首页 > 最新文献

The Protein Journal最新文献

英文 中文
A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction 蛋白质家族预测的机器学习技术综述
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-01 DOI: 10.1007/s10930-024-10181-5
T. Idhaya, A. Suruliandi, S. P. Raja

Proteomics is a field dedicated to the analysis of proteins in cells, tissues, and organisms, aiming to gain insights into their structures, functions, and interactions. A crucial aspect within proteomics is protein family prediction, which involves identifying evolutionary relationships between proteins by examining similarities in their sequences or structures. This approach holds great potential for applications such as drug discovery and functional annotation of genomes. However, current methods for protein family prediction have certain limitations, including limited accuracy, high false positive rates, and challenges in handling large datasets. Some methods also rely on homologous sequences or protein structures, which introduce biases and restrict their applicability to specific protein families or structures. To overcome these limitations, researchers have turned to machine learning (ML) approaches that can identify connections between protein features and simplify complex high-dimensional datasets. This paper presents a comprehensive survey of articles that employ various ML techniques for predicting protein families. The primary objective is to explore and improve ML techniques specifically for protein family prediction, thus advancing future research in the field. Through qualitative and quantitative analyses of ML techniques, it is evident that multiple methods utilizing a range of classifiers have been applied for protein family prediction. However, there has been limited focus on developing novel classifiers for protein family classification, highlighting the urgent need for improved approaches in this area. By addressing these challenges, this research aims to enhance the accuracy and effectiveness of protein family prediction, ultimately facilitating advancements in proteomics and its diverse applications.

蛋白质组学是一个致力于分析细胞、组织和生物体内蛋白质的领域,旨在深入了解它们的结构、功能和相互作用。蛋白质组学的一个重要方面是蛋白质家族预测,即通过研究蛋白质序列或结构的相似性来确定蛋白质之间的进化关系。这种方法在药物发现和基因组功能注释等应用领域具有巨大潜力。然而,目前的蛋白质家族预测方法有一定的局限性,包括准确性有限、假阳性率高以及在处理大型数据集时面临挑战。有些方法还依赖于同源序列或蛋白质结构,这会带来偏差并限制其对特定蛋白质家族或结构的适用性。为了克服这些局限性,研究人员转向了机器学习(ML)方法,这种方法可以识别蛋白质特征之间的联系并简化复杂的高维数据集。本文对采用各种 ML 技术预测蛋白质家族的文章进行了全面调查。其主要目的是探索和改进专门用于蛋白质家族预测的 ML 技术,从而推动该领域的未来研究。通过对 ML 技术的定性和定量分析,我们可以明显看出,利用一系列分类器的多种方法已被用于蛋白质家族预测。然而,人们对开发用于蛋白质家族分类的新型分类器的关注还很有限,这凸显了该领域对改进方法的迫切需求。通过应对这些挑战,本研究旨在提高蛋白质族预测的准确性和有效性,最终促进蛋白质组学及其各种应用的发展。
{"title":"A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction","authors":"T. Idhaya,&nbsp;A. Suruliandi,&nbsp;S. P. Raja","doi":"10.1007/s10930-024-10181-5","DOIUrl":"10.1007/s10930-024-10181-5","url":null,"abstract":"<div><p>Proteomics is a field dedicated to the analysis of proteins in cells, tissues, and organisms, aiming to gain insights into their structures, functions, and interactions. A crucial aspect within proteomics is protein family prediction, which involves identifying evolutionary relationships between proteins by examining similarities in their sequences or structures. This approach holds great potential for applications such as drug discovery and functional annotation of genomes. However, current methods for protein family prediction have certain limitations, including limited accuracy, high false positive rates, and challenges in handling large datasets. Some methods also rely on homologous sequences or protein structures, which introduce biases and restrict their applicability to specific protein families or structures. To overcome these limitations, researchers have turned to machine learning (ML) approaches that can identify connections between protein features and simplify complex high-dimensional datasets. This paper presents a comprehensive survey of articles that employ various ML techniques for predicting protein families. The primary objective is to explore and improve ML techniques specifically for protein family prediction, thus advancing future research in the field. Through qualitative and quantitative analyses of ML techniques, it is evident that multiple methods utilizing a range of classifiers have been applied for protein family prediction. However, there has been limited focus on developing novel classifiers for protein family classification, highlighting the urgent need for improved approaches in this area. By addressing these challenges, this research aims to enhance the accuracy and effectiveness of protein family prediction, ultimately facilitating advancements in proteomics and its diverse applications.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"171 - 186"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation 更正:肯尼迪表位(KE)依赖的高效裂解 HIV-1 包膜(Env)逆向运输及其对 Env 细胞表面表达和病毒粒子形成的影响
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-26 DOI: 10.1007/s10930-023-10172-y
Supratik Das, Hilal Ahmad Parray, Adarsh Kumar Chiranjivi, Prince Kumar, Abhishek Goswami, Manish Bansal, Deepak Kumar Rathore, Rajesh Kumar, Sweety Samal
{"title":"Correction: Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation","authors":"Supratik Das,&nbsp;Hilal Ahmad Parray,&nbsp;Adarsh Kumar Chiranjivi,&nbsp;Prince Kumar,&nbsp;Abhishek Goswami,&nbsp;Manish Bansal,&nbsp;Deepak Kumar Rathore,&nbsp;Rajesh Kumar,&nbsp;Sweety Samal","doi":"10.1007/s10930-023-10172-y","DOIUrl":"10.1007/s10930-023-10172-y","url":null,"abstract":"","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"387 - 392"},"PeriodicalIF":1.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth 一种来自 Cajanus cajan 叶的新型胰蛋白酶 Kunitz 型抑制剂及其对新型癌症丝氨酸蛋白酶的抑制活性和对肿瘤细胞生长的影响
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-12 DOI: 10.1007/s10930-023-10175-9
Erika Maria Gomes Ferreira Teixeira, Dario Eluam Kalume, Patrícia Fernandes Ferreira, Thayane Aparecida Alves, Ana Paula G. A. Fontão, André Luís Franco Sampaio, Danilo Ribeiro de Oliveira, José Andrés Morgado-Díaz, Raquel Elisa Silva-López

