首页 > 最新文献

Applications in Plant Sciences最新文献

英文 中文
Does sorting by color using visible and high-energy violet light improve classification of taxa in honey bee pollen pellets? 利用可见光和高能紫外光进行颜色分类是否能改善蜜蜂花粉粒的分类?
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-28 DOI: 10.1002/aps3.11514
Charlie P. Bailey, Carolyn A. Sonter, Jeremy L. Jones, Sabu Pandey, Simon Haberle, Karen C. B. S. Santos, Maria L. Absy, Romina Rader

Premise

Pollen collected by honey bees from different plant species often differs in color, and this has been used as a basis for plant identification. The objective of this study was to develop a new, low-cost protocol to sort pollen pellets by color using high-energy violet light and visible light to determine whether pollen pellet color is associated with variations in plant species identity.

Methods and Results

We identified 35 distinct colors and found that 52% of pollen subsamples (n = 200) were dominated by a single taxon. Among these near-pure pellets, only one color consistently represented a single pollen taxon (Asteraceae: Cichorioideae). Across the spectrum of colors spanning yellows, oranges, and browns, similarly colored pollen pellets contained pollen from multiple plant families ranging from two to 13 families per color.

Conclusions

Sorting pollen pellets illuminated under high-energy violet light lit from four directions within a custom-made light box aided in distinguishing pellet composition, especially in pellets within the same color.

蜜蜂从不同种类的植物中采集的花粉往往颜色不同,这已被用作植物鉴定的依据。本研究的目的是开发一种新的低成本方案,利用高能紫光和可见光对花粉球进行颜色分类,以确定花粉球的颜色是否与植物物种身份的变化有关。方法与结果鉴定出35种不同的颜色,发现52%的花粉亚样本(n = 200)为单一分类单元所支配。在这些接近纯的花粉粒中,只有一种颜色一致地代表单一花粉分类群(菊科:菊苣亚科)。在黄色、橙色和棕色的光谱中,相似颜色的花粉粒含有来自多个植物科的花粉,每种颜色从2到13个科不等。结论在定制的灯箱中,在四个方向的高能紫外光照射下对花粉球进行分选,有助于区分花粉球的成分,特别是同一颜色的花粉球。
{"title":"Does sorting by color using visible and high-energy violet light improve classification of taxa in honey bee pollen pellets?","authors":"Charlie P. Bailey,&nbsp;Carolyn A. Sonter,&nbsp;Jeremy L. Jones,&nbsp;Sabu Pandey,&nbsp;Simon Haberle,&nbsp;Karen C. B. S. Santos,&nbsp;Maria L. Absy,&nbsp;Romina Rader","doi":"10.1002/aps3.11514","DOIUrl":"10.1002/aps3.11514","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Pollen collected by honey bees from different plant species often differs in color, and this has been used as a basis for plant identification. The objective of this study was to develop a new, low-cost protocol to sort pollen pellets by color using high-energy violet light and visible light to determine whether pollen pellet color is associated with variations in plant species identity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>We identified 35 distinct colors and found that 52% of pollen subsamples (<i>n</i> = 200) were dominated by a single taxon. Among these near-pure pellets, only one color consistently represented a single pollen taxon (Asteraceae: Cichorioideae). Across the spectrum of colors spanning yellows, oranges, and browns, similarly colored pollen pellets contained pollen from multiple plant families ranging from two to 13 families per color.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Sorting pollen pellets illuminated under high-energy violet light lit from four directions within a custom-made light box aided in distinguishing pellet composition, especially in pellets within the same color.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/98/APS3-11-e11514.PMC10083439.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiple Leaf Sample Extraction System (MuLES): A tool to improve automated morphometric leaf studies 多叶样品提取系统(MuLES):一个工具,以提高自动化形态测量叶片研究
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-21 DOI: 10.1002/aps3.11513
Christian S. Bowman, Ryan Traband, Xuesong Wang, Sara P. Knowles, Sassoum Lo, Zhenyu Jia, Nicholi Vorsa, Ira A. Herniter

Premise

The measurement of leaf morphometric parameters from digital images can be time-consuming or restrictive when using digital image analysis softwares. The Multiple Leaf Sample Extraction System (MuLES) is a new tool that enables high-throughput leaf shape analysis with minimal user input or prerequisites, such as coding knowledge or image modification.

Methods and Results

MuLES uses contrasting pixel color values to distinguish between leaf objects and their background area, eliminating the need for color threshold–based methods or color correction cards typically required in other software methods. The leaf morphometric parameters measured by this software, especially leaf aspect ratio, were able to distinguish between large populations of different accessions for the same species in a high-throughput manner.

Conclusions

MuLES provides a simple method for the rapid measurement of leaf morphometric parameters in large plant populations from digital images and demonstrates the ability of leaf aspect ratio to distinguish between closely related plant types.

