Pub Date : 2025-03-26DOI: 10.2174/0118715206359499250318063747
Ali Aliabadi, Mobina Tajdari, Sara Fakharinia, Niusha Sadat Ashrafizadeh, Maryam Bayanati, Mohammad Mahboubi-Rabbani, Afshin Zarghi
Aromatase, a crucial enzyme assigned for transforming androgen into estrogen, has a vital function in the advancement of drug-resistant breast cancers that respond to endocrine treatments. Aromatase (CYP19A1) is a monooxygenase from the cytochrome P450 family that is involved in the conversion of androgens to estrogens. Breast cancer cells express aromatase activity, indicating that the tumor cells may be able to produce local estrogen. By inhibiting aromatase, serum estrogen levels decrease, which, in turn, hinders estrogen-driven cancer cell growth in hormone receptor-positive breast cancer cases. In this sense, the introduction of novel aromatase inhibitors could be a significant step forward in the fight against cancer. This is especially true in hormone-dependent cancers. Many compounds have been introduced as aromatase inhibitors, classified as steroidal or nonsteroidal. However, it should be noted that these drugs have encountered resistance in numerous cases, particularly in recent years. Thus, the search for new aromatase inhibitor drugs has always been critical. Newly, there seems to be a surge of enthusiasm in the discovery and production of molecules with dual inhibitory effects, which can inhibit two or more enzymes simultaneously. This method enables a significant reduction in potential drug resistance. The design of these compounds has an opportunity to significantly boost the efficacy of anti-cancer treatments by causing synergistic effects. This article offers a review of newly developed aromatase inhibitors with potential anticancer effects.
{"title":"Recent Advances in Therapeutic Potential of Dual-Acting Aromatase/COX-2.","authors":"Ali Aliabadi, Mobina Tajdari, Sara Fakharinia, Niusha Sadat Ashrafizadeh, Maryam Bayanati, Mohammad Mahboubi-Rabbani, Afshin Zarghi","doi":"10.2174/0118715206359499250318063747","DOIUrl":"https://doi.org/10.2174/0118715206359499250318063747","url":null,"abstract":"<p><p>Aromatase, a crucial enzyme assigned for transforming androgen into estrogen, has a vital function in the advancement of drug-resistant breast cancers that respond to endocrine treatments. Aromatase (CYP19A1) is a monooxygenase from the cytochrome P450 family that is involved in the conversion of androgens to estrogens. Breast cancer cells express aromatase activity, indicating that the tumor cells may be able to produce local estrogen. By inhibiting aromatase, serum estrogen levels decrease, which, in turn, hinders estrogen-driven cancer cell growth in hormone receptor-positive breast cancer cases. In this sense, the introduction of novel aromatase inhibitors could be a significant step forward in the fight against cancer. This is especially true in hormone-dependent cancers. Many compounds have been introduced as aromatase inhibitors, classified as steroidal or nonsteroidal. However, it should be noted that these drugs have encountered resistance in numerous cases, particularly in recent years. Thus, the search for new aromatase inhibitor drugs has always been critical. Newly, there seems to be a surge of enthusiasm in the discovery and production of molecules with dual inhibitory effects, which can inhibit two or more enzymes simultaneously. This method enables a significant reduction in potential drug resistance. The design of these compounds has an opportunity to significantly boost the efficacy of anti-cancer treatments by causing synergistic effects. This article offers a review of newly developed aromatase inhibitors with potential anticancer effects.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.2174/0118715206365310250310081445
Shima Mehrabadi
Tumor-infiltrating immune cells (TIICs) have been identified as critical components in the development of cancer drug resistance. This review aims to discuss the various types of TIICs, such as macrophages and T cells, that have been linked to cancer drug resistance. Furthermore, we explore the mechanisms by which TIICs contribute to drug resistance and how these mechanisms may differ across various tumor types. Additionally, we examine the potential of immune checkpoint inhibitors in combination with traditional cancer therapies as a strategy to overcome TIIC-mediated cancer drug resistance. In conclusion, this review provides an in-depth analysis of the current knowledge on the role of TIICs in cancer drug resistance and highlights potential avenues for future research to develop more effective treatment strategies. The findings presented in this review emphasize the importance of understanding the complex interactions between cancer cells and the immune system in order to develop novel therapeutic approaches that can overcome TIIC-mediated cancer drug resistance.