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.

Graphical Abstract

通过亲和层析法,从 Cajanus cajan(TIC)鲜叶中部分纯化出一种新型胰蛋白酶抑制剂。SDS-PAGE 显示出一条约 15 kDa 的条带,通过酶标仪显示出明显的胰蛋白酶抑制剂活性。TIC 与胰蛋白酶的亲和力很高(Ki = 1.617 μM),是这种丝氨酸蛋白酶的竞争性抑制剂。TIC 的活性在 70 ℃ 处理 24 小时、不同 pH 值处理 1 小时、β-巯基乙醇浓度增加后仍能保持,并表现出结构稳定性。然而,在氧化剂存在的情况下,TIC 的活性会受到影响。为了研究 TIC 对分泌型丝氨酸蛋白酶的影响以及对细胞培养生长曲线的影响,将 SK-MEL-28 转移性人黑色素瘤细胞系和 CaCo-2 结肠腺癌细胞系置于添加了 DMEM 的培养液中培养,并对细胞外部分进行盐析和亲和层析,以获得新的分泌型丝氨酸蛋白酶。TIC几乎完全抑制了这些丝氨酸蛋白酶的活性,抑制率为96%至89%,并使黑色素瘤和结肠腺癌细胞的生长速度分别降低了48%和77%。此外,这是首次从 C. cajan 叶中分离和鉴定胰蛋白酶抑制剂,并从 SK-MEL-28 和 CaCo-2 癌细胞系中分离和部分鉴定癌症丝氨酸蛋白酶。此外,TIC 是一种影响细胞生长的强效肿瘤蛋白酶抑制剂,可作为候选药物用于黑色素瘤和结肠腺癌的化疗。
{"title":"A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth","authors":"Erika Maria Gomes Ferreira Teixeira,&nbsp;Dario Eluam Kalume,&nbsp;Patrícia Fernandes Ferreira,&nbsp;Thayane Aparecida Alves,&nbsp;Ana Paula G. A. Fontão,&nbsp;André Luís Franco Sampaio,&nbsp;Danilo Ribeiro de Oliveira,&nbsp;José Andrés Morgado-Díaz,&nbsp;Raquel Elisa Silva-López","doi":"10.1007/s10930-023-10175-9","DOIUrl":"10.1007/s10930-023-10175-9","url":null,"abstract":"<div><p>A novel trypsin inhibitor from <i>Cajanus cajan</i> (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from <i>C. cajan</i> leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"333 - 350"},"PeriodicalIF":1.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Structural Features of MlaD Illuminate its Unique Ligand-Transporting Mechanism and Ancestry MlaD 的结构特征揭示了其独特的配体传输机制和祖先。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-12 DOI: 10.1007/s10930-023-10179-5
Angshu Dutta, Shankar Prasad Kanaujia

