsrHSA NP的尺寸和载药量分别为44.75±2.26 nm和8.43±0.74%(w/w)。此外,两种 NP 在 7.4 pH 值条件下均表现出 168 h 的良好稳定性。由此可以确定,改进型 OsrHSA NP 与 pdHSA NP 作为一种紫杉类药物递送系统具有可比性。
{"title":"The Investigation of the Subtle Structural Discrepancies between Oryza Sativa Recombinant and Plasma-Derived Human Serum Albumins to Design a Novel Nanoparticle as a Taxane Delivery System","authors":"","doi":"10.1007/s10930-024-10194-0","DOIUrl":"https://doi.org/10.1007/s10930-024-10194-0","url":null,"abstract":"<h3>Abstract</h3> <p>To solve the large size faultiness of <em>Oryza sativa</em> recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
gmXtal: Cooking Crystals with GROMACS. gmXtal:用 GROMACS 烹饪晶体。
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2024-04-01 Epub Date: 2023-08-25 DOI: 10.1007/s10930-023-10141-5
Pavel Buslaev, Gerrit Groenhof

Molecular dynamics (MD) simulations are routinely performed of biomolecules in solution, because this is their native environment. However, the structures used in such simulations are often obtained with X-ray crystallography, which provides the atomic coordinates of the biomolecule in a crystal environment. With the advent of free electron lasers and time-resolved techniques, X-ray crystallography can now also access metastable states that are intermediates in a biochemical process. Such experiments provide additional data, which can be used, for example, to optimize MD force fields. Doing so requires that the simulation of the biomolecule is also performed in the crystal environment. However, in contrast to simulations of biomolecules in solution, setting up a crystal is challenging. In particular, because not all solvent molecules are resolved in X-ray crystallography, adding a suitable number of solvent molecules, such that the properties of the crystallographic unit cell are preserved in the simulation, can be difficult and typically is a trial-and-error based procedure requiring manual interventions. Such interventions preclude high throughput applications. To overcome this bottleneck, we introduce gmXtal, a tool for setting up crystal simulations for MD simulations with GROMACS. With the information from the protein data bank (rcsb.org) gmXtal automatically (i) builds the crystallographic unit cell; (ii) sets the protonation of titratable residues; (iii) builds missing residues that were not resolved experimentally; and (iv) adds an appropriate number of solvent molecules to the system. gmXtal is available as a standalone tool https://gitlab.com/pbuslaev/gmxtal .

分子动力学(MD)模拟通常是对溶液中的生物分子进行模拟,因为这是生物分子的原生环境。然而,此类模拟中使用的结构通常是通过 X 射线晶体学获得的,X 射线晶体学提供了晶体环境中生物大分子的原子坐标。随着自由电子激光器和时间分辨技术的出现,X 射线晶体学现在还能获取作为生化过程中间产物的蜕变态。这些实验提供了额外的数据,可用于优化 MD 力场等。这样做需要在晶体环境中对生物分子进行模拟。然而,与溶液中的生物分子模拟相比,晶体的建立具有挑战性。特别是,由于并非所有的溶剂分子都能在 X 射线晶体学中解析,因此要添加适当数量的溶剂分子,从而在模拟中保留晶体学单元格的特性,可能会非常困难,而且通常是一个需要人工干预的试错过程。这种干预排除了高通量应用。为了克服这一瓶颈,我们推出了 gmXtal,这是一种利用 GROMACS 进行 MD 模拟的晶体模拟设置工具。利用蛋白质数据库(rcsb.org)中的信息,gmXtal 可自动:(i) 建立晶体学单元格;(ii) 设置可滴定残基的质子化;(iii) 建立实验中未解析的缺失残基;(iv) 为系统添加适当数量的溶剂分子。
{"title":"gmXtal: Cooking Crystals with GROMACS.","authors":"Pavel Buslaev, Gerrit Groenhof","doi":"10.1007/s10930-023-10141-5","DOIUrl":"10.1007/s10930-023-10141-5","url":null,"abstract":"<p><p>Molecular dynamics (MD) simulations are routinely performed of biomolecules in solution, because this is their native environment. However, the structures used in such simulations are often obtained with X-ray crystallography, which provides the atomic coordinates of the biomolecule in a crystal environment. With the advent of free electron lasers and time-resolved techniques, X-ray crystallography can now also access metastable states that are intermediates in a biochemical process. Such experiments provide additional data, which can be used, for example, to optimize MD force fields. Doing so requires that the simulation of the biomolecule is also performed in the crystal environment. However, in contrast to simulations of biomolecules in solution, setting up a crystal is challenging. In particular, because not all solvent molecules are resolved in X-ray crystallography, adding a suitable number of solvent molecules, such that the properties of the crystallographic unit cell are preserved in the simulation, can be difficult and typically is a trial-and-error based procedure requiring manual interventions. Such interventions preclude high throughput applications. To overcome this bottleneck, we introduce gmXtal, a tool for setting up crystal simulations for MD simulations with GROMACS. With the information from the protein data bank (rcsb.org) gmXtal automatically (i) builds the crystallographic unit cell; (ii) sets the protonation of titratable residues; (iii) builds missing residues that were not resolved experimentally; and (iv) adds an appropriate number of solvent molecules to the system. gmXtal is available as a standalone tool https://gitlab.com/pbuslaev/gmxtal .</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10058074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microenzymes: Is There Anybody Out There? 微酶:有人在那里吗?
IF 2.371 4区 生物学 Q2 Chemistry Pub Date : 2024-03-20 DOI: 10.1007/s10930-024-10193-1
Jose Carlos Santos Salgado, Robson Carlos Alnoch, Maria de Lourdes Teixeira de Moraes Polizeli, Richard John Ward

Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20–60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.

生物大分子的形状和大小各不相同。其中,酶催化生化反应,是所有生物体内不可或缺的物质,但酶正常发挥作用的大小是否有限制?大型酶(如过氧化氢酶)的分子量达数百 kDa,由多个亚基组成,而大多数酶的分子量较小,为 20-60 kDa。小于 10 kDa 的酶可称为微酶,本文献综述汇集了自然界中存在微酶的证据。此外,生物活性肽可能是隐藏在较大肽中的新型微酶的天然来源,而分子缩小可能有助于设计低分子量的人工酶,从而提高其稳定性和异源表达。综合方法对于发现和确定新型微酶的氨基酸序列、基因组鉴定及其生化、生物和进化功能至关重要。
{"title":"Microenzymes: Is There Anybody Out There?","authors":"Jose Carlos Santos Salgado, Robson Carlos Alnoch, Maria de Lourdes Teixeira de Moraes Polizeli, Richard John Ward","doi":"10.1007/s10930-024-10193-1","DOIUrl":"https://doi.org/10.1007/s10930-024-10193-1","url":null,"abstract":"<p>Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20–60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":2.371,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A 甲氨蝶呤作为经汞处理的α-糜蛋白酶原-A的抗聚集剂用于药物再利用
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2024-03-02 DOI: 10.1007/s10930-024-10187-z
Neha Kausar Ansari, Amaan Rais, Aabgeena Naeem

Protein aggregation is related to numerous pathological conditions like Alzheimer’s and Parkinson’s disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg2Cl2 (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen β-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native β-barrel conformation to β-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg2Cl2 treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the β-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.