{"title":"Unraveling the Role of Tumor-infiltrating Immune Cells in Modulating Cancer Drug Resistance.","authors":"Shima Mehrabadi","doi":"10.2174/0118715206365310250310081445","DOIUrl":"https://doi.org/10.2174/0118715206365310250310081445","url":null,"abstract":"<p><p>Tumor-infiltrating immune cells (TIICs) have been identified as critical components in the development of cancer drug resistance. This review aims to discuss the various types of TIICs, such as macrophages and T cells, that have been linked to cancer drug resistance. Furthermore, we explore the mechanisms by which TIICs contribute to drug resistance and how these mechanisms may differ across various tumor types. Additionally, we examine the potential of immune checkpoint inhibitors in combination with traditional cancer therapies as a strategy to overcome TIIC-mediated cancer drug resistance. In conclusion, this review provides an in-depth analysis of the current knowledge on the role of TIICs in cancer drug resistance and highlights potential avenues for future research to develop more effective treatment strategies. The findings presented in this review emphasize the importance of understanding the complex interactions between cancer cells and the immune system in order to develop novel therapeutic approaches that can overcome TIIC-mediated cancer drug resistance.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.2174/0118715206337347250219112715
Chun Zhang, Yuting Yang, Li-Xin Gao, Suya Gan, Jia Li, Xin Wang, Yu-Bo Zhou, Wen-Long Wang
Introduction: Although the development of SHP2 inhibitors has made striking progress, there is no inhibitor in clinical evaluation because of the potential side effects induced by poor drug distribution. Fluorescence imaging technology is widely used in the process of diagnosis and treatment of diseases because of the advantages of rapid imaging and non-destructive detection and might provide a new way to explore the mechanism of drug-target interactions in intact tissue.
Method: A series of 2-quinolone derivatives as fluorescent inhibitors against SHP2 were designed and synthesized, and their spectral properties and biological activities were evaluated in this report. The representative compound 8A had excellent fluorescence properties (λ : 562 nm, Stokes shift: 170 nm, fluorescence quantum yield: 0.072) and optical stability.
Results: Moreover, compound 8A emitted a blue signal in SHP2WT U2OS cells and inhibited the SHP2 enzyme abilities (IC50: 20.16 ± 0.95 μM) without the extra combination of suitable fluorophores, linker, or selectiveactivated molecules.
Conclusion: Therefore, we hope that compound 8A could act as a lead to develop novel, convenient, and bifunctional chemical tools to explore the mechanism of drug-target interactions in intact tissue and promote the integrated research progress of diagnosis and treatment of SHP2 related diseases.
