首页 > 最新文献

Thermophysics and Aeromechanics最新文献

英文 中文
Experimental study of gas bubble evolution in liquid metal 液态金属中气泡演化的实验研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S0869864324030120
N. A. Pribaturin, P. D. Lobanov, A. I. Svetonosov, A. S. Kurdyumov, A. V. Chinak, S. M. Volkov

The experimental results on the structure of the two-phase “liquid metal-gas” medium in vertical channels depending on the gas flow rate and channel diameter are presented. Lead-bismuth melt at a temperature of 160°C was used as a liquid medium, and argon was used as a gas phase. Data were obtained on the shape of gas bubbles, temporary changes in the gas content in channels, histograms of gas content distribution, and features of the slug flow of gas in the metal melt.

本文介绍了垂直通道中 "液态金属-气体 "两相介质结构随气体流速和通道直径变化的实验结果。实验使用温度为 160°C 的铅铋熔体作为液态介质,氩气作为气相。研究获得了有关气泡形状、通道中气体含量的临时变化、气体含量分布直方图以及金属熔体中气体蛞蝓流特征的数据。
{"title":"Experimental study of gas bubble evolution in liquid metal","authors":"N. A. Pribaturin,&nbsp;P. D. Lobanov,&nbsp;A. I. Svetonosov,&nbsp;A. S. Kurdyumov,&nbsp;A. V. Chinak,&nbsp;S. M. Volkov","doi":"10.1134/S0869864324030120","DOIUrl":"10.1134/S0869864324030120","url":null,"abstract":"<div><p>The experimental results on the structure of the two-phase “liquid metal-gas” medium in vertical channels depending on the gas flow rate and channel diameter are presented. Lead-bismuth melt at a temperature of 160°C was used as a liquid medium, and argon was used as a gas phase. Data were obtained on the shape of gas bubbles, temporary changes in the gas content in channels, histograms of gas content distribution, and features of the slug flow of gas in the metal melt.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"495 - 502"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of the temperature field in a massive substrate under the effect of a concentrated heat flux 集中热流作用下块状基底温度场的动力学特性
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S0869864324030132
A. I. Fedorchenko, V. V. Terekhov, N. Yan Lun

The results of an analytical solution to the problem of heat distribution inside a massive solid sample with concentrated heat supply to this sample surface are presented. Analytical expressions for the non-stationary temperature distribution inside the body are obtained using the integral cosine Fourier transform and the Hankel transform. Examples of solution application for estimating the characteristic times of reaching the Chernov points Ac1 and Ac3 in model hypoeutectoid steels under the effect of laser radiation are presented. The application of this solution to calculating the cooling dynamics of ceramic Al2O3 and SiO2 samples, affected by the air and water jets, is demonstrated.

本文介绍了在向大块固体样品表面集中供热的情况下,对该样品内部热量分布问题进行分析求解的结果。利用积分余弦傅里叶变换和汉克尔变换,获得了物体内部非稳态温度分布的分析表达式。举例说明了在激光辐射作用下估算模型次共晶钢达到切尔诺夫点 Ac1 和 Ac3 的特征时间的解决方案应用。此外,还展示了该解决方案在计算受空气和水射流影响的 Al2O3 和 SiO2 陶瓷样品冷却动力学中的应用。
{"title":"Dynamics of the temperature field in a massive substrate under the effect of a concentrated heat flux","authors":"A. I. Fedorchenko,&nbsp;V. V. Terekhov,&nbsp;N. Yan Lun","doi":"10.1134/S0869864324030132","DOIUrl":"10.1134/S0869864324030132","url":null,"abstract":"<div><p>The results of an analytical solution to the problem of heat distribution inside a massive solid sample with concentrated heat supply to this sample surface are presented. Analytical expressions for the non-stationary temperature distribution inside the body are obtained using the integral cosine Fourier transform and the Hankel transform. Examples of solution application for estimating the characteristic times of reaching the Chernov points Ac<sub>1</sub> and Ac<sub>3</sub> in model hypoeutectoid steels under the effect of laser radiation are presented. The application of this solution to calculating the cooling dynamics of ceramic Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> samples, affected by the air and water jets, is demonstrated.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"503 - 511"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the gas-driven atomization for a steel material 钢铁材料的气体驱动雾化研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S0869864324030181
D. V. Sergachev, V. I. Kuzmin, I. P. Gulyaev, S. P. Vaschenko

Gas atomization is the major approach for production of metal powders. This method gives up to 70 % of the entire metal powder production. However, modern trends demonstrate new requirements to the particle size distribution. This drives the development of new methods for power production. In this study the plasma-jet atomization method was presented.