The membrane-associated solute-binding protein (SBP) MlaD of the maintenance of lipid asymmetry (Mla) system has been reported to help the transport of phospholipids (PLs) between the outer and inner membranes of Gram-negative bacteria. Despite the availability of structural information, the molecular mechanism underlying the transport of PLs and the ancestry of the protein MlaD remain unclear. In this study, we report the crystal structures of the periplasmic region of MlaD from Escherichia coli (EcMlaD) at a resolution range of 2.3–3.2 Å. The EcMlaD protomer consists of two distinct regions, viz. N-terminal β-barrel fold consisting of seven strands (referred to as MlaD domain) and C-terminal α-helical domain (HD). The protein EcMlaD oligomerizes to give rise to a homo-hexameric ring with a central channel that is hydrophobic and continuous with a variable diameter. Interestingly, the structural analysis revealed that the HD, instead of the MlaD domain, plays a critical role in determining the oligomeric state of the protein. Based on the analysis of available structural information, we propose a working mechanism of PL transport, viz. “asymmetric protomer movement (APM)”. Wherein half of the EcMlaD hexamer would rise in the periplasmic side along with an outward movement of pore loops, resulting in the change of the central channel geometry. Furthermore, this study highlights that, unlike typical SBPs, EcMlaD possesses a fold similar to EF/AMT-type beta(6)-barrel and a unique ancestry. Altogether, the findings firmly establish EcMlaD to be a non-canonical SBP with a unique ligand-transport mechanism.

据报道,维持脂质不对称(Mla)系统中的膜相关溶质结合蛋白(SBP)MlaD有助于磷脂(PLs)在革兰氏阴性细菌外膜和内膜之间的转运。尽管已有结构信息,但磷脂转运的分子机制和蛋白 MlaD 的起源仍不清楚。在这项研究中,我们报告了大肠杆菌 MlaD(EcMlaD)质外区域的晶体结构,其分辨率范围为 2.3-3.2 Å。EcMlaD 的原体由两个不同的区域组成,即 N 端由七条链组成的β-桶状折叠(称为 MlaD 结构域)和 C 端的α-螺旋结构域(HD)。蛋白 EcMlaD 通过寡聚形成一个同六聚体环,其中央通道疏水且连续,直径可变。有趣的是,结构分析表明,HD 而不是 MlaD 结构域在决定蛋白质的寡聚状态方面起着关键作用。根据对现有结构信息的分析,我们提出了一种 PL 运输的工作机制,即 "不对称原体运动(APM)"。在这一机制中,EcMlaD 六聚体的一半会随着孔环的向外运动而上升到外质侧,从而导致中央通道的几何形状发生变化。此外,这项研究还强调,与典型的 SBPs 不同,EcMlaD 具有类似于 EF/AMT 型 beta(6)-barrel 的折叠和独特的祖先。总之,这些发现有力地证明了 EcMlaD 是一种非典型 SBP,具有独特的配体转运机制。
{"title":"The Structural Features of MlaD Illuminate its Unique Ligand-Transporting Mechanism and Ancestry","authors":"Angshu Dutta,&nbsp;Shankar Prasad Kanaujia","doi":"10.1007/s10930-023-10179-5","DOIUrl":"10.1007/s10930-023-10179-5","url":null,"abstract":"<div><p>The membrane-associated solute-binding protein (SBP) MlaD of the maintenance of lipid asymmetry (Mla) system has been reported to help the transport of phospholipids (PLs) between the outer and inner membranes of Gram-negative bacteria. Despite the availability of structural information, the molecular mechanism underlying the transport of PLs and the ancestry of the protein MlaD remain unclear. In this study, we report the crystal structures of the periplasmic region of MlaD from <i>Escherichia coli</i> (<i>Ec</i>MlaD) at a resolution range of 2.3–3.2 Å. The <i>Ec</i>MlaD protomer consists of two distinct regions, viz. N-terminal β-barrel fold consisting of seven strands (referred to as MlaD domain) and C-terminal α-helical domain (HD). The protein <i>Ec</i>MlaD oligomerizes to give rise to a homo-hexameric ring with a central channel that is hydrophobic and continuous with a variable diameter. Interestingly, the structural analysis revealed that the HD, instead of the MlaD domain, plays a critical role in determining the oligomeric state of the protein. Based on the analysis of available structural information, we propose a working mechanism of PL transport, viz. “asymmetric protomer movement (APM)”. Wherein half of the <i>Ec</i>MlaD hexamer would rise in the periplasmic side along with an outward movement of pore loops, resulting in the change of the central channel geometry. Furthermore, this study highlights that, unlike typical SBPs, <i>Ec</i>MlaD possesses a fold similar to EF/AMT-type beta(6)-barrel and a unique ancestry. Altogether, the findings firmly establish <i>Ec</i>MlaD to be a non-canonical SBP with a unique ligand-transport mechanism.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"298 - 315"},"PeriodicalIF":1.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of Cecropin A (1–7) Analogs with DNA Analyzed by Multi-spectroscopic Methods 通过多光谱方法分析塞可宾 A (1-7) 类似物与 DNA 的相互作用。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-24 DOI: 10.1007/s10930-023-10177-7
Libo Yuan, Ke Wang, Yuan Fang, Xiujuan Xu, Yingcun Chen, Dongxin Zhao, Kui Lu