{"title":"Synthesis and Evaluation of Optical Properties, SHP2 Inhibitory Activity, and Cellular Imaging for Novel 2-Quinolone Derivatives.","authors":"Chun Zhang, Yuting Yang, Li-Xin Gao, Suya Gan, Jia Li, Xin Wang, Yu-Bo Zhou, Wen-Long Wang","doi":"10.2174/0118715206337347250219112715","DOIUrl":"https://doi.org/10.2174/0118715206337347250219112715","url":null,"abstract":"<p><strong>Introduction: </strong>Although the development of SHP2 inhibitors has made striking progress, there is no inhibitor in clinical evaluation because of the potential side effects induced by poor drug distribution. Fluorescence imaging technology is widely used in the process of diagnosis and treatment of diseases because of the advantages of rapid imaging and non-destructive detection and might provide a new way to explore the mechanism of drug-target interactions in intact tissue.</p><p><strong>Method: </strong>A series of 2-quinolone derivatives as fluorescent inhibitors against SHP2 were designed and synthesized, and their spectral properties and biological activities were evaluated in this report. The representative compound 8A had excellent fluorescence properties (λ : 562 nm, Stokes shift: 170 nm, fluorescence quantum yield: 0.072) and optical stability.</p><p><strong>Results: </strong>Moreover, compound 8A emitted a blue signal in SHP2WT U2OS cells and inhibited the SHP2 enzyme abilities (IC50: 20.16 ± 0.95 μM) without the extra combination of suitable fluorophores, linker, or selectiveactivated molecules.</p><p><strong>Conclusion: </strong>Therefore, we hope that compound 8A could act as a lead to develop novel, convenient, and bifunctional chemical tools to explore the mechanism of drug-target interactions in intact tissue and promote the integrated research progress of diagnosis and treatment of SHP2 related diseases.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-27DOI: 10.2174/0118715206358340250121060830
Meiyao Hu, Chang Xu, Mingxin Xu, Siyu He, Dandan Liu
The p53 protein, renowned as the "anti-cancer protein," plays a critical role in regulating the cell cycle, inducing apoptosis, and repairing DNA. Its dysregulation often leads to genomic instability and tumorigenesis. MDM2, a key negative feedback regulator of p53, inhibits both the transcriptional activity and stability of p53, thereby suppressing the anti-cancer effect of p53. With the resolution of the co-crystal structure of the MDM2- p53 complex, using small molecule inhibitors to block their interaction has emerged as a promising cancer treatment strategy. These inhibitors can remove the negative regulation of MDM2 on p53 and allow p53 to function as a "tumor suppressor protein". Over recent decades, researchers have designed and synthesized small-molecule inhibitors with diverse structures, showing notable anti-cancer efficacy in preclinical studies. Although several inhibitors have entered clinical trials, none have yet been approved. This review comprehensively summarizes the recent advancements in small-molecule inhibitors of MDM2-p53 protein-protein interaction (PPI) according to different types of structural scaffolds, primarily focusing on imidazolines, spirooxindoles, pyrrolidines, pyrrolones, piperidines, piperidines, purine carboxylic acid derivatives, isoquinolines, pyrazolopyrolidinone analogs, imidazothiazoles, quinolones, and spiroindolines. Additionally, this review focuses on their design, synthesis, and biological evaluation and highlights the structure-activity relationships and ongoing efforts. Despite the progress made, challenges remain. Researchers are exploring strategies to overcome these obstacles in promoting the research on drugs targeting MDM2-p53 PPI with stronger affinity, higher permeability, and a more significant effect.
{"title":"Research Progress on Small Molecule Inhibitors of MDM2-p53 Protein-protein Interaction.","authors":"Meiyao Hu, Chang Xu, Mingxin Xu, Siyu He, Dandan Liu","doi":"10.2174/0118715206358340250121060830","DOIUrl":"https://doi.org/10.2174/0118715206358340250121060830","url":null,"abstract":"<p><p>The p53 protein, renowned as the \"anti-cancer protein,\" plays a critical role in regulating the cell cycle, inducing apoptosis, and repairing DNA. Its dysregulation often leads to genomic instability and tumorigenesis. MDM2, a key negative feedback regulator of p53, inhibits both the transcriptional activity and stability of p53, thereby suppressing the anti-cancer effect of p53. With the resolution of the co-crystal structure of the MDM2- p53 complex, using small molecule inhibitors to block their interaction has emerged as a promising cancer treatment strategy. These inhibitors can remove the negative regulation of MDM2 on p53 and allow p53 to function as a \"tumor suppressor protein\". Over recent decades, researchers have designed and synthesized small-molecule inhibitors with diverse structures, showing notable anti-cancer