气体雾化是生产金属粉末的主要方法。这种方法在整个金属粉末生产中的比例高达 70%。然而,现代趋势对粒度分布提出了新的要求。这推动了新的粉末生产方法的发展。本研究介绍了等离子喷射雾化方法。
{"title":"Study of the gas-driven atomization for a steel material","authors":"D. V. Sergachev,&nbsp;V. I. Kuzmin,&nbsp;I. P. Gulyaev,&nbsp;S. P. Vaschenko","doi":"10.1134/S0869864324030181","DOIUrl":"10.1134/S0869864324030181","url":null,"abstract":"<div><p>Gas atomization is the major approach for production of metal powders. This method gives up to 70 % of the entire metal powder production. However, modern trends demonstrate new requirements to the particle size distribution. This drives the development of new methods for power production. In this study the plasma-jet atomization method was presented.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"557 - 562"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of hydrodynamic characteristics of a stationary Taylor bubble at different velocities of a downward liquid flow 静止泰勒泡在不同向下流动速度下的水动力特性研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S0869864324030168
O. N. Kashinsky, M. V. Alekseev, An. A. Lukyanov, A. S. Kurdyumov, P. D. Lobanov

The flow around a stationary gas Taylor bubble at downward flow velocities from 0.15 to 0.3 m/s in a vertical tube with a diameter of 20 mm was experimentally and numerically studied. Three-dimensional calculations were performed using the VOF (volume of fluid) method in the OpenFOAM package with application of the unsteady kω SST turbulence model. Hydrodynamic characteristics of the flow were experimentally studied using the electrodiffusion method. The effect of flow velocity on the change in the shape of the gas Taylor bubble nose was shown. The calculated and experimental data were compared and their good agreement was shown. The distribution of velocities in liquid and gas was studied as well as the distribution of the liquid film thickness around a gas Taylor bubble. It is shown that the wall shear stress in the liquid film around a gas Taylor bubble does not depend on the downward flow velocity.

实验和数值研究了在直径为 20 毫米的垂直管中,静止气体泰勒气泡周围以 0.15 至 0.3 米/秒的向下流速流动的情况。使用 OpenFOAM 软件包中的 VOF(流体体积)方法进行了三维计算,并应用了非稳态 k-ω SST 湍流模型。使用电扩散方法对流动的流体动力学特性进行了实验研究。实验显示了流速对气体泰勒泡鼻形状变化的影响。对计算数据和实验数据进行了比较,结果表明两者具有良好的一致性。研究了液体和气体中的速度分布以及气体泰勒气泡周围液膜厚度的分布。结果表明,气体泰勒气泡周围液膜的壁面剪应力与向下的流速无关。
{"title":"Investigation of hydrodynamic characteristics of a stationary Taylor bubble at different velocities of a downward liquid flow","authors":"O. N. Kashinsky,&nbsp;M. V. Alekseev,&nbsp;An. A. Lukyanov,&nbsp;A. S. Kurdyumov,&nbsp;P. D. Lobanov","doi":"10.1134/S0869864324030168","DOIUrl":"10.1134/S0869864324030168","url":null,"abstract":"<div><p>The flow around a stationary gas Taylor bubble at downward flow velocities from 0.15 to 0.3 m/s in a vertical tube with a diameter of 20 mm was experimentally and numerically studied. Three-dimensional calculations were performed using the VOF (volume of fluid) method in the OpenFOAM package with application of the unsteady <i>k</i>–<i>ω</i> SST turbulence model. Hydrodynamic characteristics of the flow were experimentally studied using the electrodiffusion method. The effect of flow velocity on the change in the shape of the gas Taylor bubble nose was shown. The calculated and experimental data were compared and their good agreement was shown. The distribution of velocities in liquid and gas was studied as well as the distribution of the liquid film thickness around a gas Taylor bubble. It is shown that the wall shear stress in the liquid film around a gas Taylor bubble does not depend on the downward flow velocity.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"531 - 546"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of heat transfer for a laminar Bunsen flame impinging on a flat surface 层流本生火焰撞击平面传热的数值研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S0869864324030089
D. A. Slastnaya, M. Yu. Hrebtov, R. I. Mullyadzhanov, V. M. Dulin

This article presents the results of numerical simulation of heat transfer between a laminar axisymmetric methane/air flame and a cold flat wall. The simulation is performed for different distances between the nozzle exit and the surface, namely, for one, two, and three burner nozzle diameters. The flow evolution is calculated by the direct numerical simulation method with a detailed kinetic mechanism GRI-MECH 3.0. At a distance of three diameters, there is a significant reduction of heat flux close to the stagnation point due to a local recirculation zone formation between the flame cone and the wall. This phenomenon explains the observed decrease in local heat transfer. The obtained numerical results well agree with the previous flame study by planar optical methods.