Cecropin A (1–7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1–7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1–7) and its analogs with DNA was studied using ultraviolet–visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol−1 compared to original peptide cecropin A (1–7) of 3.73 × 104  L mol−1. The results of antimicrobial experiments with cecropin A (1–7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1–7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.

Graphical Abstract

Cecropin A(1-7)是一种阳离子抗菌肽,含有大量碱性氨基酸。为了了解碱性氨基酸对 Cecropin A (1-7) 的影响,我们设计并合成了在 N 端或 C 端含有更多精氨酸或赖氨酸的类似物 CA2、CA3 和 CA4。利用紫外-可见光谱、荧光光谱和圆二色光谱研究了麦角蛋白 A(1-7)及其类似物与 DNA 的相互作用。多光谱分析显示,碱性氨基酸改善了类似物与 DNA 之间的相互作用。CA4 与 DNA 的相互作用最为明显。荧光光谱显示,CA4 的 Ksv 值为 1.19 × 105 L mol-1,而原肽 cecropin A (1-7) 的 Ksv 值为 3.73 × 104 L mol-1。用 cecropin A (1-7) 及其类似物进行的抗菌实验结果表明,碱性氨基酸增强了类似物的抗菌效果。CA4 对大肠杆菌的抗菌活性是麦角素 A(1-7)的 8 倍。这揭示了碱性氨基酸在肽中的重要性,为后续的抗菌肽研究提供了有用的信息。
{"title":"Interaction of Cecropin A (1–7) Analogs with DNA Analyzed by Multi-spectroscopic Methods","authors":"Libo Yuan,&nbsp;Ke Wang,&nbsp;Yuan Fang,&nbsp;Xiujuan Xu,&nbsp;Yingcun Chen,&nbsp;Dongxin Zhao,&nbsp;Kui Lu","doi":"10.1007/s10930-023-10177-7","DOIUrl":"10.1007/s10930-023-10177-7","url":null,"abstract":"<div><p>Cecropin A (1–7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1–7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1–7) and its analogs with DNA was studied using ultraviolet–visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 10<sup>5</sup>  L mol<sup>−1</sup> compared to original peptide cecropin A (1–7) of 3.73 × 10<sup>4</sup>  L mol<sup>−1</sup>. The results of antimicrobial experiments with cecropin A (1–7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against <i>E. coli</i> was eightfold higher than that of cecropin A (1–7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"274 - 282"},"PeriodicalIF":1.9,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refolding, Crystallization, and Crystal Structure Analysis of a Scavenger Receptor Cysteine-Rich Domain of Human Salivary Agglutinin Expressed in Escherichia coli 大肠杆菌中表达的人唾液凝集素清道夫受体富半胱氨酸结构域的重折叠、结晶和晶体结构分析。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-24 DOI: 10.1007/s10930-023-10173-x
Changyu Zhang, Peng Lu, Sibo Wei, Chaoyue Hu, Mitsuko Miyoshi, Ken Okamoto, Hideaki Itoh, Suguru Okuda, Michio Suzuki, Hiroshi Kawakami, Koji Nagata

Scavenger receptors are a protein superfamily that typically consists of one or more repeats of the scavenger receptor cysteine-rich structural domain (SRCRD), which is an ancient and highly conserved protein module. The expression and purification of eukaryotic proteins containing multiple disulfide bonds has always been challenging. The expression systems that are commonly used to express SRCRD proteins mainly consist of eukaryotic protein expression systems. Herein, we established a high-level expression strategy of a Type B SRCRD unit from human salivary agglutinin using the Escherichia coli expression system, followed by a refolding and purification process. The untagged recombinant SRCRD was expressed in E. coli using the pET-32a vector, which was followed by a refolding process using the GSH/GSSG redox system. The SRCRD expressed in E. coli SHuffle T7 showed better solubility after refolding than that expressed in E. coli BL21(DE3), suggesting the importance of the disulfide bond content prior to refolding. The quality of the refolded protein was finally assessed using crystallization and crystal structure analysis. As proteins refolded from inclusion bodies exhibit a high crystal quality and reproducibility, this method is considered a reliable strategy for SRCRD protein expression and purification. To further confirm the structural integrity of the refolded SRCRD protein, the purified protein was subjected to crystallization using sitting-drop vapor diffusion method. The obtained crystals of SRCRD diffracted X-rays to a resolution of 1.47 Å. The solved crystal structure appeared to be highly conserved, with four disulfide bonds appropriately formed. The surface charge distribution of homologous SRCRD proteins indicates that the negatively charged region at the surface is associated with their calcium-dependent ligand recognition. These results suggest that a high-quality SRCRD protein expressed by E. coli SHuffle T7 can be successfully folded and purified, providing new options for the expression of members of the scavenger receptor superfamily.