efficacy in preclinical studies. Although several inhibitors have entered clinical trials, none have yet been approved. This review comprehensively summarizes the recent advancements in small-molecule inhibitors of MDM2-p53 protein-protein interaction (PPI) according to different types of structural scaffolds, primarily focusing on imidazolines, spirooxindoles, pyrrolidines, pyrrolones, piperidines, piperidines, purine carboxylic acid derivatives, isoquinolines, pyrazolopyrolidinone analogs, imidazothiazoles, quinolones, and spiroindolines. Additionally, this review focuses on their design, synthesis, and biological evaluation and highlights the structure-activity relationships and ongoing efforts. Despite the progress made, challenges remain. Researchers are exploring strategies to overcome these obstacles in promoting the research on drugs targeting MDM2-p53 PPI with stronger affinity, higher permeability, and a more significant effect.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The alternative splicing (AS) of pre-mRNA is an important process in controlling the expression of human genes, which can enrich the diversity of the proteome and regulate gene function. On the contrary, aberrant splicing contributes significantly to numerous human diseases progression, including tumors, neurological diseases, metabolic diseases, infections, and immune diseases. The PUF60, a protein related to RNA splicing, plays critical functions in RNA splicing and gene transcription regulation. In addition, it can achieve synergistic binding with U2AF65 on RNA through interactions in the pyrimidine region, promoting the splicing of introns with weak 3'- splice sites and pyrimidine bundles. Nevertheless, an increasing amount of evidence supports that it shows a significant overexpression pattern in the vast majority of cancer cells and is crucial for embryonic development, indicating that PUF60 may hold the post of a potential therapeutic target for such diseases. These studies have significantly increased our interest in PUF60. Thus, we briefly reviewed the structural domain characteristics of the PUF60, splicing mutants of PUF60, and the roles and functions in human diseases, including various cancers, infections of bacterium and viruses, myositis, and Verheij syndrome. Furthermore, the targeted PUF60 inhibitors and boundedness of the current research were elaborated on in the article. The article effectively communicates critical perception and insight, making it a precious resource for those interested in PUF60 research and treatment.
{"title":"The Function of Poly (U) Binding Splicing Factor 60 (PUF60) in Disease Regulation.","authors":"Huijuan Chen, Tian Guan, Jingfeng Song, Yihua Chen","doi":"10.2174/0118715206346843241119105519","DOIUrl":"https://doi.org/10.2174/0118715206346843241119105519","url":null,"abstract":"<p><p>The alternative splicing (AS) of pre-mRNA is an important process in controlling the expression of human genes, which can enrich the diversity of the proteome and regulate gene function. On the contrary, aberrant splicing contributes significantly to numerous human diseases progression, including tumors, neurological diseases, metabolic diseases, infections, and immune diseases. The PUF60, a protein related to RNA splicing, plays critical functions in RNA splicing and gene transcription regulation. In addition, it can achieve synergistic binding with U2AF65 on RNA through interactions in the pyrimidine region, promoting the splicing of introns with weak 3'- splice sites and pyrimidine bundles. Nevertheless, an increasing amount of evidence supports that it shows a significant overexpression pattern in the vast majority of cancer cells and is crucial for embryonic development, indicating that PUF60 may hold the post of a potential therapeutic target for such diseases. These studies have significantly increased our interest in PUF60. Thus, we briefly reviewed the structural domain characteristics of the PUF60, splicing mutants of PUF60, and the roles and functions in human diseases, including various cancers, infections of bacterium and viruses, myositis, and Verheij syndrome. Furthermore, the targeted PUF60 inhibitors and boundedness of the current research were elaborated on in the article. The article effectively communicates critical perception and insight, making it a precious resource for those interested in PUF60 research and treatment.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715206318802240821114353
Sara Sigler, Mohammad Abdel-Halim, Reem K Fathalla, Luciana Madeira Da Silva, Adam B Keeton, Yulia Y Maxuitenko, Kristy L Berry, Gang Zhou, Matthias Engel, Ashraf H Abadi, Gary A Piazza
Background: Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity.
Aim: This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth in vivo.
Objective: The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity.