当使用数字图像分析软件时,从数字图像中测量叶片形态计量参数可能是耗时或限制性的。多叶样本提取系统(MuLES)是一种新工具,可以在最少的用户输入或先决条件(如编码知识或图像修改)下实现高通量叶片形状分析。MuLES使用对比度像素颜色值来区分树叶对象及其背景区域,从而消除了其他软件方法通常需要的基于颜色阈值的方法或颜色校正卡的需要。该软件测量的叶片形态参数,特别是叶片宽高比,能够高通量地区分同一物种不同种质的大群体。结论MuLES为从数字图像中快速测量大型植物种群的叶片形态参数提供了一种简单的方法,并证明了叶片宽高比在近缘植物类型之间的区分能力。
{"title":"Multiple Leaf Sample Extraction System (MuLES): A tool to improve automated morphometric leaf studies","authors":"Christian S. Bowman,&nbsp;Ryan Traband,&nbsp;Xuesong Wang,&nbsp;Sara P. Knowles,&nbsp;Sassoum Lo,&nbsp;Zhenyu Jia,&nbsp;Nicholi Vorsa,&nbsp;Ira A. Herniter","doi":"10.1002/aps3.11513","DOIUrl":"10.1002/aps3.11513","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The measurement of leaf morphometric parameters from digital images can be time-consuming or restrictive when using digital image analysis softwares. The Multiple Leaf Sample Extraction System (MuLES) is a new tool that enables high-throughput leaf shape analysis with minimal user input or prerequisites, such as coding knowledge or image modification.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>MuLES uses contrasting pixel color values to distinguish between leaf objects and their background area, eliminating the need for color threshold–based methods or color correction cards typically required in other software methods. The leaf morphometric parameters measured by this software, especially leaf aspect ratio, were able to distinguish between large populations of different accessions for the same species in a high-throughput manner.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>MuLES provides a simple method for the rapid measurement of leaf morphometric parameters in large plant populations from digital images and demonstrates the ability of leaf aspect ratio to distinguish between closely related plant types.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/19/APS3-11-e11513.PMC10083438.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States 美国三个芦苇亚种遗传鉴别的DNA分析
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-08 DOI: 10.1002/aps3.11512
Denise L. Lindsay, Xin Guan, Nathan E. Harms, James T. Cronin, Laura A. Meyerson, Richard F. Lance

Premise

To genetically discriminate subspecies of the common reed (Phragmites australis), we developed real-time quantitative (qPCR) assays for identifying P. australis subsp. americanus, P. australis subsp. australis, and P. australis subsp. berlandieri.

Methods and Results

Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, Arundo donax and Phalaris arundinacea. One assay amplifies only P. australis subsp. americanus, one amplifies P. australis subsp. australis and/or P. australis subsp. berlandieri, and one amplifies P. australis subsp. americanus and/or P. australis subsp. australis. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.

Conclusions

The newly developed assays were validated using P. australis samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.

前提为了对普通芦苇(Phragmites australis)的亚种进行遗传鉴别,我们开发了实时定量(qPCR)方法来鉴定芦苇亚种。americanus,P.australis亚种。australis和P.australis亚种。berlandieri。方法和结果利用研究产生的叶绿体DNA序列,我们开发了三种新的qPCR检测方法。对每个亚种的个体和两个非目标物种,即圆腹蛛和圆腹蛛进行了分析验证。一种测定法仅扩增P.australis亚种。美洲,一个扩增了P.australis亚种。australis和/或P.australis亚种。berlandieri,其中一个扩增了P.australis亚种。americanus和/或P.australis亚种。澳大利亚。该方案通过提供所有三个亚种的遗传歧视,增强了目前可用的快速鉴定方法。结论使用来自美国各地的P.australis样品对新开发的测定方法进行了验证。在该地理范围之外应用这些分析之前,应进行额外的测试。
{"title":"DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States","authors":"Denise L. Lindsay,&nbsp;Xin Guan,&nbsp;Nathan E. Harms,&nbsp;James T. Cronin,&nbsp;Laura A. Meyerson,&nbsp;Richard F. Lance","doi":"10.1002/aps3.11512","DOIUrl":"https://doi.org/10.1002/aps3.11512","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>To genetically discriminate subspecies of the common reed (<i>Phragmites australis</i>), we developed real-time quantitative (qPCR) assays for identifying <i>P. australis</i> subsp. <i>americanus</i>, <i>P. australis</i> subsp. <i>australis</i>, and <i>P. australis</i> subsp. <i>berlandieri</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, <i>Arundo donax</i> and <i>Phalaris arundinacea</i>. One assay amplifies only <i>P. australis</i> subsp. <i>americanus</i>, one amplifies <i>P. australis</i> subsp. <i>australis</i> and/or <i>P. australis</i> subsp. <i>berlandieri</i>, and one amplifies <i>P. australis</i> subsp. <i>americanus</i> and/or <i>P. australis</i> subsp. <i>australis</i>. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The newly developed assays were validated using <i>P. australis</i> samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50140455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acclimation and hardening of a slow-growing woody species emblematic to western North America from in vitro plantlets 驯化和硬化一种生长缓慢的木本物种象征着北美西部从离体植株
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-02 DOI: 10.1002/aps3.11515
Peggy Martinez, Marcelo Serpe, Rachael Barron, Sven Buerki

Premise

Determining the tolerance of plant populations to climate change requires the development of biotechnological protocols producing genetically identical individuals used for genotype-by-environment experiments. Such protocols are missing for slow-growth, woody plants; to address this gap, this study uses Artemisia tridentata, a western North American keystone shrub, as model.

Methods and Results

The production of individual lines is a two-step process: in vitro propagation under aseptic conditions followed by ex vitro acclimation and hardening. Due to aseptic growth conditions, in vitro plantlets exhibit maladapted phenotypes, and this protocol focuses on presenting an approach promoting morphogenesis for slow-growth, woody species. Survival was used as the main criterion determining successful acclimation and hardening. Phenotypic changes were confirmed by inspecting leaf anatomy, and shoot water potential was used to ensure that plantlets were not water stressed.