蛋白质聚集与阿尔茨海默病和帕金森病等多种病症有关。在我们的研究中,我们发现一种已被美国食品及药物管理局(FDA)批准的药物--甲氨蝶呤(MTX)--可以在预形成的α-糜蛋白酶原 A(α-Cgn A)聚集体上再形成。随着 Hg2Cl2 浓度(0-150 µM)的增加,α-糜蛋白酶原在与汞离子相互作用时形成聚集体。在 CR 吸光度、RLS 和浊度测量中,ThT 和 ANS 荧光的增加与蓝移、浴色移和高色效应同时出现,这证明酶原形成了富含 β 的聚集体。CD 测量、傅立叶变换红外光谱和拉曼光谱分析表明,α- Cgn A 的二级结构发生了改变,从原生 β-管构象转变为富含 β 的分子间聚集体。原生 α- Cgn A 的 α 螺旋含量约为 30%,而在汞离子存在下,α 螺旋含量约为 3%,这表明聚集体的形成。无定形的聚集体可通过扫描电镜观察到。将经过 Hg2Cl2 处理的 α- Cgn A 与浓度不断升高的 MTX 一起培养,可使聚集体逆转为原生样结构。ThT 和 ANS 荧光强度和 CR 吸光度的显著降低证实了这些结果,同时也与 CD、傅立叶变换红外光谱和拉曼光谱数据相一致。研究发现,MTX 可使酶原中的α-螺旋含量从 3%增至 15%,这表明该药物能有效地破坏富含β-分子间聚合体,并使其恢复到类似原生结构的状态。扫描电子显微镜图像与 CD 数据一致,显示了聚集体的崩解。药物的最有效浓度为 120 µM。分子对接分析表明,MTX 分子被 Phe39、His40、Arg145、Tyr146、Thr151、Gly193、Ser195 和 Gly216 等疏水残基和 Gln73(键长:2.67 Å)、Gly142(2.59 Å)、Thr144(2.81 Å)、Asn150(2.73 Å)、Asp153(2.71 Å)和 Cys191(2.53 Å)等常规氢键包围。这项研究将有助于找到现有药物的用途,以治疗与蛋白质折叠异常有关的疾病。
{"title":"Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A","authors":"Neha Kausar Ansari, Amaan Rais, Aabgeena Naeem","doi":"10.1007/s10930-024-10187-z","DOIUrl":"https://doi.org/10.1007/s10930-024-10187-z","url":null,"abstract":"<p>Protein aggregation is related to numerous pathological conditions like Alzheimer’s and Parkinson’s disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg<sub>2</sub>Cl<sub>2</sub> (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen β-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native β-barrel conformation to β-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg<sub>2</sub>Cl<sub>2</sub> treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the β-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Deciphering of the Role of S100A8 and S100A9 Proteins and Their Changes in the Structure Assembly Influences Their Interaction with TLR4, RAGE, and CD36 通过计算破译 S100A8 和 S100A9 蛋白的作用及其结构组装变化对其与 TLR4、RAGE 和 CD36 相互作用的影响
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2024-03-02 DOI: 10.1007/s10930-024-10186-0
Sivasakthi Paramasivam, Senthamil Selvan Perumal, Sanmuga Priya Ekambaram

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.

S100A8 和 S100A9 属于钙结合的损伤相关分子模式(DAMP)蛋白,通过与 TLR4、RAGE 和 CD36 受体的相互作用,被证明会加重类风湿性关节炎(RA)的发病机制。S100A8 和 S100A9 蛋白往往以单体、同源和异源二聚体形式存在,它们通过与模式识别受体(PRRs)相互作用,被认为与类风湿性关节炎(RA)的发病机制有关。本研究旨在通过计算方法和表面等离子体共振(SPR)分析,评估S100A8和S100A9蛋白结构和生物组装的变化及其与重要受体相互作用对RA的影响。分子对接分析表明,S100A9同源二聚体和S100A8/A9异源二聚体与靶受体的结合亲和力较高。与其他受体相比,大多数 S100 蛋白与 TLR4 的结合亲和力较好。根据 50 ns MD 模拟,TLR4、RAGE 和 CD36 与 S100A8 和 S100A9 蛋白的单体和二聚体形式形成了稳定的复合物。然而,SPR 分析表明,S100A8/A9 异源二聚体能形成稳定的复合物,并表现出与受体的高结合亲和力。SPR 数据还表明,TLR4 及其与 S100A8/A9 蛋白质的相互作用可能在 RA 的发病机制中起着主要作用,CD36 和 RAGE 的相互作用也起到了补充作用。为了证实 S100A8/A9 以及 TLR4、RAGE 和 CD36 的表达参与了 RA 的病理生理学,有必要进行后续的体外和体内研究。
{"title":"Computational Deciphering of the Role of S100A8 and S100A9 Proteins and Their Changes in the Structure Assembly Influences Their Interaction with TLR4, RAGE, and CD36","authors":"Sivasakthi Paramasivam, Senthamil Selvan Perumal, Sanmuga Priya Ekambaram","doi":"10.1007/s10930-024-10186-0","DOIUrl":"https://doi.org/10.1007/s10930-024-10186-0","url":null,"abstract":"<p>S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation 更正:肯尼迪表位(KE)依赖的高效裂解 HIV-1 包膜(Env)逆向运输及其对 Env 细胞表面表达和病毒粒子形成的影响
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2024-02-26 DOI: 10.1007/s10930-023-10172-y
Supratik Das, Hilal Ahmad Parray, Adarsh Kumar Chiranjivi, Prince Kumar, Abhishek Goswami, Manish Bansal, Deepak Kumar Rathore, Rajesh Kumar, Sweety Samal
{"title":"Correction: Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation","authors":"Supratik Das, Hilal Ahmad Parray, Adarsh Kumar Chiranjivi, Prince Kumar, Abhishek Goswami, Manish Bansal, Deepak Kumar Rathore, Rajesh Kumar, Sweety Samal","doi":"10.1007/s10930-023-10172-y","DOIUrl":"https://doi.org/10.1007/s10930-023-10172-y","url":null,"abstract":"","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of Sequence Features in Classification of Protein–Protein Interactions Using Machine Learning 利用机器学习对蛋白质-蛋白质相互作用进行分类时序列特征的重要性
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2023-12-19 DOI: 10.1007/s10930-023-10168-8