清道夫受体是一个蛋白质超家族,通常由一个或多个重复的清道夫受体富半胱氨酸结构域(SCRD)组成,这是一个古老而高度保守的蛋白质模块。表达和纯化含有多个二硫键的真核蛋白质一直是一项挑战。常用于表达 SRCRD 蛋白的表达系统主要包括真核蛋白质表达系统。在此,我们利用大肠杆菌表达系统建立了一种从人类唾液凝集素中提取的 B 型 SRCRD 单元的高水平表达策略,随后进行了重折叠和纯化过程。使用 pET-32a 载体在大肠杆菌中表达未标记的重组 SRCRD,然后使用 GSH/GSSG 氧化还原系统进行重折叠。在大肠杆菌 SHuffle T7 中表达的 SRCRD 在重折叠后比在大肠杆菌 BL21(DE3) 中表达的 SRCRD 表现出更好的溶解性,这表明重折叠前二硫键含量的重要性。最后,利用结晶和晶体结构分析评估了重折叠蛋白质的质量。由于从包涵体中重折的蛋白质具有较高的晶体质量和重现性,因此这种方法被认为是 SRCRD 蛋白表达和纯化的可靠策略。为了进一步确认重折叠 SRCRD 蛋白的结构完整性,纯化后的蛋白采用坐滴蒸气扩散法进行结晶。得到的 SRCRD 晶体的 X 射线衍射分辨率为 1.47 Å。同源 SRCRD 蛋白的表面电荷分布表明,其表面的负电荷区域与钙依赖性配体识别有关。这些结果表明,用大肠杆菌 SHuffle T7 表达的高质量 SRCRD 蛋白可以成功折叠和纯化,为清道夫受体超家族成员的表达提供了新的选择。
{"title":"Refolding, Crystallization, and Crystal Structure Analysis of a Scavenger Receptor Cysteine-Rich Domain of Human Salivary Agglutinin Expressed in Escherichia coli","authors":"Changyu Zhang,&nbsp;Peng Lu,&nbsp;Sibo Wei,&nbsp;Chaoyue Hu,&nbsp;Mitsuko Miyoshi,&nbsp;Ken Okamoto,&nbsp;Hideaki Itoh,&nbsp;Suguru Okuda,&nbsp;Michio Suzuki,&nbsp;Hiroshi Kawakami,&nbsp;Koji Nagata","doi":"10.1007/s10930-023-10173-x","DOIUrl":"10.1007/s10930-023-10173-x","url":null,"abstract":"<div><p>Scavenger receptors are a protein superfamily that typically consists of one or more repeats of the scavenger receptor cysteine-rich structural domain (SRCRD), which is an ancient and highly conserved protein module. The expression and purification of eukaryotic proteins containing multiple disulfide bonds has always been challenging. The expression systems that are commonly used to express SRCRD proteins mainly consist of eukaryotic protein expression systems. Herein, we established a high-level expression strategy of a Type B SRCRD unit from human salivary agglutinin using the <i>Escherichia coli</i> expression system, followed by a refolding and purification process. The untagged recombinant SRCRD was expressed in <i>E. coli</i> using the pET-32a vector, which was followed by a refolding process using the GSH/GSSG redox system. The SRCRD expressed in <i>E. coli</i> SHuffle T7 showed better solubility after refolding than that expressed in <i>E. coli</i> BL21(DE3), suggesting the importance of the disulfide bond content prior to refolding. The quality of the refolded protein was finally assessed using crystallization and crystal structure analysis. As proteins refolded from inclusion bodies exhibit a high crystal quality and reproducibility, this method is considered a reliable strategy for SRCRD protein expression and purification. To further confirm the structural integrity of the refolded SRCRD protein, the purified protein was subjected to crystallization using sitting-drop vapor diffusion method. The obtained crystals of SRCRD diffracted X-rays to a resolution of 1.47 Å. The solved crystal structure appeared to be highly conserved, with four disulfide bonds appropriately formed. The surface charge distribution of homologous SRCRD proteins indicates that the negatively charged region at the surface is associated with their calcium-dependent ligand recognition. These results suggest that a high-quality SRCRD protein expressed by <i>E. coli</i> SHuffle T7 can be successfully folded and purified, providing new options for the expression of members of the scavenger receptor superfamily.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"283 - 297"},"PeriodicalIF":1.9,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterologous Production of Antimicrobial Peptides: Notes to Consider 抗菌肽的异源生产:注意事项。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-05 DOI: 10.1007/s10930-023-10174-w
Masoumeh Kordi, Parnian Ghaedi Talkhounche, Helia Vahedi, Naser Farrokhi, Maryam Tabarzad

Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called “superbugs”, the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.