Conclusions

Although our protocol has lower survival rates (11–41%) compared to protocols developed for herbaceous, fast-growing species, it provides a benchmark for slow-growth, woody species occurring in dry ecosystems.

确定植物种群对气候变化的耐受性需要开发生物技术方案,生产用于环境基因型实验的基因相同的个体。对于生长缓慢的木本植物来说,这样的协议是缺失的;为了解决这一差距,本研究使用了北美西部的一种关键灌木——三叉戟蒿作为模型。方法与结果单株的生产分为两个步骤:无菌条件下的体外繁殖,然后是体外驯化和硬化。由于无菌生长条件,体外植株表现出不适应的表型,本协议的重点是提出一种促进缓慢生长的木本物种形态发生的方法。生存是决定驯化和硬化成功与否的主要标准。叶片解剖检查证实了表型变化,并利用茎部水势来确保植株不受水分胁迫。结论:虽然与草本速生物种相比,我们的方案存活率较低(11-41%),但它为干旱生态系统中生长缓慢的木本物种提供了一个基准。
{"title":"Acclimation and hardening of a slow-growing woody species emblematic to western North America from in vitro plantlets","authors":"Peggy Martinez,&nbsp;Marcelo Serpe,&nbsp;Rachael Barron,&nbsp;Sven Buerki","doi":"10.1002/aps3.11515","DOIUrl":"10.1002/aps3.11515","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Determining the tolerance of plant populations to climate change requires the development of biotechnological protocols producing genetically identical individuals used for genotype-by-environment experiments. Such protocols are missing for slow-growth, woody plants; to address this gap, this study uses <i>Artemisia tridentata</i>, a western North American keystone shrub, as model.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>The production of individual lines is a two-step process: in vitro propagation under aseptic conditions followed by ex vitro acclimation and hardening. Due to aseptic growth conditions, in vitro plantlets exhibit maladapted phenotypes, and this protocol focuses on presenting an approach promoting morphogenesis for slow-growth, woody species. Survival was used as the main criterion determining successful acclimation and hardening. Phenotypic changes were confirmed by inspecting leaf anatomy, and shoot water potential was used to ensure that plantlets were not water stressed.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Although our protocol has lower survival rates (11–41%) compared to protocols developed for herbaceous, fast-growing species, it provides a benchmark for slow-growth, woody species occurring in dry ecosystems.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/24/APS3-11-e11515.PMC10083460.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 审稿人致谢
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-04 DOI: 10.1002/aps3.11511

The editors gratefully acknowledge our reviewers, who have generously given their time and expertise to review manuscripts submitted to Applications in Plant Sciences. The list includes those who reviewed manuscripts from December 31, 2021, to December 31, 2022. Thank you for helping APPS maintain a prompt and fair peer-review process.

Anderson, Craig

Arseneau, Jean-Rene

Aucique, Carlos

Ávila-Lovera, Eleinis

Bachle, Seton

Banerjee, Sagnik

Barve, Vijay

Bieker, Vanessa

Blischak, Paul

Blonder, Benjamin

Bonnet, Pierre

Boquete Seoane, Teresa

Borràs, Joshua

Breman, Elinor

Brennan, Andrea

Brolly, Matthew

Bunn, Eric

Butler, Christopher

Cai, Liming

Carneiro de Melo Moura, Carina

Chano, Victor

Chen, Jeffery

Cohen, James

Colin, Ricardo

Contreras, Dori

Copetti, Dario

Del-Bem, Luiz Eduardo

Derkarabetian, Shahan

dos Santos, Renato

Dowell, Jordan

Downing, Jason

Duitama, Jorge

Elser, Justin

Fahlgren, Noah

Feltus, Frank

Feng, Xianzhong

Fetter, Karl

Goke, Alex

Gole, Pushkar

Gorai, Mustapha

Gratzfeld, Joachim

Griffiths, Marcus

Gueta, Tomer

Haque, Taslima

Herrera, Cayetano

Hodel, Richard

Hoff, Katharina

Ijaz, Muhammad Fazal

Inouye, David

James, Ryan

Jernstedt, Judy

Jin, Xiao-Hua

Johnson, Gabriel

Johnson, Mark

Johnson, Matthew

Jud, Nathan

Kim, Sangtae

Klymiuk, Ashley

Krieg, Christopher

Landis, Jacob

Landoni, Beatrice

Lara-Mondragón, Cecilia

Larridon, Isabel

Legland, David

Leroy, Thibault

Liang, Zhikai

Liesenberg, Veraldo

Lobdell, Matthew

Lücking, Robert

Machado-Neto, Nelson

Marchant, Blaine

Marimuthu, MohanPremAnand

Marks, Elias

Maruthachalam, Ravi

Mata Rosas, Martin

Mathys, Aurore

McCormick, Melissa

McDaniel, Stuart

Mehta, Angela

Meng, Xiaoxi

Monks, Leonie

Moyers, Brook

Mseddi, Khalil

Nath, Onkar

O'Connor, Rory

Olsson, Sanna

Oraby, Hanaa A. S.

Osmundson, Todd

Oso, Oluwatobi

Padilla-García, Nélida

Pelosi, Jessie

Pence, Valerie

Phartyal, Shyam

Popova, Elena

Pritchard, Hugh

Przelomska, Natalia

Pucker, Boas

Rezadoost, Mohammad Hossein

Royer, Anne

Rzanny, Michael

Saggiomo, Vittorio

Saroja, Seethapathy G.

Sassone, Agostina

Schmitt, Sylvain

Scott, Michael

Sedio, Brian

Shan, Shengchen

Shi, Rui

Siniscalchi, Carolina M.