Abstract

Protein–protein interactions are crucial for the entry of viruses into the cell. Understanding the mechanism of interactions is essential in studying human-virus association, developing new biologics and drug candidates, as well as viral infections and antiviral responses. Experimental methods to analyze human-virus protein–protein interactions based on protein sequence data are time-consuming and labor-intensive, so machine learning models are being developed to predict interactions and determine large-scale interactomes between species. The present work highlights the importance of sequence features in classifying interacting and non-interacting proteins from the protein sequence data. Higher dimensional amino acid sequence features such as Amino Acid Composition (AAC), Dipeptide Composition (DPC), Grouped Amino Acid Composition (GAAC), Pseudo-Amino Acid Composition (PAAC) etc., are extracted. Following feature extraction, three datasets were created: Dataset 1 contains all of the extracted features. While Datasets 2 and 3 contain the most relevant features obtained through dimensionality reduction. To analyze the importance of high-dimensional features and their participation in protein–protein interactions, a random forest classifier is trained on three datasets. With dimensionality reduction, the model exhibited exceptional accuracy, indicating that dimensionality reduction fails to capture the complexity of interactions and the underlying relationships between human and viral proteins. As a result of retaining high-dimensional features, it is possible to capture all the characteristics of protein–protein interactions that resemble host–pathogen associations, leading to the development of biologically meaningful models. Our proposed approach is a more realistic and comprehensive classification model, leading to deeper insights and better applications in virology and drug development.

摘要 蛋白质与蛋白质之间的相互作用是病毒进入细胞的关键。了解相互作用的机制对于研究人类与病毒的关联、开发新的生物制剂和候选药物以及病毒感染和抗病毒反应至关重要。基于蛋白质序列数据分析人类-病毒蛋白质-蛋白质相互作用的实验方法耗时耗力,因此人们正在开发机器学习模型来预测相互作用并确定物种间的大规模相互作用组。本研究强调了序列特征在从蛋白质序列数据中对相互作用和非相互作用蛋白质进行分类方面的重要性。本研究提取了氨基酸组成(AAC)、二肽组成(DPC)、成组氨基酸组成(GAAC)、假氨基酸组成(PAAC)等高维氨基酸序列特征。特征提取后,创建了三个数据集:数据集 1 包含所有提取的特征。数据集 2 和 3 包含通过降维获得的最相关特征。为了分析高维特征的重要性及其在蛋白质-蛋白质相互作用中的参与情况,在三个数据集上训练了随机森林分类器。通过降维,模型表现出了极高的准确性,这表明降维无法捕捉到人类和病毒蛋白质之间相互作用的复杂性和潜在关系。由于保留了高维特征,因此有可能捕捉到与宿主-病原体关联类似的蛋白质-蛋白质相互作用的所有特征,从而开发出具有生物学意义的模型。我们提出的方法是一种更现实、更全面的分类模型,能为病毒学和药物开发带来更深刻的见解和更好的应用。
{"title":"Significance of Sequence Features in Classification of Protein–Protein Interactions Using Machine Learning","authors":"","doi":"10.1007/s10930-023-10168-8","DOIUrl":"https://doi.org/10.1007/s10930-023-10168-8","url":null,"abstract":"<h3>Abstract</h3> <p>Protein–protein interactions are crucial for the entry of viruses into the cell. Understanding the mechanism of interactions is essential in studying human-virus association, developing new biologics and drug candidates, as well as viral infections and antiviral responses. Experimental methods to analyze human-virus protein–protein interactions based on protein sequence data are time-consuming and labor-intensive, so machine learning models are being developed to predict interactions and determine large-scale interactomes between species. The present work highlights the importance of sequence features in classifying interacting and non-interacting proteins from the protein sequence data. Higher dimensional amino acid sequence features such as Amino Acid Composition (AAC), Dipeptide Composition (DPC), Grouped Amino Acid Composition (GAAC), Pseudo-Amino Acid Composition (PAAC) etc., are extracted. Following feature extraction, three datasets were created: Dataset 1 contains all of the extracted features. While Datasets 2 and 3 contain the most relevant features obtained through dimensionality reduction. To analyze the importance of high-dimensional features and their participation in protein–protein interactions, a random forest classifier is trained on three datasets. With dimensionality reduction, the model exhibited exceptional accuracy, indicating that dimensionality reduction fails to capture the complexity of interactions and the underlying relationships between human and viral proteins. As a result of retaining high-dimensional features, it is possible to capture all the characteristics of protein–protein interactions that resemble host–pathogen associations, leading to the development of biologically meaningful models. Our proposed approach is a more realistic and comprehensive classification model, leading to deeper insights and better applications in virology and drug development.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138816585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ITPA Enzyme with Improved Substrate Selectivity 一种具有更高底物选择性的 ITPA 酶
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2023-12-08 DOI: 10.1007/s10930-023-10162-0
Nicholas E. Burgis, Kandise VanWormer, Devin Robbins, Jonathan Smith

Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.

最近的临床数据发现,婴儿患者存在致命的 ITPA 缺乏症。据了解,ITPA 可调节细胞中的 ITP 浓度,在神经发育过程中起着至关重要的作用,但这一作用尚不清楚。ITPA 基因的多态性会影响利巴韦林和硫嘌呤类药物的治疗效果,近三分之一的人群被认为存在 ITPA 多态性。在之前对 ITPA 底物选择性口袋进行的定点突变丙氨酸筛选中,我们发现 ITPA 突变体 E22A 是一种功能增益突变体,具有增强的 ITP 水解活性。在这里,我们报告了一项合理的酶工程实验,以研究 ITPA 第 22 位突变体的生化特性,结果发现 E22D ITPA 对 ITP 的底物选择性分别比典型的嘌呤三磷酸 ATP 和 GTP 提高了 2 倍和 4 倍,同时还保持了生物活性。新型 E22D ITPA 应被视为进一步开发 ITPA 疗法的平台。
{"title":"An ITPA Enzyme with Improved Substrate Selectivity","authors":"Nicholas E. Burgis, Kandise VanWormer, Devin Robbins, Jonathan Smith","doi":"10.1007/s10930-023-10162-0","DOIUrl":"https://doi.org/10.1007/s10930-023-10162-0","url":null,"abstract":"<p>Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the <i>ITPA</i> gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor <i>ITPA</i> polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.</p>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138561658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Expression in the Prokaryotic Host System, Purification and Structural Analyses of the Recombinant Human ACE2 Catalytic Subunit as a Hybrid Protein with the B Subunit of Cholera Toxin (CTB-ACE2). 重组人 ACE2 催化亚基与霍乱毒素 B 亚基(CTB-ACE2)杂交蛋白在原核宿主系统中的高效表达、纯化和结构分析。
IF 3 4区 生物学 Q2 Chemistry Pub Date : 2023-11-28 DOI: 10.21203/rs.3.rs-3121889/v1
M. Ghahramani, Mohammad Bagher Shahsavani, S. H. Khaleghinejad, Ali Niazi, A. Moosavi-Movahedi, Reza Yousefi
Angiotensin-converting enzyme 2 (ACE2) has a specific interaction with the coronavirus spike protein, enabling its entry into human cells. This membrane enzyme converts angiotensin II into angiotensin 1-7, which has an essential role in protecting the heart and improving lung function. Many therapeutic properties have been attributed to the human recombinant ACE2 (hrACE2), especially in combating complications related to diabetes mellitus and hypertension, as well as, preventing the coronavirus from entering the target tissues. In the current study, we designed an appropriate gene construct for the hybrid protein containing the ACE2 catalytic subunit and the B subunit of cholera toxin (CTB-ACE2). This structural feature will probably help the recombinant hybrid protein enter the mucosal tissues, including the lung tissue. Optimization of this hybrid protein expression was investigated in BL21 bacterial host cells. Also, the hybrid protein was identified with an appropriate antibody using the ELISA method. A large amount of the hybrid protein (molecular weight of ~ 100 kDa) was expressed as the inclusion body when the induction was performed in the presence of 0.25 mM IPTG and 1% sucrose for 10 h. Finally, the protein structural features were assessed using several biophysical methods. The fluorescence emission intensity and oligomeric size distribution of the CTB-ACE2 suggested a temperature-dependent alteration. The β-sheet and α-helix were also dominant in the hybrid protein structure, and this protein also displays acceptable chemical stability. In overall, according to our results, the efficient expression and successful purification of the CTB-ACE2 protein may pave the path for its therapeutic applications against diseases such as covid-19, diabetes mellitus and hypertension.
