首页 > 最新文献

ACS Applied Polymer Materials最新文献

英文 中文
Injectable Hydrogel Delivery System with Nintedanib and Chloroquine Triggers Apoptosis and Inhibits Protective Autophagy 含有奈替达尼(Nintedanib)和氯喹的可注射水凝胶给药系统可触发细胞凋亡并抑制保护性自噬作用
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-15 DOI: 10.1021/acsapm.4c00893
Nannan Liu, Xiao Zhou, Siyao Lu, Guang Luo, Zhongguang Wu, Chuchu Zhang, Jiehan Li, Yingjie Zhang and Lingling Zhang*, 

The hydrogel drug delivery system has demonstrated significant potential in addressing the limitations of chemotherapeutic medicines and tumor-targeted treatment. Nintedanib, an FDA-approved potent triple vascular kinase inhibitor, has exhibited effective antitumor activity in a variety of malignancies, although its underlying mechanism remains elusive. In this investigation, an innovative sustained-release hydrogel delivery system for medication was established using the Michael addition reaction of the polyethylene glycol diacrylate and 4-arm poly(ethylene glycol)-thiol (4 Arm PEG-SH). It was discovered that the nintedanib@PEG hydrogel induced cell apoptosis and inhibited tumor progression. Subsequently, analysis revealed that nintedanib caused apoptosis in colon cancer cells by upregulating PUMA (p53 upregulated modulator of apoptosis) expression while also activating protective autophagy. Mechanistically, nintedanib inhibited Akt/mTOR (mechanistic target of rapamycin kinase) pathway activation, thereby inducing PUMA-dependent apoptosis and triggering protective autophagy. Moreover, the combination of nintedanib and CQ (chloroquine, an autophagy inhibitor) contained in the hydrogel delivery system showed a synergistically antitumor effect both in vitro and in vivo. Consequently, an in situ-targeted, long-term, effective, and safe antitumor strategy using an innovative injectable hydrogel delivery system combined with complementary medication. These findings propose a promising therapeutic approach for clinical patients, particularly in the realm of colon cancer therapy, thereby illuminating potential avenues for further research and clinical application.

水凝胶给药系统在解决化疗药物的局限性和肿瘤靶向治疗方面具有巨大潜力。Nintedanib是美国食品和药物管理局(FDA)批准的一种强效三血管激酶抑制剂,在多种恶性肿瘤中表现出有效的抗肿瘤活性,但其潜在机制仍难以捉摸。在这项研究中,利用聚乙二醇二丙烯酸酯和 4 臂聚乙二醇-硫醇(4 Arm PEG-SH)的迈克尔加成反应,建立了一种创新的药物缓释水凝胶给药系统。研究发现,nintedanib@PEG水凝胶可诱导细胞凋亡,抑制肿瘤进展。随后的分析表明,宁替达尼通过上调PUMA(p53凋亡上调调节因子)的表达,同时激活保护性自噬,从而导致结肠癌细胞凋亡。从机制上讲,宁替尼能抑制雷帕霉素激酶机制靶点(Akt/mTOR)通路的激活,从而诱导 PUMA 依赖性凋亡并引发保护性自噬。此外,水凝胶递送系统中含有的宁替尼和CQ(氯喹,一种自噬抑制剂)的组合在体外和体内都显示出协同抗肿瘤作用。因此,利用创新的可注射水凝胶给药系统结合辅助药物,可以实现原位靶向、长期、有效和安全的抗肿瘤策略。这些发现为临床患者,尤其是结肠癌治疗领域的患者提供了一种前景广阔的治疗方法,从而为进一步的研究和临床应用提供了潜在的途径。
{"title":"Injectable Hydrogel Delivery System with Nintedanib and Chloroquine Triggers Apoptosis and Inhibits Protective Autophagy","authors":"Nannan Liu,&nbsp;Xiao Zhou,&nbsp;Siyao Lu,&nbsp;Guang Luo,&nbsp;Zhongguang Wu,&nbsp;Chuchu Zhang,&nbsp;Jiehan Li,&nbsp;Yingjie Zhang and Lingling Zhang*,&nbsp;","doi":"10.1021/acsapm.4c00893","DOIUrl":"10.1021/acsapm.4c00893","url":null,"abstract":"<p >The hydrogel drug delivery system has demonstrated significant potential in addressing the limitations of chemotherapeutic medicines and tumor-targeted treatment. Nintedanib, an FDA-approved potent triple vascular kinase inhibitor, has exhibited effective antitumor activity in a variety of malignancies, although its underlying mechanism remains elusive. In this investigation, an innovative sustained-release hydrogel delivery system for medication was established using the Michael addition reaction of the polyethylene glycol diacrylate and 4-arm poly(ethylene glycol)-thiol (4 Arm PEG-SH). It was discovered that the nintedanib@PEG hydrogel induced cell apoptosis and inhibited tumor progression. Subsequently, analysis revealed that nintedanib caused apoptosis in colon cancer cells by upregulating PUMA (p53 upregulated modulator of apoptosis) expression while also activating protective autophagy. Mechanistically, nintedanib inhibited Akt/mTOR (mechanistic target of rapamycin kinase) pathway activation, thereby inducing PUMA-dependent apoptosis and triggering protective autophagy. Moreover, the combination of nintedanib and CQ (chloroquine, an autophagy inhibitor) contained in the hydrogel delivery system showed a synergistically antitumor effect both in vitro and in vivo. Consequently, an in situ-targeted, long-term, effective, and safe antitumor strategy using an innovative injectable hydrogel delivery system combined with complementary medication. These findings propose a promising therapeutic approach for clinical patients, particularly in the realm of colon cancer therapy, thereby illuminating potential avenues for further research and clinical application.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Enteromorpha Polysaccharide/Konjac Glucomannan Mulch Films with Biochar as a Fertilizer Carrier 以生物炭为肥料载体的肠藻多糖/魔芋葡甘聚糖地膜研究
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-15 DOI: 10.1021/acsapm.4c00433
Xiang Li, Shujie Wang, Zhonghua Sun*, Minmin Gao, Qing Li and Menghua Qin, 