Smith, Stacey

Stutz, Samantha

Sudianto, Edi

Takekawa, John

Teixeira-Costa, Luiza

Thybring, Emil Engelund

Tippery, Nicholas

Van De Verg, Scott

Walle

编辑们感谢我们的审稿人,他们慷慨地付出了他们的时间和专业知识来审查提交给《植物科学应用》的手稿。该名单包括从2021年12月31日到2022年12月31日的审稿人员。感谢您帮助APPS保持及时和公平的同行评审过程。安德森、克雷格·阿尔森诺、让-雷内·奥西克、CarlosÁvila-Lovera、埃莱尼什·巴赫、塞顿·班纳吉、萨尼克·巴夫、维杰·比克尔、凡妮莎·布利沙克、保罗·布朗德、本杰明·博内特、皮埃尔·博克特·西恩、TeresaBorràs、约书亚·阿布瑞曼、埃利诺·布伦南、安德烈·阿布罗利、马修·邦恩、埃里克·巴特勒、克里斯托弗·蔡、利明·卡内罗·德梅洛·莫拉、卡里纳查诺、维克多·陈、杰弗里·科恩、詹姆斯·科林、里卡多·孔特雷拉斯、多里科佩蒂、达里奥·德尔·本姆、路易斯·爱德华·德拉卡拉贝蒂安、沙汉多斯·桑托斯、雷纳托·道尔、乔丹·唐宁、杰森·杜伊塔马、JorgeElser、JustinFahlgren、NoahFeltus、FrankFeng、XianzhongFetter、KarlGoke、alexgoole、PushkarGorai、MustaphaGratzfeld、JoachimGriffiths、MarcusGueta、TomerHaque、TaslimaHerrera、CayetanoHodel、RichardHoff、KatharinaIjaz、Muhammad FazalInouye、DavidJames、RyanJernstedt、JudyJin、晓华johnson、GabrielJohnson、MarkJohnson、MatthewJud、NathanKim、SangtaeKlymiuk、AshleyKrieg、ChristopherLandis、jacblandoni、BeatriceLara-Mondragón、CeciliaLarridon、IsabelLegland、DavidLeroy、ThibaultLiang、ZhikaiLiesenberg, VeraldoLobdell, matthewllcking, RobertMachado-Neto, NelsonMarchant, BlaineMarimuthu, MohanPremAnandMarks, EliasMaruthachalam, RaviMata Rosas, MartinMathys, aurroremccormick, MelissaMcDaniel, StuartMehta, AngelaMeng, XiaoxiMonks, LeonieMoyers, BrookMseddi, KhalilNath, OnkarO'Connor, rorysson, sanannoraby, Hanaa a.s.osmundson, ToddOso, OluwatobiPadilla-García, nsamliapelosi, jesessiepence, ValeriePhartyal, ShyamPopova, ElenaPritchard, HughPrzelomska, NataliaPucker, BoasRezadoost,Mohammad HosseinRoyer, AnneRzanny, MichaelSaggiomo, VittorioSaroja, Seethapathy G.Sassone, AgostinaSchmitt, SylvainScott, michaeldio, BrianShan, ShengchenShi, ruisisiscalchi, Carolina M.Smith, StaceyStutz, SamanthaSudianto, EdiTakekawa, JohnTeixeira-Costa, LuizaThybring, Emil EngelundTippery, NicholasVan De Verg, ScottWaller, EricaWang, lewang, YonglongWeinhold, alexanderwetewa, ErangaWorkman, RachaelWu, HuaruiXu,杨建平,杨俊波,杨俊波,YuguoZale, Peter
{"title":"Acknowledgment of Reviewers","authors":"","doi":"10.1002/aps3.11511","DOIUrl":"10.1002/aps3.11511","url":null,"abstract":"<p>The editors gratefully acknowledge our reviewers, who have generously given their time and expertise to review manuscripts submitted to <i>Applications in Plant Sciences</i>. The list includes those who reviewed manuscripts from December 31, 2021, to December 31, 2022. Thank you for helping <i>APPS</i> maintain a prompt and fair peer-review process.</p><p>Anderson, Craig</p><p>Arseneau, Jean-Rene</p><p>Aucique, Carlos</p><p>Ávila-Lovera, Eleinis</p><p>Bachle, Seton</p><p>Banerjee, Sagnik</p><p>Barve, Vijay</p><p>Bieker, Vanessa</p><p>Blischak, Paul</p><p>Blonder, Benjamin</p><p>Bonnet, Pierre</p><p>Boquete Seoane, Teresa</p><p>Borràs, Joshua</p><p>Breman, Elinor</p><p>Brennan, Andrea</p><p>Brolly, Matthew</p><p>Bunn, Eric</p><p>Butler, Christopher</p><p>Cai, Liming</p><p>Carneiro de Melo Moura, Carina</p><p>Chano, Victor</p><p>Chen, Jeffery</p><p>Cohen, James</p><p>Colin, Ricardo</p><p>Contreras, Dori</p><p>Copetti, Dario</p><p>Del-Bem, Luiz Eduardo</p><p>Derkarabetian, Shahan</p><p>dos Santos, Renato</p><p>Dowell, Jordan</p><p>Downing, Jason</p><p>Duitama, Jorge</p><p>Elser, Justin</p><p>Fahlgren, Noah</p><p>Feltus, Frank</p><p>Feng, Xianzhong</p><p>Fetter, Karl</p><p>Goke, Alex</p><p>Gole, Pushkar</p><p>Gorai, Mustapha</p><p>Gratzfeld, Joachim</p><p>Griffiths, Marcus</p><p>Gueta, Tomer</p><p>Haque, Taslima</p><p>Herrera, Cayetano</p><p>Hodel, Richard</p><p>Hoff, Katharina</p><p>Ijaz, Muhammad Fazal</p><p>Inouye, David</p><p>James, Ryan</p><p>Jernstedt, Judy</p><p>Jin, Xiao-Hua</p><p>Johnson, Gabriel</p><p>Johnson, Mark</p><p>Johnson, Matthew</p><p>Jud, Nathan</p><p>Kim, Sangtae</p><p>Klymiuk, Ashley</p><p>Krieg, Christopher</p><p>Landis, Jacob</p><p>Landoni, Beatrice</p><p>Lara-Mondragón, Cecilia</p><p>Larridon, Isabel</p><p>Legland, David</p><p>Leroy, Thibault</p><p>Liang, Zhikai</p><p>Liesenberg, Veraldo</p><p>Lobdell, Matthew</p><p>Lücking, Robert</p><p>Machado-Neto, Nelson</p><p>Marchant, Blaine</p><p>Marimuthu, MohanPremAnand</p><p>Marks, Elias</p><p>Maruthachalam, Ravi</p><p>Mata Rosas, Martin</p><p>Mathys, Aurore</p><p>McCormick, Melissa</p><p>McDaniel, Stuart</p><p>Mehta, Angela</p><p>Meng, Xiaoxi</p><p>Monks, Leonie</p><p>Moyers, Brook</p><p>Mseddi, Khalil</p><p>Nath, Onkar</p><p>O'Connor, Rory</p><p>Olsson, Sanna</p><p>Oraby, Hanaa A. S.</p><p>Osmundson, Todd</p><p>Oso, Oluwatobi</p><p>Padilla-García, Nélida</p><p>Pelosi, Jessie</p><p>Pence, Valerie</p><p>Phartyal, Shyam</p><p>Popova, Elena</p><p>Pritchard, Hugh</p><p>Przelomska, Natalia</p><p>Pucker, Boas</p><p>Rezadoost, Mohammad Hossein</p><p>Royer, Anne</p><p>Rzanny, Michael</p><p>Saggiomo, Vittorio</p><p>Saroja, Seethapathy G.</p><p>Sassone, Agostina</p><p>Schmitt, Sylvain</p><p>Scott, Michael</p><p>Sedio, Brian</p><p>Shan, Shengchen</p><p>Shi, Rui</p><p>Siniscalchi, Carolina M.</p><p>Smith, Stacey</p><p>Stutz, Samantha</p><p>Sudianto, Edi</p><p>Takekawa, John</p><p>Teixeira-Costa, Luiza</p><p>Thybring, Emil Engelund</p><p>Tippery, Nicholas</p><p>Van De Verg, Scott</p><p>Walle","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10755294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying a modified metabarcoding approach for the sequencing of macrofungal specimens from fungarium collections 应用改良元条形码方法对真菌标本进行测序
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-02 DOI: 10.1002/aps3.11508
C. Gary Olds, Jessie W. Berta-Thompson, Justin J. Loucks, Richard A. Levy, Andrew W. Wilson