本文介绍了层流轴对称甲烷/空气火焰与冷平壁之间热传递的数值模拟结果。模拟是在喷嘴出口与表面之间的不同距离(即一个、两个和三个燃烧器喷嘴直径)下进行的。流动演变是通过详细动力学机制 GRI-MECH 3.0 直接数值模拟方法计算得出的。在三个直径的距离上,由于在火焰锥和壁之间形成了局部再循环区,靠近停滞点的热通量显著减少。这一现象解释了所观察到的局部传热的减少。所获得的数值结果与之前用平面光学方法进行的火焰研究结果非常吻合。
{"title":"Numerical study of heat transfer for a laminar Bunsen flame impinging on a flat surface","authors":"D. A. Slastnaya,&nbsp;M. Yu. Hrebtov,&nbsp;R. I. Mullyadzhanov,&nbsp;V. M. Dulin","doi":"10.1134/S0869864324030089","DOIUrl":"10.1134/S0869864324030089","url":null,"abstract":"<div><p>This article presents the results of numerical simulation of heat transfer between a laminar axisymmetric methane/air flame and a cold flat wall. The simulation is performed for different distances between the nozzle exit and the surface, namely, for one, two, and three burner nozzle diameters. The flow evolution is calculated by the direct numerical simulation method with a detailed kinetic mechanism GRI-MECH 3.0. At a distance of three diameters, there is a significant reduction of heat flux close to the stagnation point due to a local recirculation zone formation between the flame cone and the wall. This phenomenon explains the observed decrease in local heat transfer. The obtained numerical results well agree with the previous flame study by planar optical methods.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"465 - 468"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aeromechanics of the local zone of influence of a gas infrared emitter 气体红外辐射器局部影响区的空气力学
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-12-13 DOI: 10.1134/S086986432403003X
B. V. Borisov, G. V. Kuznetsov, V. I. Maksimov, T. A. Nagornova, S. O. Salagaev, F. Yu. Salikhov

Velocity fields and air flow structures have been experimentally established in a local working area with a horizontal panel heated by a gas infrared emitter in the modes of free and mixed (during operation of the air exchange system) convection using the optical SIV (Smoke Image Velocimetry) method. The analysis of the influence of the structure of the air flow, resulting from the heating of surfaces located in the local working area, on the formation of air velocity fields in the operating conditions of a gas infrared emitter was carried out. The extent of the influence of the convection regime on the aeromechanics of the local working area heated by a gas infrared emitter has been established.

利用光学烟像测速(SIV)方法,在一个由气体红外发射器加热的水平板的局部工作区域,实验建立了自由对流和混合对流(空气交换系统运行期间)模式下的速度场和气流结构。分析了气体红外发射器工作条件下,局部工作区域表面受热产生的气流结构对速度场形成的影响。建立了对流状态对气体红外发射器加热局部工作区域气动力学的影响程度。
{"title":"Aeromechanics of the local zone of influence of a gas infrared emitter","authors":"B. V. Borisov,&nbsp;G. V. Kuznetsov,&nbsp;V. I. Maksimov,&nbsp;T. A. Nagornova,&nbsp;S. O. Salagaev,&nbsp;F. Yu. Salikhov","doi":"10.1134/S086986432403003X","DOIUrl":"10.1134/S086986432403003X","url":null,"abstract":"<div><p>Velocity fields and air flow structures have been experimentally established in a local working area with a horizontal panel heated by a gas infrared emitter in the modes of free and mixed (during operation of the air exchange system) convection using the optical SIV (Smoke Image Velocimetry) method. The analysis of the influence of the structure of the air flow, resulting from the heating of surfaces located in the local working area, on the formation of air velocity fields in the operating conditions of a gas infrared emitter was carried out. The extent of the influence of the convection regime on the aeromechanics of the local working area heated by a gas infrared emitter has been established.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"431 - 435"},"PeriodicalIF":0.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of a laminar-turbulent flow past a swept wing under the action of a blowing or suction source 在吹力或吸力源作用下流经后掠翼的层流-湍流的数值模拟
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020057
A. V. Boiko, S. V. Kirilovskiy, T. V. Poplavskaya

