Pub Date : 2023-06-20DOI: 10.1146/annurev-biochem-032620-110506
Eugene Kim, Roman Barth, Cees Dekker
SMC (structural maintenance of chromosomes) protein complexes are an evolutionarily conserved family of motor proteins that hold sister chromatids together and fold genomes throughout the cell cycle by DNA loop extrusion. These complexes play a key role in a variety of functions in the packaging and regulation of chromosomes, and they have been intensely studied in recent years. Despite their importance, the detailed molecular mechanism for DNA loop extrusion by SMC complexes remains unresolved. Here, we describe the roles of SMCs in chromosome biology and particularly review in vitro single-molecule studies that have recently advanced our understanding of SMC proteins. We describe the mechanistic biophysical aspects of loop extrusion that govern genome organization and its consequences.
{"title":"Looping the Genome with SMC Complexes.","authors":"Eugene Kim, Roman Barth, Cees Dekker","doi":"10.1146/annurev-biochem-032620-110506","DOIUrl":"https://doi.org/10.1146/annurev-biochem-032620-110506","url":null,"abstract":"<p><p>SMC (structural maintenance of chromosomes) protein complexes are an evolutionarily conserved family of motor proteins that hold sister chromatids together and fold genomes throughout the cell cycle by DNA loop extrusion. These complexes play a key role in a variety of functions in the packaging and regulation of chromosomes, and they have been intensely studied in recent years. Despite their importance, the detailed molecular mechanism for DNA loop extrusion by SMC complexes remains unresolved. Here, we describe the roles of SMCs in chromosome biology and particularly review in vitro single-molecule studies that have recently advanced our understanding of SMC proteins. We describe the mechanistic biophysical aspects of loop extrusion that govern genome organization and its consequences.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"15-41"},"PeriodicalIF":16.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9725135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20Epub Date: 2023-03-31DOI: 10.1146/annurev-biochem-052521-040313
Christian Siebold, Rajat Rohatgi
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
{"title":"The Inseparable Relationship Between Cholesterol and Hedgehog Signaling.","authors":"Christian Siebold, Rajat Rohatgi","doi":"10.1146/annurev-biochem-052521-040313","DOIUrl":"10.1146/annurev-biochem-052521-040313","url":null,"abstract":"<p><p>Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"273-298"},"PeriodicalIF":12.1,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.1146/annurev-biochem-052521-033250
Eunhee Choi, Xiao-Chen Bai
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
{"title":"The Activation Mechanism of the Insulin Receptor: A Structural Perspective.","authors":"Eunhee Choi, Xiao-Chen Bai","doi":"10.1146/annurev-biochem-052521-033250","DOIUrl":"https://doi.org/10.1146/annurev-biochem-052521-033250","url":null,"abstract":"<p><p>The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (<i>a</i>) the detailed binding modes and functions of insulin at site 1 and site 2 and (<i>b</i>) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"247-272"},"PeriodicalIF":16.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398885/pdf/nihms-1919378.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9929688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.1146/annurev-biochem-052521-035330
Mathieu N Flamand, Matthew Tegowski, Kate D Meyer
Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.
{"title":"The Proteins of mRNA Modification: Writers, Readers, and Erasers.","authors":"Mathieu N Flamand, Matthew Tegowski, Kate D Meyer","doi":"10.1146/annurev-biochem-052521-035330","DOIUrl":"https://doi.org/10.1146/annurev-biochem-052521-035330","url":null,"abstract":"<p><p>Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, <i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A). We first describe the discovery of the key enzymes that deposit and remove m<sup>6</sup>A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m<sup>6</sup>A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"145-173"},"PeriodicalIF":16.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443600/pdf/nihms-1922506.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.1146/annurev-biochem-071322-021330
Stephanie Vrijsen, Marine Houdou, Ana Cascalho, Jan Eggermont, Peter Vangheluwe
The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.
{"title":"Polyamines in Parkinson's Disease: Balancing Between Neurotoxicity and Neuroprotection.","authors":"Stephanie Vrijsen, Marine Houdou, Ana Cascalho, Jan Eggermont, Peter Vangheluwe","doi":"10.1146/annurev-biochem-071322-021330","DOIUrl":"https://doi.org/10.1146/annurev-biochem-071322-021330","url":null,"abstract":"<p><p>The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"435-464"},"PeriodicalIF":16.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9662523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20Epub Date: 2023-03-31DOI: 10.1146/annurev-biochem-052621-091808
Qiushuang Wu, Ariel A Bazzini
Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.