Premise

Fungaria are an underutilized resource for understanding fungal biodiversity. The effort and cost of producing DNA barcode sequence data for large numbers of fungal specimens can be prohibitive. This study applies a modified metabarcoding approach that provides a labor-efficient and cost-effective solution for sequencing the fungal DNA barcodes of hundreds of specimens at once.

Methods

We applied a two-step PCR approach using nested, barcoded primers to sequence the fungal nrITS2 region of 766 macrofungal specimens using the Illumina platform. The specimens represent a broad taxonomic sampling of the Dikarya. Of these, 382 Lactarius specimens were analyzed to identify molecular operational taxonomic units (MOTUs) using a phylogenetic approach. The raw sequences were trimmed, filtered, assessed, and analyzed using the DADA2 amplicon de-noising toolkit and Biopython. The sequences were compared to the NCBI and UNITE databases and Sanger nrITS sequences from the same specimens.

Results

The taxonomic identities derived from the nrITS2 sequence data were >90% accurate across all specimens sampled. A phylogenetic analysis of the Lactarius sequences identified 20 MOTUs.

Discussion

The results demonstrate the capacity of these methods to produce nrITS2 sequences from large numbers of fungarium specimens. This provides an opportunity to more effectively use fungarium collections to advance fungal diversity identification and documentation.

