Pub Date : 2023-04-24DOI: 10.1146/annurev-physchem-062422-023532
Joseph P Heindel, Kristina M Herman, Sotiris S Xantheas
Interaction analysis techniques, including the many-body expansion (MBE), symmetry-adapted perturbation theory, and energy decomposition analysis, allow for an intuitive understanding of complex molecular interactions. We review these methods by first providing a historical context for the study of many-body interactions and discussing how nonadditivities emerge from Hamiltonians containing strictly pairwise-additive interactions. We then elaborate on the synergy between these interaction analysis techniques and the development of advanced force fields aimed at accurately reproducing the Born-Oppenheimer potential energy surface. In particular, we focus on ab initio-based force fields that aim to explicitly reproduce many-body terms and are fitted to high-level electronic structure results. These force fields generally incorporate many-body effects through (a) parameterization of distributed multipoles, (b) explicit fitting of the MBE, (c) inclusion of many-atom features in a neural network, and (d) coarse-graining of many-body terms into an effective two-body term. We also discuss the emerging use of the MBE to improve the accuracy and speed of ab initio molecular dynamics.
{"title":"Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development.","authors":"Joseph P Heindel, Kristina M Herman, Sotiris S Xantheas","doi":"10.1146/annurev-physchem-062422-023532","DOIUrl":"https://doi.org/10.1146/annurev-physchem-062422-023532","url":null,"abstract":"<p><p>Interaction analysis techniques, including the many-body expansion (MBE), symmetry-adapted perturbation theory, and energy decomposition analysis, allow for an intuitive understanding of complex molecular interactions. We review these methods by first providing a historical context for the study of many-body interactions and discussing how nonadditivities emerge from Hamiltonians containing strictly pairwise-additive interactions. We then elaborate on the synergy between these interaction analysis techniques and the development of advanced force fields aimed at accurately reproducing the Born-Oppenheimer potential energy surface. In particular, we focus on ab initio-based force fields that aim to explicitly reproduce many-body terms and are fitted to high-level electronic structure results. These force fields generally incorporate many-body effects through (<i>a</i>) parameterization of distributed multipoles, (<i>b</i>) explicit fitting of the MBE, (<i>c</i>) inclusion of many-atom features in a neural network, and (<i>d</i>) coarse-graining of many-body terms into an effective two-body term. We also discuss the emerging use of the MBE to improve the accuracy and speed of ab initio molecular dynamics.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"74 ","pages":"337-360"},"PeriodicalIF":14.7,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-24Epub Date: 2023-01-25DOI: 10.1146/annurev-physchem-090419-041204
Andrew H Marcus, Dylan Heussman, Jack Maurer, Claire S Albrecht, Patrick Herbert, Peter H von Hippel
The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)2 dimer probes. With the application of these methods, the (iCy3)2 dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.
{"title":"Studies of Local DNA Backbone Conformation and Conformational Disorder Using Site-Specific Exciton-Coupled Dimer Probe Spectroscopy.","authors":"Andrew H Marcus, Dylan Heussman, Jack Maurer, Claire S Albrecht, Patrick Herbert, Peter H von Hippel","doi":"10.1146/annurev-physchem-090419-041204","DOIUrl":"10.1146/annurev-physchem-090419-041204","url":null,"abstract":"<p><p>The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)<sub>2</sub> dimer probes. With the application of these methods, the (iCy3)<sub>2</sub> dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"74 ","pages":"245-265"},"PeriodicalIF":14.7,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590263/pdf/nihms-1938226.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9352275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2022-01-26DOI: 10.1146/annurev-physchem-090419-120202
Sohang Kundu, Nancy Makri
Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.
{"title":"Intramolecular Vibrations in Excitation Energy Transfer: Insights from Real-Time Path Integral Calculations.","authors":"Sohang Kundu, Nancy Makri","doi":"10.1146/annurev-physchem-090419-120202","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-120202","url":null,"abstract":"<p><p>Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"349-375"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39950707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2022-01-26DOI: 10.1146/annurev-physchem-082620-014627
Adam D Dunkelberger, Blake S Simpkins, Igor Vurgaftman, Jeffrey C Owrutsky
Molecular polaritons result from light-matter coupling between optical resonances and molecular electronic or vibrational transitions. When the coupling is strong enough, new hybridized states with mixed photon-material character are observed spectroscopically, with resonances shifted above and below the uncoupled frequency. These new modes have unique optical properties and can be exploited to promote or inhibit physical and chemical processes. One remarkable result is that vibrational strong coupling to cavities can alter reaction rates and product branching ratios with no optical excitation whatsoever. In this work we review the ability of vibration-cavity polaritons to modify chemical and physical processes including chemical reactivity, as well as steady-state and transient spectroscopy. We discuss the larger context of these works and highlight their most important contributions and implications. Our goal is to provide insight for systematically manipulating molecular polaritons in photonic and chemical applications.