In order to protect the ecosystem from the impact of plastic film pollution, it is necessary to explore biodegradable materials for producing a plastic film. In this study, mulch film was prepared using biochar as the fertilizer carrier, Enteromorpha polysaccharide (EP), and konjac glucomannan (KGM) as the film’s matrix. The result of Fourier transform infrared (FTIR) showed that the Enteromorpha polysaccharide extracted from Enteromorpha prolifera (E. prolifera) was rich in hydroxyl, carboxyl, and sulfonic groups. The result of FTIR, scanning electron microscopy (SEM), and energy-dispersive spectroscopy of biochar proved that urea was successfully loaded in biochar, and the urea loading capacity of biochar reached 17.8%. The transmittance of EP/KGM/urea-loaded biochar film (urea-BCF) was less than 3%, which meets the requirements of the black mulch film. The degradation rate of the mulch in the soil can reach 68.3% after 80 days of burial, indicating an excellent degradation performance. The SEM results showed that the biochar particles were distributed uniformly in the membrane matrix. In addition, the leaching experiments showed that the release of urea achieved an equilibrium after 20 h, with a cumulative of almost 76.9%. This method not only achieves the high value utilization of E. prolifera but also provides a simple strategy for preparing mulch film.

为了保护生态系统免受塑料薄膜污染的影响,有必要探索可生物降解的材料来生产塑料薄膜。本研究以生物炭为肥料载体,肠藻多糖(EP)和魔芋葡甘露聚糖(KGM)为薄膜基质,制备了地膜。傅立叶变换红外光谱(FTIR)结果表明,从Enteromorpha prolifera(E. prolifera)中提取的Enteromorpha多糖富含羟基、羧基和磺酸基。生物炭的傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和能量色散光谱(Energy-dispersive spectroscopy)结果表明,尿素成功地负载在生物炭中,生物炭的尿素负载能力达到 17.8%。EP/KGM/ 尿素负载生物炭薄膜(urea-BCF)的透光率小于 3%,符合黑色地膜的要求。地膜在土壤中埋藏 80 天后降解率可达 68.3%,降解性能优异。扫描电镜结果表明,生物炭颗粒在膜基质中分布均匀。此外,浸出实验表明,尿素的释放在 20 h 后达到平衡,累积释放量接近 76.9%。该方法不仅实现了 E. prolifera 的高值化利用,还为地膜的制备提供了一种简单的策略。
{"title":"Study on Enteromorpha Polysaccharide/Konjac Glucomannan Mulch Films with Biochar as a Fertilizer Carrier","authors":"Xiang Li,&nbsp;Shujie Wang,&nbsp;Zhonghua Sun*,&nbsp;Minmin Gao,&nbsp;Qing Li and Menghua Qin,&nbsp;","doi":"10.1021/acsapm.4c00433","DOIUrl":"10.1021/acsapm.4c00433","url":null,"abstract":"<p >In order to protect the ecosystem from the impact of plastic film pollution, it is necessary to explore biodegradable materials for producing a plastic film. In this study, mulch film was prepared using biochar as the fertilizer carrier, Enteromorpha polysaccharide (EP), and konjac glucomannan (KGM) as the film’s matrix. The result of Fourier transform infrared (FTIR) showed that the Enteromorpha polysaccharide extracted from <i>Enteromorpha prolifera</i> (<i>E. prolifera</i>) was rich in hydroxyl, carboxyl, and sulfonic groups. The result of FTIR, scanning electron microscopy (SEM), and energy-dispersive spectroscopy of biochar proved that urea was successfully loaded in biochar, and the urea loading capacity of biochar reached 17.8%. The transmittance of EP/KGM/urea-loaded biochar film (urea-BCF) was less than 3%, which meets the requirements of the black mulch film. The degradation rate of the mulch in the soil can reach 68.3% after 80 days of burial, indicating an excellent degradation performance. The SEM results showed that the biochar particles were distributed uniformly in the membrane matrix. In addition, the leaching experiments showed that the release of urea achieved an equilibrium after 20 h, with a cumulative of almost 76.9%. This method not only achieves the high value utilization of <i>E. prolifera</i> but also provides a simple strategy for preparing mulch film.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperbranched, Functional Polyethoxysiloxanes: Tunable Molecular Building Blocks 超支化、功能性聚乙氧基硅氧烷:可调节的分子构件
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00758
Marek Nemec, Stefanie B. Hauser, Daniel Rentsch, Gabriel M. Pagotti João, Lilli C. Kuerten, Nour Adilien, Lukas Huber, Ana Stojanovic, Wim J. Malfait* and Matthias M. Koebel*, 

Functional silanes are multifaceted cross-linkers, compatibilizers, coupling agents, and surface modifiers. Herein, we present organofunctional polysiloxane building blocks that offer great versatility in terms of molecular weight, degree of condensation, and the choice and loading of organic substituent groups. The organofunctional polyethoxysilanes (funPEOS) are prepared in a one-pot, two-step process: synthesis of the PEOS carrier/substrate, followed by grafting a functional silane “shell”, both based on condensation with acetic anhydride. The reaction was optimized at the lab scale and scaled up to a 7 L reactor. The acetylation, condensation, and hyperbranched structure of the carrier were confirmed by 29Si NMR, while 29Si–29Si 2D INADEQUATE NMR provides strong evidence for the grafting of functional silanes onto the carrier (Q–T coupling). IR, 1H, and 13C NMR spectroscopy demonstrate that the functional groups remain intact. The molar mass can be tailored by stoichiometric control of the acetic anhydride to silane monomer ratio (Mn 3500–20,000 g/mol). The compounds are stable organic liquids with a long shelf life. Selected applications are presented: scratch-resistant coatings with water contact angles of ∼90°, stable water emulsions, and surfactant-free, mesoporous silica foams.