{"title":"Translation and mRNA Stability Control.","authors":"Qiushuang Wu, Ariel A Bazzini","doi":"10.1146/annurev-biochem-052621-091808","DOIUrl":"10.1146/annurev-biochem-052621-091808","url":null,"abstract":"<p><p>Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis<i>-</i>regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"227-245"},"PeriodicalIF":12.1,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9668847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-21Epub Date: 2022-03-18DOI: 10.1146/annurev-biochem-032620-104508
Kami Ahmad, Steven Henikoff, Srinivas Ramachandran
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
基因调控源于核小体、转录因子和其他染色质蛋白之间为争夺与基因组 DNA 结合的机会而展开的动态竞争。核小体组装和因子与 DNA 结合的时间尺度决定了任何给定基因座上这种竞争的结果。在这里,我们将回顾染色质蛋白的这些特性以及不同因子动态之间的相互作用是如何对基因调控起到关键作用的。我们将讨论大型染色质相关复合物的分子结构、动力学测量以及体内蛋白质-DNA 复合物的高分辨率图谱如何为染色质动力学设定边界条件,从而建立调控因子稳态行为的模型。
{"title":"Managing the Steady State Chromatin Landscape by Nucleosome Dynamics.","authors":"Kami Ahmad, Steven Henikoff, Srinivas Ramachandran","doi":"10.1146/annurev-biochem-032620-104508","DOIUrl":"10.1146/annurev-biochem-032620-104508","url":null,"abstract":"<p><p>Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"91 ","pages":"183-195"},"PeriodicalIF":12.1,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277172/pdf/nihms-1814593.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10019043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-21DOI: 10.1146/annurev-biochem-052521-115653
Zhiyong Lou, Zihe Rao
The persistence of the coronavirus disease 2019 (COVID-19) pandemic has resulted in increasingly disruptive impacts, and it has become the most devastating challenge to global health in a century. The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants challenges the currently available therapeutics for clinical application. Nonstructural proteins (also known as replicase proteins) with versatile biological functions play central roles in viral replication and transcription inside the host cells, and they are the most conserved target proteins among the SARS-CoV-2 variants. Specifically, they constitute the replication-transcription complexes (RTCs) dominating the synthesis of viral RNA. Knowledge of themolecular mechanisms of nonstructural proteins and their assembly into RTCs will benefit the development of antivirals targeting them against existing or potentially emerging variants. In this review, we summarize current knowledge of the structures and functions of coronavirus nonstructural proteins as well as the assembly and functions of RTCs in the life cycle of the virus.
{"title":"The Life of SARS-CoV-2 Inside Cells: Replication-Transcription Complex Assembly and Function.","authors":"Zhiyong Lou, Zihe Rao","doi":"10.1146/annurev-biochem-052521-115653","DOIUrl":"https://doi.org/10.1146/annurev-biochem-052521-115653","url":null,"abstract":"<p><p>The persistence of the coronavirus disease 2019 (COVID-19) pandemic has resulted in increasingly disruptive impacts, and it has become the most devastating challenge to global health in a century. The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants challenges the currently available therapeutics for clinical application. Nonstructural proteins (also known as replicase proteins) with versatile biological functions play central roles in viral replication and transcription inside the host cells, and they are the most conserved target proteins among the SARS-CoV-2 variants. Specifically, they constitute the replication-transcription complexes (RTCs) dominating the synthesis of viral RNA. Knowledge of themolecular mechanisms of nonstructural proteins and their assembly into RTCs will benefit the development of antivirals targeting them against existing or potentially emerging variants. In this review, we summarize current knowledge of the structures and functions of coronavirus nonstructural proteins as well as the assembly and functions of RTCs in the life cycle of the virus.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":"381-401"},"PeriodicalIF":16.6,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40150642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-21DOI: 10.1146/annurev-biochem-040320-105145
Alvin C Y Kuk, Aili Hao, Seok-Yong Lee
Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.
{"title":"Structure and Mechanism of the Lipid Flippase MurJ.","authors":"Alvin C Y Kuk, Aili Hao, Seok-Yong Lee","doi":"10.1146/annurev-biochem-040320-105145","DOIUrl":"https://doi.org/10.1146/annurev-biochem-040320-105145","url":null,"abstract":"<p><p>Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and <i>N</i>-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"91 ","pages":"705-729"},"PeriodicalIF":16.6,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108830/pdf/nihms-1871783.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9701467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-21DOI: 10.1146/annurev-biochem-032620-105157
Nimrod Golan, Yizhaq Engelberg, Meytal Landau
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
{"title":"Structural Mimicry in Microbial and Antimicrobial Amyloids.","authors":"Nimrod Golan, Yizhaq Engelberg, Meytal Landau","doi":"10.1146/annurev-biochem-032620-105157","DOIUrl":"https://doi.org/10.1146/annurev-biochem-032620-105157","url":null,"abstract":"<p><p>The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":"403-422"},"PeriodicalIF":16.6,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40150641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}