首页 > 最新文献

Applications in Plant Sciences最新文献

英文 中文
Efficient homology-based annotation of transposable elements using minimizers 利用最小化器高效的基于同构的转座元素注释
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-05-11 DOI: 10.1002/aps3.11520
Laura Natalia Gonzalez-García, Daniela Lozano-Arce, Juan Pablo Londoño, Romain Guyot, Jorge Duitama

Premise

Transposable elements (TEs) make up more than half of the genomes of complex plant species and can modulate the expression of neighboring genes, producing significant variability of agronomically relevant traits. The availability of long-read sequencing technologies allows the building of genome assemblies for plant species with large and complex genomes. Unfortunately, TE annotation currently represents a bottleneck in the annotation of genome assemblies.

Methods and Results

We present a new functionality of the Next-Generation Sequencing Experience Platform (NGSEP) to perform efficient homology-based TE annotation. Sequences in a reference library are treated as long reads and mapped to an input genome assembly. A hierarchical annotation is then assigned by homology using the annotation of the reference library. We tested the performance of our algorithm on genome assemblies of different plant species, including Arabidopsis thaliana, Oryza sativa, Coffea humblotiana, and Triticum aestivum (bread wheat). Our algorithm outperforms traditional homology-based annotation tools in speed by a factor of three to >20, reducing the annotation time of the T. aestivum genome from months to hours, and recovering up to 80% of TEs annotated with RepeatMasker with a precision of up to 0.95.

Conclusions

NGSEP allows rapid analysis of TEs, especially in very large and TE-rich plant genomes.

前置转座因子(te)占复杂植物基因组的一半以上,可以调节邻近基因的表达,产生显著的农艺性状变异。长读测序技术的可用性允许构建具有大型和复杂基因组的植物物种的基因组组装。不幸的是,TE注释目前是基因组组装注释的瓶颈。方法和结果我们提出了下一代测序体验平台(NGSEP)的新功能,以执行高效的基于同源的TE注释。参考文库中的序列被视为长读段,并映射到输入基因组组装。然后使用参考库的注释通过同源性分配分层注释。我们测试了算法在不同植物物种基因组组装上的性能,包括拟南芥、水稻、咖啡和小麦(面包小麦)。我们的算法在速度上比传统的基于同源性的注释工具高出3到20倍,将T. aestivum基因组的注释时间从几个月减少到几个小时,并且以高达0.95的精度恢复了高达80%的用RepeatMasker注释的te。结论NGSEP可以快速分析te,特别是在非常大的和富含te的植物基因组中。
{"title":"Efficient homology-based annotation of transposable elements using minimizers","authors":"Laura Natalia Gonzalez-García,&nbsp;Daniela Lozano-Arce,&nbsp;Juan Pablo Londoño,&nbsp;Romain Guyot,&nbsp;Jorge Duitama","doi":"10.1002/aps3.11520","DOIUrl":"10.1002/aps3.11520","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Transposable elements (TEs) make up more than half of the genomes of complex plant species and can modulate the expression of neighboring genes, producing significant variability of agronomically relevant traits. The availability of long-read sequencing technologies allows the building of genome assemblies for plant species with large and complex genomes. Unfortunately, TE annotation currently represents a bottleneck in the annotation of genome assemblies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>We present a new functionality of the Next-Generation Sequencing Experience Platform (NGSEP) to perform efficient homology-based TE annotation. Sequences in a reference library are treated as long reads and mapped to an input genome assembly. A hierarchical annotation is then assigned by homology using the annotation of the reference library. We tested the performance of our algorithm on genome assemblies of different plant species, including <i>Arabidopsis thaliana</i>, <i>Oryza sativa, Coffea humblotiana</i>, and <i>Triticum aestivum</i> (bread wheat). Our algorithm outperforms traditional homology-based annotation tools in speed by a factor of three to &gt;20, reducing the annotation time of the <i>T. aestivum</i> genome from months to hours, and recovering up to 80% of TEs annotated with RepeatMasker with a precision of up to 0.95.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>NGSEP allows rapid analysis of TEs, especially in very large and TE-rich plant genomes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11520","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An optimized RNA extraction method for diverse leaves of Hawaiian Metrosideros, a hypervariable tree species complex 一种优化的高变树种复合体夏威夷Metrosideros不同叶片RNA提取方法
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-04-27 DOI: 10.1002/aps3.11518
Maryam Hadi, Elizabeth A. Stacy

Premise

The isolation of RNA from trees is challenging due to the interference of polyphenols and polysaccharides with downstream processes. Furthermore, many RNA extraction protocols are time consuming and involve hazardous chemicals. To address these issues, we aimed to develop a safe protocol for high-quality RNA extraction from diverse Metrosideros taxa representing a broad range of leaf toughness, pubescence, and secondary metabolites.

Methods and Results

We tested popular RNA isolation kits and protocols that were effective on other recalcitrant trees, including a broad range of optimization and purification steps. We optimized a protocol involving two silica-membrane column-based kits that yielded high-quantity RNA with an RNA integrity number >7 and without DNA contamination. All RNA samples were used successfully in a follow-on RNA-Seq experiment.