功能硅烷是一种多用途交联剂、相容剂、偶联剂和表面改性剂。在此,我们介绍了有机官能团聚硅氧烷结构单元,它们在分子量、缩合程度以及有机取代基的选择和负载方面具有极大的通用性。有机功能聚乙氧基硅烷(funPEOS)的制备采用一锅两步法:合成 PEOS 载体/基底,然后接枝功能硅烷 "外壳"。该反应在实验室规模上进行了优化,并扩大到 7 升反应器。29Si NMR 证实了载体的乙酰化、缩合和超支化结构,而 29Si-29Si 二维无损 NMR 则提供了功能硅烷接枝到载体上(Q-T 耦合)的有力证据。红外光谱、1H 光谱和 13C NMR 光谱证明功能基团保持完整。摩尔质量可通过对醋酸酐与硅烷单体比例(锰 3500-20,000 克/摩尔)的化学计量控制进行调节。这种化合物是稳定的有机液体,保质期长。本文介绍了部分应用:水接触角为 ∼ 90°的抗划伤涂层、稳定的水乳剂以及无表面活性剂的介孔二氧化硅泡沫。
{"title":"Hyperbranched, Functional Polyethoxysiloxanes: Tunable Molecular Building Blocks","authors":"Marek Nemec,&nbsp;Stefanie B. Hauser,&nbsp;Daniel Rentsch,&nbsp;Gabriel M. Pagotti João,&nbsp;Lilli C. Kuerten,&nbsp;Nour Adilien,&nbsp;Lukas Huber,&nbsp;Ana Stojanovic,&nbsp;Wim J. Malfait* and Matthias M. Koebel*,&nbsp;","doi":"10.1021/acsapm.4c00758","DOIUrl":"10.1021/acsapm.4c00758","url":null,"abstract":"<p >Functional silanes are multifaceted cross-linkers, compatibilizers, coupling agents, and surface modifiers. Herein, we present organofunctional polysiloxane building blocks that offer great versatility in terms of molecular weight, degree of condensation, and the choice and loading of organic substituent groups. The organofunctional polyethoxysilanes (funPEOS) are prepared in a one-pot, two-step process: synthesis of the PEOS carrier/substrate, followed by grafting a functional silane “shell”, both based on condensation with acetic anhydride. The reaction was optimized at the lab scale and scaled up to a 7 L reactor. The acetylation, condensation, and hyperbranched structure of the carrier were confirmed by <sup>29</sup>Si NMR, while <sup>29</sup>Si–<sup>29</sup>Si 2D INADEQUATE NMR provides strong evidence for the grafting of functional silanes onto the carrier (Q–T coupling). IR, <sup>1</sup>H, and <sup>13</sup>C NMR spectroscopy demonstrate that the functional groups remain intact. The molar mass can be tailored by stoichiometric control of the acetic anhydride to silane monomer ratio (<i>M</i><sub><i>n</i></sub> 3500–20,000 g/mol). The compounds are stable organic liquids with a long shelf life. Selected applications are presented: scratch-resistant coatings with water contact angles of ∼90°, stable water emulsions, and surfactant-free, mesoporous silica foams.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsapm.4c00758","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141344281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Flame Retardancy and Mechanical Properties of Polylactic Acid Composites with Phytate-Chelated Nanotitanium Dioxide-Modified Bagasse Cellulose 植酸螯合二氧化钛纳米改性蔗渣纤维素增强聚乳酸复合材料的阻燃性和机械性能
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00340
Dacheng Li, Liangdong Ye, Hongbo Liu, Dongming Chen, Qiaoyan Wei, Xianhui Zhang, Ziwei Li* and Shaorong Lu*, 

Despite the potential of polylactic acid (PLA) as a biodegradable polymer, widespread applications have been limited by its inherent flammability and brittleness. To overcome these issues, PLA was combined with a composite-reinforced flame-retardant filler (A-MBC/PA/A-TiO2) consisting of γ-aminopropyl triethoxysilane (APTES)-grafted microcrystalline bagasse cellulose (A-MBC), phytic acid (PA), and APTES-silylated titanium dioxide nanoparticles (A-TiO2). When 10 wt % A-MBC/PA/A-TiO2 was incorporated, the tensile and impact strengths of the PLA composite increased by 15 and 22%, respectively, relative to those of pristine PLA. The addition of 10 wt % A-MBC/PA/A-TiO2 resulted in PLA composites with a UL-94 V-0 rating and a high limiting oxygen index of 29% owing to a synergistic flame-retardant mechanism in the gas and condensed phases. The presence of A-MBC/PA/A-TiO2 contributed to the formation of a solid carbon layer containing P and Ti in the condensed phase as well as the release of PO· free radicals and N-containing noncombustible gases in the gas phase, which reduced the flammable gas and oxygen concentrations, thus providing a synergistic flame-retardant effect. In addition, molecular dynamics simulations of the PLA/(A-MBC/PA/A-TiO2) composite system were performed. The numerical and analytical results showed that A-MBC and A-TiO2 in the filler interacted strongly with the PLA matrix, which was beneficial for distributing the flame retardant in PLA and improving its mechanical and flame-retardant properties. This work demonstrates a strategy for simultaneously improving the flame retardancy and mechanical properties of PLA composites using a biobased composite flame retardant.