前提Fungaria是一种未被充分利用的了解真菌生物多样性的资源。为大量真菌标本生产DNA条形码序列数据的努力和成本可能令人望而却步。本研究采用了一种改进的元条形码方法,为同时测序数百个标本的真菌DNA条形码提供了一种劳动效率和成本效益的解决方案。方法采用两步PCR方法,采用嵌套式条形码引物,利用Illumina平台对766份大型真菌标本的nrITS2区域进行测序。这些标本代表了Dikarya的广泛分类样本。利用系统发育方法对382份乳牛标本进行分子操作分类单位(MOTUs)鉴定。使用DADA2放大器去噪工具包和Biopython对原始序列进行裁剪、过滤、评估和分析。将序列与NCBI和UNITE数据库以及来自同一标本的Sanger nrITS序列进行比较。结果从nrITS2序列数据中获得的分类身份在所有样本中准确率为90%。对乳酸菌序列进行系统发育分析,鉴定出20个motu。结果表明,这些方法能够从大量真菌标本中获得nrITS2序列。这为更有效地利用真菌收藏来推进真菌多样性鉴定和文献记录提供了机会。
{"title":"Applying a modified metabarcoding approach for the sequencing of macrofungal specimens from fungarium collections","authors":"C. Gary Olds,&nbsp;Jessie W. Berta-Thompson,&nbsp;Justin J. Loucks,&nbsp;Richard A. Levy,&nbsp;Andrew W. Wilson","doi":"10.1002/aps3.11508","DOIUrl":"10.1002/aps3.11508","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Fungaria are an underutilized resource for understanding fungal biodiversity. The effort and cost of producing DNA barcode sequence data for large numbers of fungal specimens can be prohibitive. This study applies a modified metabarcoding approach that provides a labor-efficient and cost-effective solution for sequencing the fungal DNA barcodes of hundreds of specimens at once.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We applied a two-step PCR approach using nested, barcoded primers to sequence the fungal nrITS2 region of 766 macrofungal specimens using the Illumina platform. The specimens represent a broad taxonomic sampling of the Dikarya. Of these, 382 <i>Lactarius</i> specimens were analyzed to identify molecular operational taxonomic units (MOTUs) using a phylogenetic approach. The raw sequences were trimmed, filtered, assessed, and analyzed using the DADA2 amplicon de-noising toolkit and Biopython. The sequences were compared to the NCBI and UNITE databases and Sanger nrITS sequences from the same specimens.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The taxonomic identities derived from the nrITS2 sequence data were &gt;90% accurate across all specimens sampled. A phylogenetic analysis of the <i>Lactarius</i> sequences identified 20 MOTUs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>The results demonstrate the capacity of these methods to produce nrITS2 sequences from large numbers of fungarium specimens. This provides an opportunity to more effectively use fungarium collections to advance fungal diversity identification and documentation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA release from plant tissue using focused ultrasound extraction (FUSE) 聚焦超声提取(FUSE)技术从植物组织中释放DNA
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-01-28 DOI: 10.1002/aps3.11510
Alexia Stettinius, Hal Holmes, Qian Zhang, Isabelle Mehochko, Misa Winters, Ruby Hutchison, Adam Maxwell, Jason Holliday, Eli Vlaisavljevich

Premise

Sample preparation in genomics is a critical step that is often overlooked in molecular workflows and impacts the success of downstream genetic applications. This study explores the use of a recently developed focused ultrasound extraction (FUSE) technique to enable the rapid release of DNA from plant tissues for genetic analysis.

Methods

FUSE generates a dense acoustic cavitation bubble cloud that pulverizes targeted tissue into acellular debris. This technique was applied to leaf samples of American chestnut (Castanea dentata), tulip poplar (Liriodendron tulipifera), red maple (Acer rubrum), and chestnut oak (Quercus montana).

Results

We observed that FUSE can extract high quantities of DNA in 9–15 min, compared to the 30 min required for control DNA extraction methods. FUSE extracted DNA quantities of 24.33 ± 6.51 ng/mg and 35.32 ± 9.21 ng/mg from American chestnut and red maple, respectively, while control methods yielded 6.22 ± 0.87 ng/mg and 11.51 ± 1.95 ng/mg, respectively. The quality of the DNA released by FUSE allowed for successful amplification and next-generation sequencing.

Discussion

These results indicate that FUSE can improve DNA extraction efficiency for leaf tissues. Continued development of this technology aims to adapt to field-deployable systems to increase the cataloging of genetic biodiversity, particularly in low-resource biodiversity hotspots.

在基因组学中,样品制备是分子工作流程中经常被忽视的关键步骤,并影响下游遗传应用的成功。本研究探讨了使用最近开发的聚焦超声提取(FUSE)技术,使DNA从植物组织中快速释放用于遗传分析。方法FUSE产生密集的声空化气泡云,将目标组织粉碎成脱细胞碎片。该技术应用于美洲板栗(Castanea dentata)、郁金香白杨树(Liriodendron tulipifera)、红枫(Acer rubrum)和栗树栎(Quercus montana)的叶片样品。结果我们观察到FUSE可以在9-15分钟内提取大量的DNA,而对照组的DNA提取方法需要30分钟。FUSE提取美洲板栗和红枫的DNA量分别为24.33±6.51 ng/mg和35.32±9.21 ng/mg,而对照方法提取的DNA量分别为6.22±0.87 ng/mg和11.51±1.95 ng/mg。FUSE释放的DNA质量允许成功扩增和下一代测序。这些结果表明,FUSE可以提高叶片组织DNA的提取效率。该技术的持续发展旨在适应可实地部署的系统,以增加遗传生物多样性的编目,特别是在低资源生物多样性热点地区。
{"title":"DNA release from plant tissue using focused ultrasound extraction (FUSE)","authors":"Alexia Stettinius,&nbsp;Hal Holmes,&nbsp;Qian Zhang,&nbsp;Isabelle Mehochko,&nbsp;Misa Winters,&nbsp;Ruby Hutchison,&nbsp;Adam Maxwell,&nbsp;Jason Holliday,&nbsp;Eli Vlaisavljevich","doi":"10.1002/aps3.11510","DOIUrl":"10.1002/aps3.11510","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Sample preparation in genomics is a critical step that is often overlooked in molecular workflows and impacts the success of downstream genetic applications. This study explores the use of a recently developed focused ultrasound extraction (FUSE) technique to enable the rapid release of DNA from plant tissues for genetic analysis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>FUSE generates a dense acoustic cavitation bubble cloud that pulverizes targeted tissue into acellular debris. This technique was applied to leaf samples of American chestnut (<i>Castanea dentata</i>), tulip poplar (<i>Liriodendron tulipifera</i>), red maple (<i>Acer rubrum</i>), and chestnut oak (<i>Quercus montana</i>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We observed that FUSE can extract high quantities of DNA in 9–15 min, compared to the 30 min required for control DNA extraction methods. FUSE extracted DNA quantities of 24.33 ± 6.51 ng/mg and 35.32 ± 9.21 ng/mg from American chestnut and red maple, respectively, while control methods yielded 6.22 ± 0.87 ng/mg and 11.51 ± 1.95 ng/mg, respectively. The quality of the DNA released by FUSE allowed for successful amplification and next-generation sequencing.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>These results indicate that FUSE can improve DNA extraction efficiency for leaf tissues. Continued development of this technology aims to adapt to field-deployable systems to increase the cataloging of genetic biodiversity, particularly in low-resource biodiversity hotspots.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/34/APS3-11-e11510.PMC9934592.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple and cost-effective method for studying anoxia tolerance in plants 研究植物耐缺氧性的一种简单而经济的方法
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-01-28 DOI: 10.1002/aps3.11509
Orla L. Sherwood, Rebecca Carroll, Stephen Burke, Paul F. McCabe, Joanna Kacprzyk