A method and results of computing a laminar-turbulent flow past a swept wing under a control action generated by a source of blowing or suction from the model surface are presented. Pioneering results on the influence of three-dimensional blowing and suction sources on stability of the boundary layer on a swept wing and distributions of N-factors of various mechanisms of the laminar-turbulent transition aimed at changing its position are obtained by using the LOTRAN 3 software package.

本文介绍了在由模型表面的吹力或吸力源产生的控制作用下计算掠过机翼的层流-湍流的方法和结果。通过使用 LOTRAN 3 软件包,获得了三维吹气源和吸力源对后掠翼边界层稳定性影响的开创性结果,以及旨在改变其位置的层流-湍流过渡的各种机制的 N 因子分布。
{"title":"Numerical simulation of a laminar-turbulent flow past a swept wing under the action of a blowing or suction source","authors":"A. V. Boiko,&nbsp;S. V. Kirilovskiy,&nbsp;T. V. Poplavskaya","doi":"10.1134/S0869864324020057","DOIUrl":"10.1134/S0869864324020057","url":null,"abstract":"<div><p>A method and results of computing a laminar-turbulent flow past a swept wing under a control action generated by a source of blowing or suction from the model surface are presented. Pioneering results on the influence of three-dimensional blowing and suction sources on stability of the boundary layer on a swept wing and distributions of <i>N</i>-factors of various mechanisms of the laminar-turbulent transition aimed at changing its position are obtained by using the LOTRAN 3 software package.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"245 - 254"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid 过冷液体流中瞬态沸腾时气泡相互作用对其特性影响的实验研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020100
P. V. Khan, A. A. Levin

The paper presents the experimental results on transient nucleate boiling on the heater surface with rapidly increasing surface temperature. According to the results of high-speed video recording with a frequency of 180 000 frames per second and a spatial resolution of 5.5 urn per pixel, the input data for existing models of heat transfer during nucleate boiling must be refined to take into account the existence of cluster and pulsating bubbles. It has been established that bubbles, interacting through the exchange of momentum, heat and vapor mass, accelerate activation of neighboring vaporization sites, so the clusters of bubbles can form at the initial stage of covering the heater surface with vapor. The main characteristics of single, cluster and pulsating bubbles have been studied for the wall superheating from 0 to 14 K above the temperature of nucleation beginning and flow subcooling from 23 to 103 K.

本文介绍了表面温度快速升高时加热器表面瞬态成核沸腾的实验结果。根据频率为每秒 180 000 帧、空间分辨率为每像素 5.5 urn 的高速视频记录结果,现有的成核沸腾过程传热模型的输入数据必须加以完善,以考虑到团状气泡和脉动气泡的存在。已经证实,气泡通过动量、热量和蒸汽质量的交换相互作用,会加速激活相邻的汽化点,因此在蒸汽覆盖加热器表面的初始阶段就会形成气泡群。在成核开始温度以上 0 至 14 K 的壁面过热和 23 至 103 K 的流动过冷条件下,研究了单个气泡、气泡团和脉动气泡的主要特征。
{"title":"Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid","authors":"P. V. Khan,&nbsp;A. A. Levin","doi":"10.1134/S0869864324020100","DOIUrl":"10.1134/S0869864324020100","url":null,"abstract":"<div><p>The paper presents the experimental results on transient nucleate boiling on the heater surface with rapidly increasing surface temperature. According to the results of high-speed video recording with a frequency of 180 000 frames per second and a spatial resolution of 5.5 urn per pixel, the input data for existing models of heat transfer during nucleate boiling must be refined to take into account the existence of cluster and pulsating bubbles. It has been established that bubbles, interacting through the exchange of momentum, heat and vapor mass, accelerate activation of neighboring vaporization sites, so the clusters of bubbles can form at the initial stage of covering the heater surface with vapor. The main characteristics of single, cluster and pulsating bubbles have been studied for the wall superheating from 0 to 14 K above the temperature of nucleation beginning and flow subcooling from 23 to 103 K.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"313 - 319"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the thermal inertia of building walls when using phase change materials 使用相变材料提高建筑墙体的热惯性
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020070
M. I. Nizovtsev, A. N. Sterlyagov