尽管聚乳酸(PLA)作为一种可生物降解的聚合物潜力巨大,但其固有的易燃性和脆性限制了其广泛应用。为了克服这些问题,我们将聚乳酸与由γ-氨基丙基三乙氧基硅烷(APTES)接枝的微晶甘蔗渣纤维素(A-MPC)、植酸(PA)和APTES硅烷化二氧化钛纳米颗粒(A-TiO2)组成的复合增强阻燃填料(A-MPC/PA/A-TiO2)结合在一起。当加入 10 wt % 的 A-MBC/PA/A-TiO2 时,聚乳酸复合材料的拉伸强度和冲击强度比原始聚乳酸分别提高了 15% 和 22%。加入 10 wt % A-MBC/PA/A-TiO2 后,由于气相和凝结相中的协同阻燃机制,聚乳酸复合材料达到了 UL-94 V-0 级,极限氧指数高达 29%。A-MBC/PA/A-TiO2 的存在有助于在凝聚相中形成含 P 和 Ti 的固态碳层,并在气相中释放出 PO 自由基和含 N 的不可燃气体,从而降低了可燃气体和氧气的浓度,因此产生了协同阻燃效果。此外,还对聚乳酸/(A-MBC/PA/A-TiO2)复合体系进行了分子动力学模拟。数值和分析结果表明,填料中的 A-MBC 和 A-TiO2 与聚乳酸基体相互作用强烈,有利于阻燃剂在聚乳酸中的分布,并改善其机械和阻燃性能。这项工作展示了一种利用生物基复合阻燃剂同时提高聚乳酸复合材料阻燃性和机械性能的策略。
{"title":"Enhanced Flame Retardancy and Mechanical Properties of Polylactic Acid Composites with Phytate-Chelated Nanotitanium Dioxide-Modified Bagasse Cellulose","authors":"Dacheng Li,&nbsp;Liangdong Ye,&nbsp;Hongbo Liu,&nbsp;Dongming Chen,&nbsp;Qiaoyan Wei,&nbsp;Xianhui Zhang,&nbsp;Ziwei Li* and Shaorong Lu*,&nbsp;","doi":"10.1021/acsapm.4c00340","DOIUrl":"10.1021/acsapm.4c00340","url":null,"abstract":"<p >Despite the potential of polylactic acid (PLA) as a biodegradable polymer, widespread applications have been limited by its inherent flammability and brittleness. To overcome these issues, PLA was combined with a composite-reinforced flame-retardant filler (A-MBC/PA/A-TiO<sub>2</sub>) consisting of γ-aminopropyl triethoxysilane (APTES)-grafted microcrystalline bagasse cellulose (A-MBC), phytic acid (PA), and APTES-silylated titanium dioxide nanoparticles (A-TiO<sub>2</sub>). When 10 wt % A-MBC/PA/A-TiO<sub>2</sub> was incorporated, the tensile and impact strengths of the PLA composite increased by 15 and 22%, respectively, relative to those of pristine PLA. The addition of 10 wt % A-MBC/PA/A-TiO<sub>2</sub> resulted in PLA composites with a UL-94 V-0 rating and a high limiting oxygen index of 29% owing to a synergistic flame-retardant mechanism in the gas and condensed phases. The presence of A-MBC/PA/A-TiO<sub>2</sub> contributed to the formation of a solid carbon layer containing P and Ti in the condensed phase as well as the release of PO· free radicals and N-containing noncombustible gases in the gas phase, which reduced the flammable gas and oxygen concentrations, thus providing a synergistic flame-retardant effect. In addition, molecular dynamics simulations of the PLA/(A-MBC/PA/A-TiO<sub>2</sub>) composite system were performed. The numerical and analytical results showed that A-MBC and A-TiO<sub>2</sub> in the filler interacted strongly with the PLA matrix, which was beneficial for distributing the flame retardant in PLA and improving its mechanical and flame-retardant properties. This work demonstrates a strategy for simultaneously improving the flame retardancy and mechanical properties of PLA composites using a biobased composite flame retardant.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141338395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triglyceride-Targeted Molecularly Imprinted Polymers Activate Lipophagy via Cargo Exchange for Nonalcoholic Fatty Liver Disease Treatment 甘油三酯靶向分子印迹聚合物通过货物交换激活脂吞噬,治疗非酒精性脂肪肝
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c01222
Yilin Wen, Ping Weng, Yueyue Li, Liming Yang, Chengju Li, Qingyang Chen, Yanni He, Wanping Zhang, Hui Hu, Zhiyi Yuan* and Chao Yu*, 

Lipid accumulation is a prominent pathologic feature of nonalcoholic fatty liver disease (NAFLD), which is due to imbalances in triglycerides metabolism. However, none of the available therapeutic strategies have been able to achieve the effective removal of triglycerides from the lesion site. Herein, MIP@QUE, a mimetic transporter with a high affinity for triglycerides, was synthesized using molecular imprinting. The physicochemical features of MIP@QUE are such that it binds to triglycerides and releases the drug in an affinity-driven reaction. In vivo and in vitro experiments showed that the metabolism of triglycerides was promoted by dual activation of the autophagy-lysosomal pathway through the size effect of the molecularly imprinted polymer (MIP) and the pharmacological action of quercetin (QUE). Moreover, MIP@QUE not only reduced triglyceride accumulation to reverse hepatic steatosis but also effectively lowered the level of oxidative stress to reduce hepatocellular damage. Targeting the key causative factors of NAFLD, MIP@QUE offers an effective therapeutic strategy to control the disease process by promoting the lysosomal transport and metabolism of triglycerides in hepatocytes; it also serves as a platform for the treatment of triglyceride-related metabolic syndrome.

脂质蓄积是非酒精性脂肪肝的一个突出病理特征,而非酒精性脂肪肝是甘油三酯代谢失衡所致。然而,现有的治疗策略都无法有效清除病变部位的甘油三酯。在此,我们利用分子印迹技术合成了对甘油三酯具有高亲和力的模拟转运体MIP@QUE。MIP@QUE 的理化特性使其能与甘油三酯结合,并在亲和力驱动的反应中释放药物。体内和体外实验表明,通过分子印迹聚合物(MIP)的尺寸效应和槲皮素(QUE)的药理作用,自噬-溶酶体途径被双重激活,从而促进了甘油三酯的代谢。此外,MIP@QUE 不仅能减少甘油三酯的积累,从而逆转肝脏脂肪变性,还能有效降低氧化应激水平,减轻肝细胞损伤。针对非酒精性脂肪肝的关键致病因素,MIP@QUE 通过促进肝细胞内甘油三酯的溶酶体转运和代谢,为控制疾病进程提供了一种有效的治疗策略;它也是治疗与甘油三酯相关的代谢综合征的一个平台。
{"title":"Triglyceride-Targeted Molecularly Imprinted Polymers Activate Lipophagy via Cargo Exchange for Nonalcoholic Fatty Liver Disease Treatment","authors":"Yilin Wen,&nbsp;Ping Weng,&nbsp;Yueyue Li,&nbsp;Liming Yang,&nbsp;Chengju Li,&nbsp;Qingyang Chen,&nbsp;Yanni He,&nbsp;Wanping Zhang,&nbsp;Hui Hu,&nbsp;Zhiyi Yuan* and Chao Yu*,&nbsp;","doi":"10.1021/acsapm.4c01222","DOIUrl":"10.1021/acsapm.4c01222","url":null,"abstract":"<p >Lipid accumulation is a prominent pathologic feature of nonalcoholic fatty liver disease (NAFLD), which is due to imbalances in triglycerides metabolism. However, none of the available therapeutic strategies have been able to achieve the effective removal of triglycerides from the lesion site. Herein, MIP@QUE, a mimetic transporter with a high affinity for triglycerides, was synthesized using molecular imprinting. The physicochemical features of MIP@QUE are such that it binds to triglycerides and releases the drug in an affinity-driven reaction. <i>In vivo</i> and <i>in vitro</i> experiments showed that the metabolism of triglycerides was promoted by dual activation of the autophagy-lysosomal pathway through the size effect of the molecularly imprinted polymer (MIP) and the pharmacological action of quercetin (QUE). Moreover, MIP@QUE not only reduced triglyceride accumulation to reverse hepatic steatosis but also effectively lowered the level of oxidative stress to reduce hepatocellular damage. Targeting the key causative factors of NAFLD, MIP@QUE offers an effective therapeutic strategy to control the disease process by promoting the lysosomal transport and metabolism of triglycerides in hepatocytes; it also serves as a platform for the treatment of triglyceride-related metabolic syndrome.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141338304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Nucleation Ability and Intermolecular Interactions Mechanism in Fluoropolyolefins 氟聚烯烃的自成核能力和分子间相互作用机理
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00860
Yi Li, Siyang Wang, Tianyu Wu*, Xiaoyu Meng and Hai-Mu Ye*, 