{"title":"Vibration-Cavity Polariton Chemistry and Dynamics.","authors":"Adam D Dunkelberger, Blake S Simpkins, Igor Vurgaftman, Jeffrey C Owrutsky","doi":"10.1146/annurev-physchem-082620-014627","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082620-014627","url":null,"abstract":"<p><p>Molecular polaritons result from light-matter coupling between optical resonances and molecular electronic or vibrational transitions. When the coupling is strong enough, new hybridized states with mixed photon-material character are observed spectroscopically, with resonances shifted above and below the uncoupled frequency. These new modes have unique optical properties and can be exploited to promote or inhibit physical and chemical processes. One remarkable result is that vibrational strong coupling to cavities can alter reaction rates and product branching ratios with no optical excitation whatsoever. In this work we review the ability of vibration-cavity polaritons to modify chemical and physical processes including chemical reactivity, as well as steady-state and transient spectroscopy. We discuss the larger context of these works and highlight their most important contributions and implications. Our goal is to provide insight for systematically manipulating molecular polaritons in photonic and chemical applications.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"429-451"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39950709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20DOI: 10.1146/annurev-physchem-082720-123928
Sarah E Biehn, Steffen Lindert
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Protein Structure Prediction with Mass Spectrometry Data.","authors":"Sarah E Biehn, Steffen Lindert","doi":"10.1146/annurev-physchem-082720-123928","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082720-123928","url":null,"abstract":"Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"73 ","pages":"1-19"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672978/pdf/nihms-1847175.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2022-01-19DOI: 10.1146/annurev-physchem-082820-113041
Teng-Teng Chen, Ling Fung Cheung, Lai-Sheng Wang
Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (Bn-), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB- and RhB2O- clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triplebond was found in ReB2O- and IrB2O-. The ReB4- cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB6- cluster was found to exhibit aromaticity analogous to metallabenzenes.
{"title":"Probing the Nature of the Transition-Metal-Boron Bonds and Novel Aromaticity in Small Metal-Doped Boron Clusters Using Photoelectron Spectroscopy.","authors":"Teng-Teng Chen, Ling Fung Cheung, Lai-Sheng Wang","doi":"10.1146/annurev-physchem-082820-113041","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082820-113041","url":null,"abstract":"<p><p>Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (B<i><sub>n</sub></i><sup>-</sup>), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB<sup>-</sup> and RhB<sub>2</sub>O<sup>-</sup> clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triplebond was found in ReB<sub>2</sub>O<sup>-</sup> and IrB<sub>2</sub>O<sup>-</sup>. The ReB<sub>4</sub><sup>-</sup> cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB<sub>6</sub><sup>-</sup> cluster was found to exhibit aromaticity analogous to metallabenzenes.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"233-253"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39831944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2021-11-11DOI: 10.1146/annurev-physchem-082720-010539
Martin Centurion, Thomas J A Wolf, Jie Yang
Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.
{"title":"Ultrafast Imaging of Molecules with Electron Diffraction.","authors":"Martin Centurion, Thomas J A Wolf, Jie Yang","doi":"10.1146/annurev-physchem-082720-010539","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082720-010539","url":null,"abstract":"<p><p>Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"21-42"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39581770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.
{"title":"Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation.","authors":"Young-Shin Jun, Yaguang Zhu, Ying Wang, Deoukchen Ghim, Xuanhao Wu, Doyoon Kim, Haesung Jung","doi":"10.1146/annurev-physchem-082720-100947","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082720-100947","url":null,"abstract":"<p><p>All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"453-477"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39884450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2021-12-06DOI: 10.1146/annurev-physchem-090519-042621
Tao E Li, Bingyu Cui, Joseph E Subotnik, Abraham Nitzan
Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor.
{"title":"Molecular Polaritonics: Chemical Dynamics Under Strong Light-Matter Coupling.","authors":"Tao E Li, Bingyu Cui, Joseph E Subotnik, Abraham Nitzan","doi":"10.1146/annurev-physchem-090519-042621","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090519-042621","url":null,"abstract":"<p><p>Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"43-71"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39697449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-20Epub Date: 2021-12-22DOI: 10.1146/annurev-physchem-082720-033751
Ryan D Norton, Hoa T Phan, Stephanie N Gibbons, Amanda J Haes
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.
{"title":"Quantitative Surface-Enhanced Spectroscopy.","authors":"Ryan D Norton, Hoa T Phan, Stephanie N Gibbons, Amanda J Haes","doi":"10.1146/annurev-physchem-082720-033751","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082720-033751","url":null,"abstract":"<p><p>Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"141-162"},"PeriodicalIF":14.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39747750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}