Conclusions

We present an optimized high-throughput RNA extraction protocol that yielded high-quality and high-quantity RNA from three contrasting leaf phenotypes within a hyperdiverse woody species complex.

前提条件由于多酚和多糖对下游过程的干扰,从树木中分离RNA具有挑战性。此外,许多RNA提取方案耗时且涉及危险化学品。为了解决这些问题,我们旨在开发一种安全的方案,从不同的Metrosideros分类群中提取高质量的RNA,这些分类群代表了广泛的叶片韧性、青春期和次生代谢产物。方法和结果我们测试了流行的RNA分离试剂盒和方案,这些试剂盒和协议对其他顽抗树有效,包括广泛的优化和纯化步骤。我们优化了涉及两个基于二氧化硅膜柱的试剂盒的方案,其产生具有RNA完整性数>;7并且没有DNA污染。所有的RNA样品都成功地用于后续的RNA-Seq实验。结论我们提出了一种优化的高通量RNA提取方案,该方案从高度多样化的木本物种复合体中的三种不同的叶片表型中产生高质量和高数量的RNA。
{"title":"An optimized RNA extraction method for diverse leaves of Hawaiian Metrosideros, a hypervariable tree species complex","authors":"Maryam Hadi,&nbsp;Elizabeth A. Stacy","doi":"10.1002/aps3.11518","DOIUrl":"https://doi.org/10.1002/aps3.11518","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The isolation of RNA from trees is challenging due to the interference of polyphenols and polysaccharides with downstream processes. Furthermore, many RNA extraction protocols are time consuming and involve hazardous chemicals. To address these issues, we aimed to develop a safe protocol for high-quality RNA extraction from diverse <i>Metrosideros</i> taxa representing a broad range of leaf toughness, pubescence, and secondary metabolites.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>We tested popular RNA isolation kits and protocols that were effective on other recalcitrant trees, including a broad range of optimization and purification steps. We optimized a protocol involving two silica-membrane column-based kits that yielded high-quantity RNA with an RNA integrity number &gt;7 and without DNA contamination. All RNA samples were used successfully in a follow-on RNA-Seq experiment.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>We present an optimized high-throughput RNA extraction protocol that yielded high-quality and high-quantity RNA from three contrasting leaf phenotypes within a hyperdiverse woody species complex.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 3","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50154786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Infrared spectroscopy for ploidy estimation: An example in two species of Veronica using fresh and herbarium specimens 红外光谱用于倍性估计:以两种Veronica为例,使用新鲜标本和植物标本
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-04-03 DOI: 10.1002/aps3.11516
Daniele Buono, Dirk C. Albach

Premise

Polyploidy has become a central factor in plant evolutionary biological research in recent decades. Methods such as flow cytometry have revealed the widespread occurrence of polyploidy; however, its inference relies on expensive lab equipment and is largely restricted to fresh or recently dried material.

Methods

Here, we assess the applicability of infrared spectroscopy to infer ploidy in two related species of Veronica (Plantaginaceae). Infrared spectroscopy relies on differences in the absorbance of tissues, which could be affected by primary and secondary metabolites related to polyploidy. We sampled 33 living plants from the greenhouse and 74 herbarium specimens with ploidy known through flow cytometrical measurements and analyzed the resulting spectra using discriminant analysis of principal components (DAPC) and neural network (NNET) classifiers.

Results

Living material of both species combined was classified with 70% (DAPC) to 75% (NNET) accuracy, whereas herbarium material was classified with 84% (DAPC) to 85% (NNET) accuracy. Analyzing both species separately resulted in less clear results.

Discussion

Infrared spectroscopy is quite reliable but is not a certain method for assessing intraspecific ploidy level differences in two species of Veronica. More accurate inferences rely on large training data sets and herbarium material. This study demonstrates an important way to expand the field of polyploid research to herbaria.