Self-nucleation behavior is a critical phenomenon in polymer crystallization, and the impact of the chemical structure on this behavior has been extensively investigated. However, the underlying mechanism has not been fully elucidated. In this study, the self-nucleation behavior of a series of polyolefins with varying degrees of fluorine substitutions is comprehensively surveyed. Incorporation of fluorine atoms, which increase the polarity of polyolefin chains, considerably improves the self-nucleation ability, resulting in an apparent expansion of the temperature widths of Domain II for poly(vinyl fluoride) and poly(vinylidene fluoride) in comparison with polyethylene. However, further fluorine substitution diminishes the self-nucleation ability of fluoropolyolefins. Then, the correlation between the self-nucleation ability and dielectric constant is studied. It is found that the width of Domain IIb increases monotonously with respect to dielectric constant, expect for poly(vinylidene fluoride) which exhibits a slightly narrow Domain IIb than poly(vinyl fluoride). However, a rather wide Domain IIa appears in poly(vinylidene fluoride). Based on the intermolecular interactions, a correlation between the width of Domain II and the dielectric constant is reasonably established. Further, Fourier transformation infrared spectroscopy directly reveals that the hydrogen-bonding interactions between C–F and C–H are the essential reason for the self-nucleation behavior of fluoropolyolefins. However, in combination with the intriguing disappearance of self-nucleation behavior for the ethylene–tetrafluoroethylene alternating copolymer, the isomer of poly(vinylidene fluoride), and ethylene–chlorotrifluoroethylene alternating copolymer, it is unveiled that the possible scattering, isolated F···H–C hydrogen bonds in fluoropolyolefin are not a sufficient condition for endowing self-nucleation behavior. Thus, an interacting mechanism of long-range continuous structure of hydrogen bond is speculated for the display of the self-nucleation ability of fluoropolyolefins. This work deepens the understanding of self-nucleation crystallization in fluoropolyolefins and provides guidance for the melt processing.

自核行为是聚合物结晶中的一个关键现象,化学结构对这种行为的影响已得到广泛研究。然而,其内在机理尚未完全阐明。本研究全面考察了一系列氟取代程度不同的聚烯烃的自核行为。氟原子的加入增加了聚烯烃链的极性,从而大大提高了自核能力,与聚乙烯相比,聚(氟乙烯)和聚(偏氟乙烯)的域 II 温度宽度明显扩大。然而,氟的进一步取代会降低含氟聚烯烃的自成核能力。然后,研究了自核能力与介电常数之间的相关性。研究发现,畴 IIb 的宽度随介电常数的增加而单调增加,但聚(偏氟乙烯)的畴 IIb 比聚(氟乙烯)略窄。然而,在聚(偏氟乙烯)中却出现了相当宽的领域 IIa。根据分子间的相互作用,可以合理地确定域 II 宽度与介电常数之间的相关性。此外,傅立叶变换红外光谱直接揭示了 C-F 和 C-H 之间的氢键相互作用是氟聚烯烃自核行为的根本原因。然而,结合乙烯-四氟乙烯交替共聚物、聚偏氟乙烯异构体和乙烯-氯三氟乙烯交替共聚物自核行为消失的现象,揭示了氟聚烯烃中可能存在的散射、孤立的 F-H-C 氢键并不是赋予自核行为的充分条件。因此,推测氢键长程连续结构的相互作用机制是氟聚烯烃显示自核能力的关键。这项工作加深了人们对氟聚烯烃自核结晶的理解,为熔融加工提供了指导。
{"title":"Self-Nucleation Ability and Intermolecular Interactions Mechanism in Fluoropolyolefins","authors":"Yi Li,&nbsp;Siyang Wang,&nbsp;Tianyu Wu*,&nbsp;Xiaoyu Meng and Hai-Mu Ye*,&nbsp;","doi":"10.1021/acsapm.4c00860","DOIUrl":"10.1021/acsapm.4c00860","url":null,"abstract":"<p >Self-nucleation behavior is a critical phenomenon in polymer crystallization, and the impact of the chemical structure on this behavior has been extensively investigated. However, the underlying mechanism has not been fully elucidated. In this study, the self-nucleation behavior of a series of polyolefins with varying degrees of fluorine substitutions is comprehensively surveyed. Incorporation of fluorine atoms, which increase the polarity of polyolefin chains, considerably improves the self-nucleation ability, resulting in an apparent expansion of the temperature widths of Domain II for poly(vinyl fluoride) and poly(vinylidene fluoride) in comparison with polyethylene. However, further fluorine substitution diminishes the self-nucleation ability of fluoropolyolefins. Then, the correlation between the self-nucleation ability and dielectric constant is studied. It is found that the width of Domain IIb increases monotonously with respect to dielectric constant, expect for poly(vinylidene fluoride) which exhibits a slightly narrow Domain IIb than poly(vinyl fluoride). However, a rather wide Domain IIa appears in poly(vinylidene fluoride). Based on the intermolecular interactions, a correlation between the width of Domain II and the dielectric constant is reasonably established. Further, Fourier transformation infrared spectroscopy directly reveals that the hydrogen-bonding interactions between C–F and C–H are the essential reason for the self-nucleation behavior of fluoropolyolefins. However, in combination with the intriguing disappearance of self-nucleation behavior for the ethylene–tetrafluoroethylene alternating copolymer, the isomer of poly(vinylidene fluoride), and ethylene–chlorotrifluoroethylene alternating copolymer, it is unveiled that the possible scattering, isolated F···H–C hydrogen bonds in fluoropolyolefin are not a sufficient condition for endowing self-nucleation behavior. Thus, an interacting mechanism of long-range continuous structure of hydrogen bond is speculated for the display of the self-nucleation ability of fluoropolyolefins. This work deepens the understanding of self-nucleation crystallization in fluoropolyolefins and provides guidance for the melt processing.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141344579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Interface Bonding of Segregated Conductive Elastomeric Foams by Dynamic Cross-Linking Reshuffling: Toward Highly Sensitive Piezoresistive Sensors 通过动态交联重洗牌增强分隔导电弹性泡沫的界面粘合:开发高灵敏度压阻传感器
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c01083
Lihong Geng, Yufeng Liu, Pinchuan Ma, Jianming Wu, Xin Chen, Chunlin Deng* and Xiangfang Peng*, 