Methods: Anticancer activity of RF26 was studied using human CRC cell lines. Effects on cell growth, cGMPdependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target.
Results: RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice.
Conclusion: Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.
{"title":"Novel Celecoxib Derivative, RF26, Blocks Colon Cancer Cell Growth by Inhibiting PDE5, Activating cGMP/PKG Signaling, and Suppressing β-catenin-dependent Transcription.","authors":"Sara Sigler, Mohammad Abdel-Halim, Reem K Fathalla, Luciana Madeira Da Silva, Adam B Keeton, Yulia Y Maxuitenko, Kristy L Berry, Gang Zhou, Matthias Engel, Ashraf H Abadi, Gary A Piazza","doi":"10.2174/0118715206318802240821114353","DOIUrl":"10.2174/0118715206318802240821114353","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity.</p><p><strong>Aim: </strong>This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth <i>in vivo</i>.</p><p><strong>Objective: </strong>The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity.</p><p><strong>Methods: </strong>Anticancer activity of RF26 was studied using human CRC cell lines. Effects on cell growth, cGMPdependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target.</p><p><strong>Results: </strong>RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice.</p><p><strong>Conclusion: </strong>Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"52-62"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715206327654240823074318
Noha S Basuony, Tarek M Mohamed, Doha M Beltagy, Ahmed A Massoud, Mona M Elwan
Objective: Crocin (CRO), the primary antioxidant in saffron, is known for its anticancer properties. However, its effectiveness in topical therapy is limited due to low bioavailability, poor absorption, and low physicochemical stability. This study aimed to prepare crocin nanoparticles (CRO-NPs) to enhance their pharmaceutical efficacy and evaluate the synergistic effects of Cro-NPs with doxorubicin (DOX) chemotherapy on two cell lines: human hepatocellular carcinoma cells (HepG2) and non-cancerous cells (WI38).
Methods: CRO-NPs were prepared using the emulsion diffusion technique and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential, and Fourier transform infrared spectroscopy (FT-IR). Cell proliferation inhibition was assessed using the MTT assay for DOX, CRO, CRO-NPs, and DOX+CRO-NPs. Apoptosis and cell cycle were evaluated by flow cytometry, and changes in the expression of apoptotic gene (P53) and autophagic genes (ATG5 & LC3) were analyzed using real-time polymerase chain reaction.
Results: TEM and SEM revealed that CRO-NPs exhibited a relatively spherical shape with an average size of 9.3 nm, and zeta potential analysis indicated better stability of CRO-NPs compared to native CRO. Significantly higher antitumor effects of CRO-NPs were observed against HepG2 cells (IC50 = 1.1 mg/ml and 0.57 mg/ml) compared to native CRO (IC50 = 6.1 mg/ml and 3.2 mg/ml) after 24 and 48 hours, respectively. Annexin-V assay on HepG2 cells indicated increased apoptotic rates across all treatments, with the highest percentage observed in CRO-NPs, accompanied by cell cycle arrest at the G2/M phase. Furthermore, gene expression analysis showed upregulation of P53, ATG5, and LC3 genes in DOX/CRO-NPs co-treatment compared to individual treatments. In contrast, WI38 cells exhibited greater sensitivity to DOX toxicity but showed no adverse response to CRONPs.
Conclusion: Although more in vivo studies in animal models are required to corroborate these results, our findings suggest that CRO-NPs can be a potential new anticancer agent for hepatocellular carcinoma. Moreover, they have a synergistic effect with DOX against HepG2 cells and mitigate the toxicity of DOX on normal WI38 cells.