Premise

We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment.

Methods and Results

Arabidopsis thaliana and barley (Hordeum vulgare) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in anac017 A. thaliana mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in A. thaliana. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue.

Conclusions

The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.

我们开发了一种新颖的,具有成本效益的方案,便于在没有专门设备的情况下测试植物的耐氧性。方法与结果拟南芥和大麦(Hordeum vulgare)幼苗在密闭的2-L Kilner罐中处理。在室内定制的金属支架上放置2.5 l的Oxoid AnaeroGen小袋,产生缺氧气氛。实验证实了先前在anac017拟南芥突变体中观察到的对低氧胁迫的更高敏感性,以及先前研究报道的外源蔗糖对拟南芥耐氧性的积极影响。大麦幼苗对缺氧处理表现出典型的反应,包括茎部生长停止以及根组织中厌氧代谢和乙烯生物合成标记基因的诱导。结果验证了这种新方法是一种廉价、简单的替代方法,可用于在无法获得厌氧工作站的植物中测试耐氧性。该协议投资最小,适应性强。
{"title":"A simple and cost-effective method for studying anoxia tolerance in plants","authors":"Orla L. Sherwood,&nbsp;Rebecca Carroll,&nbsp;Stephen Burke,&nbsp;Paul F. McCabe,&nbsp;Joanna Kacprzyk","doi":"10.1002/aps3.11509","DOIUrl":"10.1002/aps3.11509","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p><i>Arabidopsis thaliana</i> and barley (<i>Hordeum vulgare</i>) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in <i>anac017 A. thaliana</i> mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in <i>A. thaliana</i>. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10756730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An image-based technique for automated root disease severity assessment using PlantCV 基于图像的根病严重程度自动评估技术
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-01-20 DOI: 10.1002/aps3.11507
Logan D. Pierz, Dilyn R. Heslinga, C. Robin Buell, Miranda J. Haus

Premise

Plant disease severity assessments are used to quantify plant–pathogen interactions and identify disease-resistant lines. One common method for disease assessment involves scoring tissue manually using a semi-quantitative scale. Automating assessments would provide fast, unbiased, and quantitative measurements of root disease severity, allowing for improved consistency within and across large data sets. However, using traditional Root System Markup Language (RSML) software in the study of root responses to pathogens presents additional challenges; these include the removal of necrotic tissue during the thresholding process, which results in inaccurate image analysis.

Methods

Using PlantCV, we developed a Python-based pipeline, herein called RootDS, with two main objectives: (1) improving disease severity phenotyping and (2) generating binary images as inputs for RSML software. We tested the pipeline in common bean inoculated with Fusarium root rot.

Results

Quantitative disease scores and root area generated by this pipeline had a strong correlation with manually curated values (R2 = 0.92 and 0.90, respectively) and provided a broader capture of variation than manual disease scores. Compared to traditional manual thresholding, images generated using our pipeline did not affect RSML output.

Discussion

Overall, the RootDS pipeline provides greater functionality in disease score data sets and provides an alternative method for generating image sets for use in available RSML software.