Graphical Abstract

Sources of peptide production and their applications. Some AMPs directly extracted from natural sources, some of them are chemically synthesized either using liquid or solid phase peptides synthesis, and for large scale production, recombinant expression using heterologous expression systems have been used.

上个世纪抗生素的大量和不负责任的使用给微生物带来了选择压力,使它们进化得更快,并发展出更有生命力的菌株。在与这些有时被称为 "超级细菌 "的微生物对抗的过程中,寻找生化抗生素新来源的努力似乎已经达到了极限。在过去的二十年里,生物活性抗菌肽(AMPs),即氨基酸少于 100 个的多肽链,在控制微生物病原体方面比其他类型的抗生素更受关注。AMPs 是参与许多生物体免疫反应的一组成分,已成为与微生物斗争的新领域。AMPs 通常在生物体内产生的量极少,因此,要满足市场需求,必须通过 DNA 重组技术进行大规模生产,或通过化学方法合成。这里将综述在细菌、真菌、酵母、植物和昆虫细胞中异源表达 AMPs 的情况,以及实现其工业化需要考虑的要点。多肽的生产来源及其应用。有些 AMP 直接从天然资源中提取,有些使用液相或固相多肽合成法进行化学合成,而大规模生产则使用异源表达系统进行重组表达。
{"title":"Heterologous Production of Antimicrobial Peptides: Notes to Consider","authors":"Masoumeh Kordi,&nbsp;Parnian Ghaedi Talkhounche,&nbsp;Helia Vahedi,&nbsp;Naser Farrokhi,&nbsp;Maryam Tabarzad","doi":"10.1007/s10930-023-10174-w","DOIUrl":"10.1007/s10930-023-10174-w","url":null,"abstract":"<div><p>Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called “superbugs”, the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.</p><h3>Graphical Abstract</h3><p>Sources of peptide production and their applications. Some AMPs directly extracted from natural sources, some of them are chemically synthesized either using liquid or solid phase peptides synthesis, and for large scale production, recombinant expression using heterologous expression systems have been used.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"129 - 158"},"PeriodicalIF":1.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies 通过计算和实验研究,将人类胰腺 RNase 1 作为癌症治疗的免疫治疗剂。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-25 DOI: 10.1007/s10930-023-10171-z
Mohammadreza Nassiri, Shahrokh Ghovvati, Marzieh Gharouni, Mojtaba Tahmoorespur, Ahmad Reza Bahrami, Hesam Dehghani

Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent’s immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS–PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.

大多数植物和细菌毒素具有高度免疫原性和非特异性毒性作用。人类核糖核酸酶被认为为降低毒剂的免疫原性提供了一个很好的基础,是癌症治疗的候选药物。在细胞中,核糖核酸酶抑制剂(RI)蛋白与核糖核酸酶结合,形成紧密的复合物。本研究旨在设计和提供一种编码改进版人胰腺 RNase 1(HP-RNase 1)的基因构建体,以减少与 RI 的连接并调节免疫毒素的免疫原性效应。为了进一步确定 HP-RNase 1 和 RI 的相互作用复合物的特征,我们建立了各种硅学和体外方法。这些方法使我们能够专门监测原生和工程化 HP-RNase 1/RI 复合物内的相互作用。硅学研究包括分子动力学(MD)模拟原生和突变型 HP-RNase 1 的自由形态以及与 RI 结合时的形态。在 HP-RNase 1 工程方面,我们根据文献研究设计了五个突变(K8A/N72A/N89A/R92D/E112/A),因为这种组合被证明对预期的研究有效。然后,通过 RT-PCR 从血液中生成了编码 HP-RNase 1 的 cDNA,并将其克隆到 pSYN2 表达载体中。随后,野生型和工程化的 HP-RNase 1 在大肠杆菌 TG1 中过度表达,并使用针对多聚-his 标记的 IMAC 柱进行纯化。蛋白产物通过 SDS-PAGE 和 Western 印迹分析进行检测。在不同浓度的 RI 存在下,HP-RNase 1 的催化活性表明,突变型蛋白质能够摆脱核糖核酸酶抑制剂的作用,靶向 RNA 底物的能力是野生型的 2.5 倍。从这些数据中,我们倾向于认为工程重组 HP-RNase 1 有可能成为一种新的免疫治疗剂,应用于人类癌症治疗。
{"title":"Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies","authors":"Mohammadreza Nassiri,&nbsp;Shahrokh Ghovvati,&nbsp;Marzieh Gharouni,&nbsp;Mojtaba Tahmoorespur,&nbsp;Ahmad Reza Bahrami,&nbsp;Hesam Dehghani","doi":"10.1007/s10930-023-10171-z","DOIUrl":"10.1007/s10930-023-10171-z","url":null,"abstract":"<div><p>Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent’s immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in <i>E. coli</i> TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS–PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"316 - 332"},"PeriodicalIF":1.9,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139033143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis 芽孢杆菌中的酒石酸脱氢酶:通过动力学、结构和分子对接分析解密独特的催化多样性
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-21 DOI: 10.1007/s10930-023-10170-0
Manali Chandnani, Disha Patel, Twinkle Patel, Aditi Buch

Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from P. putida (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in Bacillus isolates and limited resemblance of ycsA-encoded protein sequences with pTDH rendered Bacillus TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from B. subtilis 168 (168bTDH) and B. licheniformis DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of E. coli BL21(DE3) cells, could significantly catalyze L-tartrate and meso-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.

分歧进化的酒石酸脱氢酶(TDH)在单个活性位点上表现出多种催化活性;来自普氏拟杆菌(P. putida)的酶(pTDH)在结构上和生物化学上都有很好的表征。由于芽孢杆菌分离物中存在与 TDH 相关的有氧代谢 L-酒石酸盐的能力,而且 ycsA 编码的蛋白质序列与 pTDH 的相似性有限,因此芽孢杆菌 TDH 可能是一种具有催化多样性和进化意义的令人感兴趣的酶。本研究通过动力学、结构和分子对接分析,探讨了枯草芽孢杆菌 168(168bTDH)和地衣芽孢杆菌 DSM-13(429bTDH)的 TDH 的底物相互作用。从大肠杆菌 BL21(DE3)细胞不溶性馏分中纯化的异源表达 bTDHs 在正向反应中能显著催化作为底物的 L-酒石酸盐和中酒石酸盐。与 pTDH 不同的是,bTDHs 在以二羟富马酸为底物的反向反应中的催化能力比 pTDH 高出约 4 倍。分子对接预测的结合能进一步证实了它们的相对底物特异性,同时揭示了活性位点上参与蛋白质-配体相互作用的主要残基。动力学分析和同源建模通过拉马钱德兰图分析进行了验证,预测 bTDH 具有二聚体性质。总之,这些结果凸显了系统发育较晚的 bTDHs 的独特催化潜力,为介导高效对映选择性酶促生物转化提供了一个重要的蛋白质工程目标。
{"title":"Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis","authors":"Manali Chandnani,&nbsp;Disha Patel,&nbsp;Twinkle Patel,&nbsp;Aditi Buch","doi":"10.1007/s10930-023-10170-0","DOIUrl":"10.1007/s10930-023-10170-0","url":null,"abstract":"<div><p>Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from <i>P. putida</i> (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in <i>Bacillus</i> isolates and limited resemblance of <i>ycsA</i>-encoded protein sequences with pTDH rendered <i>Bacillus</i> TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from <i>B. subtilis</i> 168 (168bTDH) and <i>B. licheniformis</i> DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of <i>E. coli</i> BL21(DE3) cells, could significantly catalyze L-tartrate and <i>meso</i>-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 1","pages":"96 - 114"},"PeriodicalIF":1.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical Characterization of Laccase from Spirulina CPCC-695 and Their Role in Estrone Degradation 螺旋藻 CPCC-695 漆酶的生化特征及其在雌酮降解中的作用
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-21 DOI: 10.1007/s10930-023-10169-7
Neha Sami, Bushra Afzal, Durdana Yasin, Tasneem Fatma