The influence of a thin layer of phase change material (PCM) on the thermal characteristics of the outer wall of a building made of lightweight thermal insulation material was studied numerically. Changes in temperature and heat flux density were analyzed for various locations of a PCM layer in the wall. It is shown that the use of a thin paraffin layer 4 mm thick in a wall made of foamed polyurethane 100 mm thick can reduce the amplitude of heat flux fluctuations on the inner surface of the wall in the summer from 2 to 13 times, depending on the PCM location. The greatest reduction is achieved when installing the PCM in the central area of the wall. Calculations show that when using a PCM in the walls of buildings made of light thermal insulation materials, a positive effect, associated with a 6–8 hour delay in the maximum heat flux entering the room relative to the maximum daily value of the outside air temperature, is observed in the summer.

我们用数值方法研究了薄层相变材料 (PCM) 对轻质隔热材料建筑外墙热特性的影响。分析了墙内不同位置的 PCM 层的温度和热流密度变化。结果表明,在 100 毫米厚的发泡聚氨酯墙体中使用 4 毫米厚的薄石蜡层,可将夏季墙体内表面的热通量波动幅度降低 2 至 13 倍,具体取决于 PCM 的位置。将 PCM 安装在墙壁中央区域时,可实现最大的减幅。计算显示,在轻质隔热材料建筑的墙壁中使用 PCM 时,会产生积极的效果,即相对于室外空气温度的日最高值,进入室内的最大热通量会延迟 6-8 小时。
{"title":"Increasing the thermal inertia of building walls when using phase change materials","authors":"M. I. Nizovtsev,&nbsp;A. N. Sterlyagov","doi":"10.1134/S0869864324020070","DOIUrl":"10.1134/S0869864324020070","url":null,"abstract":"<div><p>The influence of a thin layer of phase change material (PCM) on the thermal characteristics of the outer wall of a building made of lightweight thermal insulation material was studied numerically. Changes in temperature and heat flux density were analyzed for various locations of a PCM layer in the wall. It is shown that the use of a thin paraffin layer 4 mm thick in a wall made of foamed polyurethane 100 mm thick can reduce the amplitude of heat flux fluctuations on the inner surface of the wall in the summer from 2 to 13 times, depending on the PCM location. The greatest reduction is achieved when installing the PCM in the central area of the wall. Calculations show that when using a PCM in the walls of buildings made of light thermal insulation materials, a positive effect, associated with a 6–8 hour delay in the maximum heat flux entering the room relative to the maximum daily value of the outside air temperature, is observed in the summer.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"273 - 284"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the influence of control surfaces and fuselage on the structure of a separated flow around a flying vehicle model with a classical configuration 研究控制面和机身对经典构型飞行器模型周围分离流结构的影响
IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020082
A. M. Pavlenko, E. A. Melnik, N. S. Alpatsky, B. Yu. Zanin

The paper describes the results of an experimental study of the influence of control surfaces and fuselage on the structure of a separated flow around a model of a small-size unmanned flying vehicle with a straight leading edge of the wing. The use of oil-soot visualization and hot-wire anemometry shows that the separation region location depends on the attitude of control surfaces, while the presence of a fuselage leads to reduction of the critical angle of attack.

本文介绍了控制面和机身对机翼前缘平直的小型无人驾驶飞行器模型周围分离流结构影响的实验研究结果。使用油底可视化和热线风速测量法表明,分离区域的位置取决于控制面的姿态,而机身的存在会导致临界攻角减小。
{"title":"Investigation of the influence of control surfaces and fuselage on the structure of a separated flow around a flying vehicle model with a classical configuration","authors":"A. M. Pavlenko,&nbsp;E. A. Melnik,&nbsp;N. S. Alpatsky,&nbsp;B. Yu. Zanin","doi":"10.1134/S0869864324020082","DOIUrl":"10.1134/S0869864324020082","url":null,"abstract":"<div><p>The paper describes the results of an experimental study of the influence of control surfaces and fuselage on the structure of a separated flow around a model of a small-size unmanned flying vehicle with a straight leading edge of the wing. The use of oil-soot visualization and hot-wire anemometry shows that the separation region location depends on the attitude of control surfaces, while the presence of a fuselage leads to reduction of the critical angle of attack.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"285 - 300"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Thermophysics and Aeromechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1