血管紧张素转换酶 2(ACE2)与冠状病毒尖峰蛋白有特殊的相互作用,使其能够进入人体细胞。这种膜酶可将血管紧张素 II 转化为血管紧张素 1-7,后者在保护心脏和改善肺功能方面发挥着重要作用。人重组 ACE2(hrACE2)具有许多治疗特性,特别是在防治糖尿病和高血压相关并发症以及阻止冠状病毒进入靶组织方面。在本研究中,我们设计了一种合适的基因构建体,用于构建含有 ACE2 催化亚基和霍乱毒素 B 亚基的杂交蛋白(CTB-ACE2)。这一结构特征可能有助于重组杂交蛋白进入包括肺组织在内的粘膜组织。研究人员在 BL21 细菌宿主细胞中优化了这种杂交蛋白的表达。此外,还使用 ELISA 方法用适当的抗体对杂交蛋白进行了鉴定。在 0.25 mM IPTG 和 1% 蔗糖存在下诱导 10 小时后,大量杂交蛋白(分子量约为 100 kDa)以包涵体形式表达。CTB-ACE2 的荧光发射强度和寡聚体大小分布表明其变化与温度有关。在杂交蛋白结构中,β-片层和α-螺旋也占主导地位,而且这种蛋白还显示出可接受的化学稳定性。总之,根据我们的研究结果,CTB-ACE2 蛋白的高效表达和成功纯化可能会为其治疗应用铺平道路,如用于治疗covid-19、糖尿病和高血压等疾病。
{"title":"Efficient Expression in the Prokaryotic Host System, Purification and Structural Analyses of the Recombinant Human ACE2 Catalytic Subunit as a Hybrid Protein with the B Subunit of Cholera Toxin (CTB-ACE2).","authors":"M. Ghahramani, Mohammad Bagher Shahsavani, S. H. Khaleghinejad, Ali Niazi, A. Moosavi-Movahedi, Reza Yousefi","doi":"10.21203/rs.3.rs-3121889/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-3121889/v1","url":null,"abstract":"Angiotensin-converting enzyme 2 (ACE2) has a specific interaction with the coronavirus spike protein, enabling its entry into human cells. This membrane enzyme converts angiotensin II into angiotensin 1-7, which has an essential role in protecting the heart and improving lung function. Many therapeutic properties have been attributed to the human recombinant ACE2 (hrACE2), especially in combating complications related to diabetes mellitus and hypertension, as well as, preventing the coronavirus from entering the target tissues. In the current study, we designed an appropriate gene construct for the hybrid protein containing the ACE2 catalytic subunit and the B subunit of cholera toxin (CTB-ACE2). This structural feature will probably help the recombinant hybrid protein enter the mucosal tissues, including the lung tissue. Optimization of this hybrid protein expression was investigated in BL21 bacterial host cells. Also, the hybrid protein was identified with an appropriate antibody using the ELISA method. A large amount of the hybrid protein (molecular weight of ~ 100 kDa) was expressed as the inclusion body when the induction was performed in the presence of 0.25 mM IPTG and 1% sucrose for 10 h. Finally, the protein structural features were assessed using several biophysical methods. The fluorescence emission intensity and oligomeric size distribution of the CTB-ACE2 suggested a temperature-dependent alteration. The β-sheet and α-helix were also dominant in the hybrid protein structure, and this protein also displays acceptable chemical stability. In overall, according to our results, the efficient expression and successful purification of the CTB-ACE2 protein may pave the path for its therapeutic applications against diseases such as covid-19, diabetes mellitus and hypertension.","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139226518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Protein Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1