{"title":"Therapeutic Effects of Crocin Nanoparticles Alone or in Combination with Doxorubicin against Hepatocellular Carcinoma <i>In vitro</i>.","authors":"Noha S Basuony, Tarek M Mohamed, Doha M Beltagy, Ahmed A Massoud, Mona M Elwan","doi":"10.2174/0118715206327654240823074318","DOIUrl":"10.2174/0118715206327654240823074318","url":null,"abstract":"<p><strong>Objective: </strong>Crocin (CRO), the primary antioxidant in saffron, is known for its anticancer properties. However, its effectiveness in topical therapy is limited due to low bioavailability, poor absorption, and low physicochemical stability. This study aimed to prepare crocin nanoparticles (CRO-NPs) to enhance their pharmaceutical efficacy and evaluate the synergistic effects of Cro-NPs with doxorubicin (DOX) chemotherapy on two cell lines: human hepatocellular carcinoma cells (HepG2) and non-cancerous cells (WI38).</p><p><strong>Methods: </strong>CRO-NPs were prepared using the emulsion diffusion technique and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential, and Fourier transform infrared spectroscopy (FT-IR). Cell proliferation inhibition was assessed using the MTT assay for DOX, CRO, CRO-NPs, and DOX+CRO-NPs. Apoptosis and cell cycle were evaluated by flow cytometry, and changes in the expression of apoptotic gene (P53) and autophagic genes (ATG5 & LC3) were analyzed using real-time polymerase chain reaction.</p><p><strong>Results: </strong>TEM and SEM revealed that CRO-NPs exhibited a relatively spherical shape with an average size of 9.3 nm, and zeta potential analysis indicated better stability of CRO-NPs compared to native CRO. Significantly higher antitumor effects of CRO-NPs were observed against HepG2 cells (IC<sub>50</sub> = 1.1 mg/ml and 0.57 mg/ml) compared to native CRO (IC<sub>50</sub> = 6.1 mg/ml and 3.2 mg/ml) after 24 and 48 hours, respectively. Annexin-V assay on HepG2 cells indicated increased apoptotic rates across all treatments, with the highest percentage observed in CRO-NPs, accompanied by cell cycle arrest at the G2/M phase. Furthermore, gene expression analysis showed upregulation of P53, ATG5, and LC3 genes in DOX/CRO-NPs co-treatment compared to individual treatments. In contrast, WI38 cells exhibited greater sensitivity to DOX toxicity but showed no adverse response to CRONPs.</p><p><strong>Conclusion: </strong>Although more in vivo studies in animal models are required to corroborate these results, our findings suggest that CRO-NPs can be a potential new anticancer agent for hepatocellular carcinoma. Moreover, they have a synergistic effect with DOX against HepG2 cells and mitigate the toxicity of DOX on normal WI38 cells.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"194-206"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and in vivo investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.
{"title":"The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications.","authors":"Haodong He, Jingjie Yang, Yan Zhou, Xinyan Zheng, Lihan Chen, Zhujun Mao, Chuyuan Liao, Tongtong Li, Haoran Liu, Gang Zhou, Houdong Li, Chengfu Yuan","doi":"10.2174/0118715206359325241119075640","DOIUrl":"10.2174/0118715206359325241119075640","url":null,"abstract":"<p><p>Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and <i>in vivo</i> investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"533-543"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0118715206329892240927081033
Xueshuai Ye, Yongqiang Wu, Haiqiang Zhang
Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.
{"title":"Emerging Claudin18.2-targeting Therapy for Systemic Treatment of Gastric Cancer: Seeking Nobility Amidst Danger.","authors":"Xueshuai Ye, Yongqiang Wu, Haiqiang Zhang","doi":"10.2174/0118715206329892240927081033","DOIUrl":"10.2174/0118715206329892240927081033","url":null,"abstract":"<p><p>Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"223-231"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named Schisandra rubriflora (Franch.).
Purpose: In this work, we studied the anticancer potential of schisanhenol and explored whether schisanhenol mediated its effect by inhibiting the expression of PD-L1 in vitro and in vivo.
Materials and methods: In vitro, we performed western blot, immunofluorescence, immunoprecipitation, and colony formation assays to study the proteins, genes, and pathways related to the anti-tumour activity of schisanhenol. In vivo, we explored the antitumor activity of schisanhenol through orthotopic liver transplantation and subcutaneous transplantation tumor models of hepatocellular carcinoma (HCC) cells.