植物疾病严重程度评估用于量化植物与病原体的相互作用并鉴定抗病品系。疾病评估的一种常用方法是使用半定量量表对组织进行手动评分。自动化评估将提供快速、公正和定量的根病严重程度测量,从而提高大型数据集内部和之间的一致性。然而,使用传统的根系统标记语言(RSML)软件研究根对病原体的反应提出了额外的挑战;其中包括在阈值处理过程中去除坏死组织,这会导致不准确的图像分析。方法利用PlantCV,我们开发了一个基于python的管道,这里称为RootDS,主要有两个目标:(1)改善疾病严重程度表型;(2)生成二值图像作为RSML软件的输入。我们在接种了镰刀菌根腐病的普通豆上测试了该管道。结果该管道产生的定量疾病评分和根面积与人工设定的值有很强的相关性(R2分别为0.92和0.90),并且比人工疾病评分提供了更广泛的变化捕获。与传统的手动阈值处理相比,使用我们的管道生成的图像不会影响RSML输出。总的来说,RootDS管道在疾病评分数据集中提供了更大的功能,并提供了一种替代方法来生成用于可用RSML软件的图像集。
{"title":"An image-based technique for automated root disease severity assessment using PlantCV","authors":"Logan D. Pierz,&nbsp;Dilyn R. Heslinga,&nbsp;C. Robin Buell,&nbsp;Miranda J. Haus","doi":"10.1002/aps3.11507","DOIUrl":"10.1002/aps3.11507","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Plant disease severity assessments are used to quantify plant–pathogen interactions and identify disease-resistant lines. One common method for disease assessment involves scoring tissue manually using a semi-quantitative scale. Automating assessments would provide fast, unbiased, and quantitative measurements of root disease severity, allowing for improved consistency within and across large data sets. However, using traditional Root System Markup Language (RSML) software in the study of root responses to pathogens presents additional challenges; these include the removal of necrotic tissue during the thresholding process, which results in inaccurate image analysis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using PlantCV, we developed a Python-based pipeline, herein called RootDS, with two main objectives: (1) improving disease severity phenotyping and (2) generating binary images as inputs for RSML software. We tested the pipeline in common bean inoculated with Fusarium root rot.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Quantitative disease scores and root area generated by this pipeline had a strong correlation with manually curated values (<i>R</i><sup>2</sup> = 0.92 and 0.90, respectively) and provided a broader capture of variation than manual disease scores. Compared to traditional manual thresholding, images generated using our pipeline did not affect RSML output.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>Overall, the RootDS pipeline provides greater functionality in disease score data sets and provides an alternative method for generating image sets for use in available RSML software.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An automated pipeline for supervised classification of petal color from citizen science photographs 从公民科学照片中对花瓣颜色进行监督分类的自动管道
IF 3.6 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-01-16 DOI: 10.1002/aps3.11505
Rachel A. Perez-Udell, Andrew T. Udell, Shu-Mei Chang

Premise

Petal color is an ecologically important trait, and uncovering color variation over a geographic range, particularly in species with large distributions and/or short bloom times, requires extensive fieldwork. We have developed an alternative method that segments images from citizen science repositories using Python and k-means clustering in the hue-saturation-value (HSV) color space.

Methods

Our method uses k-means clustering to aggregate like-color pixels in sample images to generate the HSV color space encapsulating the color range of petals. Using the HSV values, our method isolates photographs containing clusters in that range and bins them into a classification scheme based on user-defined categories.

Results

We demonstrate the application of this method using two species: one with a continuous range of variation of pink-purple petals in Geranium maculatum, and one with a binary classification of white versus blue in Linanthus parryae. We demonstrate results that are repeatable and accurate.

Discussion

This method provides a flexible, robust, and easily adjustable approach for the classification of color images from citizen science repositories. By using color to classify images, this pipeline sidesteps many of the issues encountered using more traditional computer vision applications. This approach provides a tool for making use of large citizen scientist data sets.

花瓣颜色是一种重要的生态学特征,在地理范围内发现花瓣颜色的变化,特别是在分布广泛和/或开花时间短的物种中,需要大量的田野调查。我们已经开发了一种替代方法,使用Python和k-means聚类在色调饱和度值(HSV)色彩空间中分割来自公民科学知识库的图像。方法采用k-means聚类方法对样本图像中的同色像素进行聚类,生成封装花瓣颜色范围的HSV颜色空间。使用HSV值,我们的方法隔离了该范围内包含集群的照片,并将它们放入基于用户定义类别的分类方案中。结果该方法在两个物种上得到了应用:一种是连续变化范围的黄斑天竺葵(Geranium maculatum)粉紫色花瓣,另一种是白色与蓝色的亚麻(Linanthus parryae)二元分类。我们展示的结果是可重复和准确的。该方法为公民科学知识库中的彩色图像分类提供了一种灵活、稳健且易于调整的方法。通过使用颜色对图像进行分类,该管道避免了使用更传统的计算机视觉应用程序遇到的许多问题。这种方法为利用大型公民科学家数据集提供了一种工具。
{"title":"An automated pipeline for supervised classification of petal color from citizen science photographs","authors":"Rachel A. Perez-Udell,&nbsp;Andrew T. Udell,&nbsp;Shu-Mei Chang","doi":"10.1002/aps3.11505","DOIUrl":"10.1002/aps3.11505","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Petal color is an ecologically important trait, and uncovering color variation over a geographic range, particularly in species with large distributions and/or short bloom times, requires extensive fieldwork. We have developed an alternative method that segments images from citizen science repositories using Python and <i>k</i>-means clustering in the hue-saturation-value (HSV) color space.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Our method uses <i>k</i>-means clustering to aggregate like-color pixels in sample images to generate the HSV color space encapsulating the color range of petals. Using the HSV values, our method isolates photographs containing clusters in that range and bins them into a classification scheme based on user-defined categories.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We demonstrate the application of this method using two species: one with a continuous range of variation of pink-purple petals in <i>Geranium maculatum</i>, and one with a binary classification of white versus blue in <i>Linanthus parryae</i>. We demonstrate results that are repeatable and accurate.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>This method provides a flexible, robust, and easily adjustable approach for the classification of color images from citizen science repositories. By using color to classify images, this pipeline sidesteps many of the issues encountered using more traditional computer vision applications. This approach provides a tool for making use of large citizen scientist data sets.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/78/APS3-11-e11505.PMC9934523.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10756729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Applications in Plant Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1