Conductive polymer composites with a segregated structure have been developed for flexible piezoresistive sensors, but segregated composites usually suffer from the problem of poor interfacial bonding. In this work, ethylene-vinyl acetate copolymer (EVA)/carbon nanotube (CNT)/hydroxylated carbon nanotube (CNT-OH) composites with segregated structures were prepared by ball-milled coating and the following hot-press molding, in which dynamic boron-centered three-dimensional cross-linking networks were constructed in EVA granules. The interfacial bonding was significantly improved by molecular bridges at the interface based on thermo-activated transesterification between CNT-OH and EVA vitrimer granules. As a result, the composites with the ratio of CNT to CNT-OH of 3:1 showed a superior elongation-at-break of 563.69%, strength of 12.6 MPa, and conductivity of 13.6 S/m. Furthermore, a 3D porous structure was constructed in the EVA composites by supercritical carbon dioxide foaming. Benefiting from the segregated conductive structure and strong interfacial bonding, the segregated conductive EVA foams exhibited an excellent piezoresistive sensing sensitivity with a GF of −23.6 and compression stability. It provided an approach for interface strengthening of segregated conductive polymer composites, and the resulting conductive foams exhibited great potential for the application as a flexible piezoresistive sensor.

目前已开发出具有离析结构的导电聚合物复合材料,可用于柔性压阻传感器,但离析复合材料通常存在界面结合力差的问题。本研究通过球磨涂覆和热压成型制备了具有离析结构的乙烯-醋酸乙烯共聚物(EVA)/碳纳米管(CNT)/羟基碳纳米管(CNT-OH)复合材料,在 EVA 颗粒中构建了以硼为中心的动态三维交联网络。基于 CNT-OH 和 EVA 维聚物颗粒之间热激活的酯交换反应,界面上的分子桥显著改善了界面粘合。结果,CNT 与 CNT-OH 的比例为 3:1,复合材料的断裂伸长率达到 563.69%,强度达到 12.6 兆帕,导电率达到 13.6 S/m。此外,还通过超临界二氧化碳发泡在 EVA 复合材料中构建了三维多孔结构。得益于离析导电结构和强大的界面结合力,离析导电 EVA 泡沫表现出卓越的压阻传感灵敏度(GF 为 -23.6)和压缩稳定性。该研究为离析导电聚合物复合材料的界面强化提供了一种方法,所制备的导电泡沫在用作柔性压阻传感器方面具有巨大潜力。
{"title":"Enhanced Interface Bonding of Segregated Conductive Elastomeric Foams by Dynamic Cross-Linking Reshuffling: Toward Highly Sensitive Piezoresistive Sensors","authors":"Lihong Geng,&nbsp;Yufeng Liu,&nbsp;Pinchuan Ma,&nbsp;Jianming Wu,&nbsp;Xin Chen,&nbsp;Chunlin Deng* and Xiangfang Peng*,&nbsp;","doi":"10.1021/acsapm.4c01083","DOIUrl":"10.1021/acsapm.4c01083","url":null,"abstract":"<p >Conductive polymer composites with a segregated structure have been developed for flexible piezoresistive sensors, but segregated composites usually suffer from the problem of poor interfacial bonding. In this work, ethylene-vinyl acetate copolymer (EVA)/carbon nanotube (CNT)/hydroxylated carbon nanotube (CNT-OH) composites with segregated structures were prepared by ball-milled coating and the following hot-press molding, in which dynamic boron-centered three-dimensional cross-linking networks were constructed in EVA granules. The interfacial bonding was significantly improved by molecular bridges at the interface based on thermo-activated transesterification between CNT-OH and EVA vitrimer granules. As a result, the composites with the ratio of CNT to CNT-OH of 3:1 showed a superior elongation-at-break of 563.69%, strength of 12.6 MPa, and conductivity of 13.6 S/m. Furthermore, a 3D porous structure was constructed in the EVA composites by supercritical carbon dioxide foaming. Benefiting from the segregated conductive structure and strong interfacial bonding, the segregated conductive EVA foams exhibited an excellent piezoresistive sensing sensitivity with a GF of −23.6 and compression stability. It provided an approach for interface strengthening of segregated conductive polymer composites, and the resulting conductive foams exhibited great potential for the application as a flexible piezoresistive sensor.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141344948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Receptor-Free AIEE-Conjugated Polymer Nanoparticle-Based PoC Device for Amplified Detection of Pendimethalin 基于无受体 AIEE 共轭聚合物纳米粒子的 PoC 器件,用于放大检测苯噻草胺
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00546
Moirangthem Anita Chanu, Laxmi Raman Adil and Parameswar Krishnan Iyer*, 

Pendimethalin (PDM) is a chemically synthesized herbicide and is primarily employed to control broadleaf weeds and woody plants. It enters our environment from production industries and from human activity in farming. Pendimethalin residues in edible foodstuffs and water sources are a serious worldwide problem as they are linked to various health issues. As such, there is an urgent need for the construction of a portable point-of-care (PoC) testing device for the detection of pendimethalin residues from food and vegetables before being consumed. Considering this challenge, an aggregation-induced enhance emission (AIEE) polymer PF2CN is developed by modifying the conjugated backbone of polyfluorene-based polymer PFP. The insertion of an M2CN monomer into the conjugated backbone of PF2CN plays a key role in tuning the photophysical property of the PF2CN polymer where it shows AIEE activity with red-shifted emission. Further, the PF2CN polymer shows remarkable sensitivity and selectivity toward PDM with a limit of detection (LOD) of 2.8 nM, which is much less than the standard maximum residual limits for pesticides in food. Notably, the simultaneous occurrence of PET and FRET serves as a “receptor-free” selective sensor for PDM. Furthermore, the designed PF2CN conjugated polymer-based PDM detection process is miniaturized into a prototype smartphone device, thereby providing a rapid and practical solution for on-site toxic analyte detection, thereby providing higher environmental safety and protection.