The addition of exogenous endocrine disrupting compounds (EDCs) like estrone, in the food chain through the aquatic system, disrupts steroid biosynthesis and metabolism by altering either the genomic or non-genomic pathway that eventually results in various diseases. Thus, bioremediation of these compounds is urgently required to prevent their addition and persistence in the environment. Enzymatic degradation has proven to be a knight in shining armour as it is safe and generates no toxic products. The multicopper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase), laccase with the potential to degrade both phenolic and non-phenolic substrates has recently gained attention. In this study, the laccase was purified, characterized, and used to study estrone degradation. The culture filtrate (crude laccase) was concentrated and precipitated using cold-acetone and dialyzed against tris buffer (50 mM) giving a four-fold partially purified form, with 45.56% yield and 204.14 U/mg as specific activity and a single peak at 250–300 nm. The partially purified laccase was approximately 80 kDa as estimated by SDS-PAGE preferred ABTS as substrate. Both crude and partially purified laccase showed maximum activity at pH 3.0, 40 °C, and 4 mM ABTS. Kinetic constants (Km, Vmax) of crude and partially purified laccase were found to be 0.83 mM; 494.31 mM/min, and 0.58 mM; 480.54 mM/min respectively. Iron sulphate and sodium azide inhibited laccase maximally. Crude and partially purified laccase degradation efficiency was 87.55 and 91.35% respectively. Spirulina CPCC-695 laccase with efficient estrone degradation ability renders them promising candidates for EDCs bioremediation.

通过水生系统在食物链中添加雌酮等外源性内分泌干扰化合物(EDCs),会改变基因组或非基因组途径,从而扰乱类固醇的生物合成和代谢,最终导致各种疾病。因此,迫切需要对这些化合物进行生物修复,以防止其在环境中的添加和持续存在。事实证明,酶降解是一种安全且不产生有毒产物的 "盔甲骑士"。具有降解酚类和非酚类底物潜力的多铜氧化酶(E.C. 1.10.3.2 苯二醇:氧氧化还原酶)--漆酶最近受到了关注。本研究对漆酶进行了纯化、表征,并将其用于研究雌酮降解。培养滤液(粗漆酶)经浓缩后用冷丙酮沉淀,并用三羟甲基氨基甲烷缓冲液(50 mM)透析,得到四倍的部分纯化形式,产率为 45.56%,比活度为 204.14 U/mg,在 250-300 纳米波长处有一个单峰。根据 SDS-PAGE 估计,部分纯化的漆酶约为 80 kDa,以 ABTS 为底物。粗制和部分纯化的漆酶都在 pH 值为 3.0、温度为 40 °C、ABTS 为 4 mM 的条件下显示出最大活性。粗制和部分纯化的漆酶的动力学常数(Km、Vmax)分别为 0.83 mM;494.31 mM/min 和 0.58 mM;480.54 mM/min。硫酸铁和叠氮化钠对漆酶的抑制作用最大。粗提纯和部分提纯的漆酶降解效率分别为 87.55% 和 91.35%。螺旋藻 CPCC-695 漆酶具有高效的雌酮降解能力,因此有望用于 EDCs 的生物修复。
{"title":"Biochemical Characterization of Laccase from Spirulina CPCC-695 and Their Role in Estrone Degradation","authors":"Neha Sami,&nbsp;Bushra Afzal,&nbsp;Durdana Yasin,&nbsp;Tasneem Fatma","doi":"10.1007/s10930-023-10169-7","DOIUrl":"10.1007/s10930-023-10169-7","url":null,"abstract":"<div><p>The addition of exogenous endocrine disrupting compounds (EDCs) like estrone, in the food chain through the aquatic system, disrupts steroid biosynthesis and metabolism by altering either the genomic or non-genomic pathway that eventually results in various diseases. Thus, bioremediation of these compounds is urgently required to prevent their addition and persistence in the environment. Enzymatic degradation has proven to be a knight in shining armour as it is safe and generates no toxic products. The multicopper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase), laccase with the potential to degrade both phenolic and non-phenolic substrates has recently gained attention. In this study, the laccase was purified, characterized, and used to study estrone degradation. The culture filtrate (crude laccase) was concentrated and precipitated using cold-acetone and dialyzed against tris buffer (50 mM) giving a four-fold partially purified form, with 45.56% yield and 204.14 U/mg as specific activity and a single peak at 250–300 nm. The partially purified laccase was approximately 80 kDa as estimated by SDS-PAGE preferred ABTS as substrate. Both crude and partially purified laccase showed maximum activity at pH 3.0, 40 °C, and 4 mM ABTS. Kinetic constants (Km, Vmax) of crude and partially purified laccase were found to be 0.83 mM; 494.31 mM/min, and 0.58 mM; 480.54 mM/min respectively. Iron sulphate and sodium azide inhibited laccase maximally. Crude and partially purified laccase degradation efficiency was 87.55 and 91.35% respectively. <i>Spirulina</i> CPCC-695 laccase with efficient estrone degradation ability renders them promising candidates for EDCs bioremediation.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 1","pages":"115 - 128"},"PeriodicalIF":1.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Protein Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1