Results: We found that schisanhenol decreased the viability of HCC cells. It inhibited the expression of programmed cell death ligand-1 (PD-L1), which plays a pivotal role in tumorigenesis. Subsequently, schisanhenol suppressed the expression of PD-L1 by decreasing the activation of STAT3. Furthermore, we found that schisanhenol inhibited the activation of STAT3 via JAK/STAT3 (T705), Src/STAT3 (T705), and PI3K/AKT/mTOR/STAT3 (S727) pathways. Colony formation tests showed that schisanhenol suppressed cell proliferation by inhibiting PD-L1. Schisanhenol also enhanced cytotoxic T lymphocytes (CTL) activity and regained their ability to kill tumour cells in co-culture. Finally, in vivo observation confirmed the antitumor activity of schisanhenol.
Conclusion: Schisanhenol inhibits the proliferation of HCC cells by targeting PD-L1 via the STAT3 pathways. These findings prove that schisanhenol is a valuable candidate for HCC therapeutics and reveal previously unknown characteristics of schisanhenol.
{"title":"Schisanhenol Inhibits the Proliferation of Hepatocellular Carcinoma Cells by Targeting Programmed Cell Death-ligand 1 <i>via</i> the STAT3 Pathways.","authors":"Zhihong Zhang, Yiwen Zhong, Xu Han, Xueyang Hu, Yuhan Wang, Lei Huang, Siying Li, Ziqing Li, Chunmei Wang, He Li, Jinghui Sun, Wenyue Zhuang, Mengyang Wang, Jianguang Chen, Wei Liu, Chang Liu, Xin Guo, Siyu Yuan, Jiping Wu","doi":"10.2174/0118715206349131241121091834","DOIUrl":"10.2174/0118715206349131241121091834","url":null,"abstract":"<p><strong>Background: </strong>Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which promotes tumor cell survival and cell proliferation and causes tumor cells to escape T-cell killing. Schisanhenol, a biphenyl cyclooctene lignin-like compound, was extracted and isolated from the plant named <i>Schisandra rubriflora</i> (Franch.).</p><p><strong>Purpose: </strong>In this work, we studied the anticancer potential of schisanhenol and explored whether schisanhenol mediated its effect by inhibiting the expression of PD-L1 <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Materials and methods: </strong><i>In vitro</i>, we performed western blot, immunofluorescence, immunoprecipitation, and colony formation assays to study the proteins, genes, and pathways related to the anti-tumour activity of schisanhenol. <i>In vivo</i>, we explored the antitumor activity of schisanhenol through orthotopic liver transplantation and subcutaneous transplantation tumor models of hepatocellular carcinoma (HCC) cells.</p><p><strong>Results: </strong>We found that schisanhenol decreased the viability of HCC cells. It inhibited the expression of programmed cell death ligand-1 (PD-L1), which plays a pivotal role in tumorigenesis. Subsequently, schisanhenol suppressed the expression of PD-L1 by decreasing the activation of STAT3. Furthermore, we found that schisanhenol inhibited the activation of STAT3 <i> via</i> JAK/STAT3 (T705), Src/STAT3 (T705), and PI3K/AKT/mTOR/STAT3 (S727) pathways. Colony formation tests showed that schisanhenol suppressed cell proliferation by inhibiting PD-L1. Schisanhenol also enhanced cytotoxic T lymphocytes (CTL) activity and regained their ability to kill tumour cells in co-culture. Finally, <i>in vivo</i> observation confirmed the antitumor activity of schisanhenol.</p><p><strong>Conclusion: </strong>Schisanhenol inhibits the proliferation of HCC cells by targeting PD-L1 <i> via</i> the STAT3 pathways. These findings prove that schisanhenol is a valuable candidate for HCC therapeutics and reveal previously unknown characteristics of schisanhenol.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"697-710"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}