嘧草环胺(PDM)是一种化学合成除草剂,主要用于控制阔叶杂草和木本植物。它从生产工业和人类耕作活动中进入我们的环境。可食用食品和水源中的苯噻草胺残留物是一个严重的世界性问题,因为它们与各种健康问题有关。因此,迫切需要建造一种便携式护理点(PoC)检测设备,用于在食用前检测食品和蔬菜中的戊唑醇残留。考虑到这一挑战,我们通过修改聚芴基聚合物 PFP 的共轭骨架,开发出一种聚集诱导增强发射(AIEE)聚合物 PF2CN。在 PF2CN 的共轭骨架中插入 M2CN 单体对调整 PF2CN 聚合物的光物理特性起着关键作用,在这种聚合物中,M2CN 具有红移发射的 AIEE 活性。此外,PF2CN 聚合物对 PDM 具有显著的灵敏度和选择性,其检测限(LOD)为 2.8 nM,远低于食品中农药的标准最大残留限。值得注意的是,PET 和 FRET 的同时出现可作为 PDM 的 "无受体 "选择性传感器。此外,所设计的基于 PF2CN 共轭聚合物的 PDM 检测过程被微型化为一种原型智能手机设备,从而为现场有毒分析物检测提供了一种快速实用的解决方案,从而提供了更高的环境安全和保护。
{"title":"Receptor-Free AIEE-Conjugated Polymer Nanoparticle-Based PoC Device for Amplified Detection of Pendimethalin","authors":"Moirangthem Anita Chanu,&nbsp;Laxmi Raman Adil and Parameswar Krishnan Iyer*,&nbsp;","doi":"10.1021/acsapm.4c00546","DOIUrl":"10.1021/acsapm.4c00546","url":null,"abstract":"<p >Pendimethalin (PDM) is a chemically synthesized herbicide and is primarily employed to control broadleaf weeds and woody plants. It enters our environment from production industries and from human activity in farming. Pendimethalin residues in edible foodstuffs and water sources are a serious worldwide problem as they are linked to various health issues. As such, there is an urgent need for the construction of a portable point-of-care (PoC) testing device for the detection of pendimethalin residues from food and vegetables before being consumed. Considering this challenge, an aggregation-induced enhance emission (AIEE) polymer PF2CN is developed by modifying the conjugated backbone of polyfluorene-based polymer PFP. The insertion of an M2CN monomer into the conjugated backbone of PF2CN plays a key role in tuning the photophysical property of the PF2CN polymer where it shows AIEE activity with red-shifted emission. Further, the PF2CN polymer shows remarkable sensitivity and selectivity toward PDM with a limit of detection (LOD) of 2.8 nM, which is much less than the standard maximum residual limits for pesticides in food. Notably, the simultaneous occurrence of PET and FRET serves as a “receptor-free” selective sensor for PDM. Furthermore, the designed PF2CN conjugated polymer-based PDM detection process is miniaturized into a prototype smartphone device, thereby providing a rapid and practical solution for on-site toxic analyte detection, thereby providing higher environmental safety and protection.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Properties of 3D-Printable Polyelectrolyte Photopolymer Complexes with Reactive Diluents 用反应性稀释剂定制可三维打印的聚电解质光聚合物复合物的特性
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00441
Thomas J. Kolibaba*, Benjamin W. Caplins, Callie I. Higgins, Elisabeth Mansfield, Samantha L. Miller, Caleb Chandler and Jason P. Killgore*, 

Polyelectrolyte complexes (PECs) have wide ranging applications spanning medicine, fire safety, and electronic materials. For years, PECs presented processing challenges owing to their ionic bonds, which limited them to use as coatings. Chemistry was recently developed to additively manufacture PECs of polyethylenimine and poly(methacrylic acid) through vat photopolymerization, but the use of solvent compromised the mechanical properties and vat stability of the parts. Here, two reactive diluents, hydroxyethyl methacrylate and dimethyl acrylamide, are substituted for the solvent used in prior work on printable PEC resins. Parts printed with these reactive diluents have nearly identical processing parameters but exhibit significantly increased storage modulus, especially at elevated temperatures, when compared to that of the control resin. Thermally driven amidization of the carboxylate and ammonium groups yields further control over the properties of the parts. The combination of spatial, thermomechanical, and hydrophilic control promises to dramatically expand the application space of polyelectrolyte materials.

聚电解质复合物(PECs)的应用范围十分广泛,包括医药、消防安全和电子材料。多年来,聚电解质复合物因其离子键而面临加工难题,这限制了它们用作涂层。最近,人们开发出了通过槽式光聚合法添加式制造聚乙烯亚胺和聚(甲基丙烯酸)PEC 的化学方法,但溶剂的使用损害了部件的机械性能和槽式稳定性。在这里,两种反应性稀释剂(甲基丙烯酸羟乙酯和丙烯酰胺二甲酯)取代了之前在可印刷 PEC 树脂研究中使用的溶剂。使用这些反应性稀释剂打印的部件具有几乎相同的加工参数,但与对照树脂相比,存储模量显著增加,尤其是在高温条件下。羧酸基和铵基的热驱动酰胺化可以进一步控制部件的性能。空间、热力学和亲水性控制的结合有望极大地拓展聚电解质材料的应用空间。
{"title":"Tailoring Properties of 3D-Printable Polyelectrolyte Photopolymer Complexes with Reactive Diluents","authors":"Thomas J. Kolibaba*,&nbsp;Benjamin W. Caplins,&nbsp;Callie I. Higgins,&nbsp;Elisabeth Mansfield,&nbsp;Samantha L. Miller,&nbsp;Caleb Chandler and Jason P. Killgore*,&nbsp;","doi":"10.1021/acsapm.4c00441","DOIUrl":"10.1021/acsapm.4c00441","url":null,"abstract":"<p >Polyelectrolyte complexes (PECs) have wide ranging applications spanning medicine, fire safety, and electronic materials. For years, PECs presented processing challenges owing to their ionic bonds, which limited them to use as coatings. Chemistry was recently developed to additively manufacture PECs of polyethylenimine and poly(methacrylic acid) through vat photopolymerization, but the use of solvent compromised the mechanical properties and vat stability of the parts. Here, two reactive diluents, hydroxyethyl methacrylate and dimethyl acrylamide, are substituted for the solvent used in prior work on printable PEC resins. Parts printed with these reactive diluents have nearly identical processing parameters but exhibit significantly increased storage modulus, especially at elevated temperatures, when compared to that of the control resin. Thermally driven amidization of the carboxylate and ammonium groups yields further control over the properties of the parts. The combination of spatial, thermomechanical, and hydrophilic control promises to dramatically expand the application space of polyelectrolyte materials.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141338795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microcrystalline Cellulose from Aloe Plant Waste as a Platform for Green Materials: Preparation, Chemical Functionalization, and Application in 3D Printing 从芦荟植物废料中提取微晶纤维素作为绿色材料平台:制备、化学功能化及在 3D 打印中的应用
IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1021/acsapm.4c00409
Maria Chiara Cabua, Maria Vittoria Piras, Debora Dessi, Giorgia Sarais, Francesco Corrias, Michael Zanon, Keivan Guido Kahnamoei, Alberto Martis, Guido Ennas, Ignazio Roppolo, Candido Fabrizio Pirri, Alessandra Cabizza, Annalisa Chiappone and Francesco Secci*, 

Aloe represents a valuable resource for the Mediterranean economy; the pharmaceutical and nutraceutical industries exploit the Aloe gel for several applications, but about 45 wt % of the Aloe plant, i.e., the leaf peel, is waste. This waste is usually disposed off in a landfill or used as a fertilizer. The possibility to give added value and a second life to the portions of Aloe Vera waste will help this growing market enter a circular economy perspective. In this work, waste collected from the local Sardinian cultivation of Aloe Vera was employed to prepare microcrystalline cellulose (MCC). Cellulose was purified from anthraquinones, lignin, and hemicellulose through hydrolytic procedures using eco-friendly solvents. Anthraquinone biocomponents, as well as lignin and hemicellulose, were quantified and intended for other valorization processes. At the same time, the cellulose fraction was further converted into MCC and characterized by NMR and infrared spectroscopy and X-ray analyses. TGA-IR and SEM microscopy analyses were performed to investigate the structural changes of MCC during the extraction and postfunctionalization processes. MCC derivatives were finally used as cross-linkers in the photopolymerization and light-induced 3D printing (VAT printing) of acrylic monomers and hydrogels.

芦荟是地中海经济的宝贵资源;制药和保健品行业将芦荟凝胶用于多种用途,但芦荟植物的约 45 重量%(即叶片果皮)是废物。这些废物通常被填埋或用作肥料。为芦荟废料赋予附加值和第二次生命的可能性将有助于这一不断增长的市场进入循环经济视角。在这项工作中,从撒丁岛当地芦荟种植中收集的废弃物被用来制备微晶纤维素(MCC)。通过使用环保溶剂进行水解,从蒽醌、木质素和半纤维素中提纯出纤维素。对蒽醌类生物成分以及木质素和半纤维素进行了量化,并准备用于其他价值化过程。同时,纤维素部分被进一步转化为 MCC,并通过核磁共振、红外光谱和 X 射线分析进行表征。为了研究 MCC 在提取和后功能化过程中的结构变化,还进行了 TGA-IR 和 SEM 显微镜分析。MCC 衍生物最终被用作交联剂,用于丙烯酸单体和水凝胶的光聚合和光诱导三维打印(VAT 打印)。
{"title":"Microcrystalline Cellulose from Aloe Plant Waste as a Platform for Green Materials: Preparation, Chemical Functionalization, and Application in 3D Printing","authors":"Maria Chiara Cabua,&nbsp;Maria Vittoria Piras,&nbsp;Debora Dessi,&nbsp;Giorgia Sarais,&nbsp;Francesco Corrias,&nbsp;Michael Zanon,&nbsp;Keivan Guido Kahnamoei,&nbsp;Alberto Martis,&nbsp;Guido Ennas,&nbsp;Ignazio Roppolo,&nbsp;Candido Fabrizio Pirri,&nbsp;Alessandra Cabizza,&nbsp;Annalisa Chiappone and Francesco Secci*,&nbsp;","doi":"10.1021/acsapm.4c00409","DOIUrl":"10.1021/acsapm.4c00409","url":null,"abstract":"<p >Aloe represents a valuable resource for the Mediterranean economy; the pharmaceutical and nutraceutical industries exploit the Aloe gel for several applications, but about 45 wt % of the Aloe plant, i.e., the leaf peel, is waste. This waste is usually disposed off in a landfill or used as a fertilizer. The possibility to give added value and a second life to the portions of Aloe Vera waste will help this growing market enter a circular economy perspective. In this work, waste collected from the local Sardinian cultivation of Aloe Vera was employed to prepare microcrystalline cellulose (MCC). Cellulose was purified from anthraquinones, lignin, and hemicellulose through hydrolytic procedures using eco-friendly solvents. Anthraquinone biocomponents, as well as lignin and hemicellulose, were quantified and intended for other valorization processes. At the same time, the cellulose fraction was further converted into MCC and characterized by NMR and infrared spectroscopy and X-ray analyses. TGA-IR and SEM microscopy analyses were performed to investigate the structural changes of MCC during the extraction and postfunctionalization processes. MCC derivatives were finally used as cross-linkers in the photopolymerization and light-induced 3D printing (VAT printing) of acrylic monomers and hydrogels.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141339801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Applied Polymer Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1