前提酶多倍体已成为近几十年来植物进化生物学研究的核心因素。流式细胞术等方法揭示了多倍体的广泛发生;然而,它的推断依赖于昂贵的实验室设备,并且在很大程度上仅限于新鲜或最近干燥的材料。方法利用红外光谱技术对两个相关种的Veronica(车前草科)进行倍性推断。红外光谱依赖于组织吸光度的差异,这可能受到与多倍体相关的初级和次级代谢产物的影响。我们从温室中采集了33种活植物和74个通过流式细胞术测量已知倍性的植物标本,并使用主成分判别分析(DAPC)和神经网络(NNET)分类器分析了所得光谱。结果两个物种的活体材料的分类准确率为70%(DAPC)至75%(NNET),而植物标本馆材料的分类正确率为84%(DAPC和NNET)至85%。分别分析这两个物种的结果不太清楚。讨论红外光谱法是非常可靠的,但不是评估两种Veronica种内倍性水平差异的确定方法。更准确的推断依赖于大量的训练数据集和植物标本馆材料。这项研究为将多倍体研究领域扩展到草药植物提供了一条重要途径。
{"title":"Infrared spectroscopy for ploidy estimation: An example in two species of Veronica using fresh and herbarium specimens","authors":"Daniele Buono,&nbsp;Dirk C. Albach","doi":"10.1002/aps3.11516","DOIUrl":"https://doi.org/10.1002/aps3.11516","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Polyploidy has become a central factor in plant evolutionary biological research in recent decades. Methods such as flow cytometry have revealed the widespread occurrence of polyploidy; however, its inference relies on expensive lab equipment and is largely restricted to fresh or recently dried material.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Here, we assess the applicability of infrared spectroscopy to infer ploidy in two related species of <i>Veronica</i> (Plantaginaceae). Infrared spectroscopy relies on differences in the absorbance of tissues, which could be affected by primary and secondary metabolites related to polyploidy. We sampled 33 living plants from the greenhouse and 74 herbarium specimens with ploidy known through flow cytometrical measurements and analyzed the resulting spectra using discriminant analysis of principal components (DAPC) and neural network (NNET) classifiers.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Living material of both species combined was classified with 70% (DAPC) to 75% (NNET) accuracy, whereas herbarium material was classified with 84% (DAPC) to 85% (NNET) accuracy. Analyzing both species separately resulted in less clear results.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>Infrared spectroscopy is quite reliable but is not a certain method for assessing intraspecific ploidy level differences in two species of <i>Veronica</i>. More accurate inferences rely on large training data sets and herbarium material. This study demonstrates an important way to expand the field of polyploid research to herbaria.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50118844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does sorting by color using visible and high-energy violet light improve classification of taxa in honey bee pollen pellets? 利用可见光和高能紫外光进行颜色分类是否能改善蜜蜂花粉粒的分类?
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-03-28 DOI: 10.1002/aps3.11514
Charlie P. Bailey, Carolyn A. Sonter, Jeremy L. Jones, Sabu Pandey, Simon Haberle, Karen C. B. S. Santos, Maria L. Absy, Romina Rader

Premise

Pollen collected by honey bees from different plant species often differs in color, and this has been used as a basis for plant identification. The objective of this study was to develop a new, low-cost protocol to sort pollen pellets by color using high-energy violet light and visible light to determine whether pollen pellet color is associated with variations in plant species identity.

Methods and Results

We identified 35 distinct colors and found that 52% of pollen subsamples (n = 200) were dominated by a single taxon. Among these near-pure pellets, only one color consistently represented a single pollen taxon (Asteraceae: Cichorioideae). Across the spectrum of colors spanning yellows, oranges, and browns, similarly colored pollen pellets contained pollen from multiple plant families ranging from two to 13 families per color.

Conclusions

Sorting pollen pellets illuminated under high-energy violet light lit from four directions within a custom-made light box aided in distinguishing pellet composition, especially in pellets within the same color.

蜜蜂从不同种类的植物中采集的花粉往往颜色不同,这已被用作植物鉴定的依据。本研究的目的是开发一种新的低成本方案,利用高能紫光和可见光对花粉球进行颜色分类,以确定花粉球的颜色是否与植物物种身份的变化有关。方法与结果鉴定出35种不同的颜色,发现52%的花粉亚样本(n = 200)为单一分类单元所支配。在这些接近纯的花粉粒中,只有一种颜色一致地代表单一花粉分类群(菊科:菊苣亚科)。在黄色、橙色和棕色的光谱中,相似颜色的花粉粒含有来自多个植物科的花粉,每种颜色从2到13个科不等。结论在定制的灯箱中,在四个方向的高能紫外光照射下对花粉球进行分选,有助于区分花粉球的成分,特别是同一颜色的花粉球。
{"title":"Does sorting by color using visible and high-energy violet light improve classification of taxa in honey bee pollen pellets?","authors":"Charlie P. Bailey,&nbsp;Carolyn A. Sonter,&nbsp;Jeremy L. Jones,&nbsp;Sabu Pandey,&nbsp;Simon Haberle,&nbsp;Karen C. B. S. Santos,&nbsp;Maria L. Absy,&nbsp;Romina Rader","doi":"10.1002/aps3.11514","DOIUrl":"10.1002/aps3.11514","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Pollen collected by honey bees from different plant species often differs in color, and this has been used as a basis for plant identification. The objective of this study was to develop a new, low-cost protocol to sort pollen pellets by color using high-energy violet light and visible light to determine whether pollen pellet color is associated with variations in plant species identity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>We identified 35 distinct colors and found that 52% of pollen subsamples (<i>n</i> = 200) were dominated by a single taxon. Among these near-pure pellets, only one color consistently represented a single pollen taxon (Asteraceae: Cichorioideae). Across the spectrum of colors spanning yellows, oranges, and browns, similarly colored pollen pellets contained pollen from multiple plant families ranging from two to 13 families per color.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Sorting pollen pellets illuminated under high-energy violet light lit from four directions within a custom-made light box aided in distinguishing pellet composition, especially in pellets within the same color.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/98/APS3-11-e11514.PMC10083439.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiple Leaf Sample Extraction System (MuLES): A tool to improve automated morphometric leaf studies 多叶样品提取系统(MuLES):一个工具,以提高自动化形态测量叶片研究
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-03-21 DOI: 10.1002/aps3.11513
Christian S. Bowman, Ryan Traband, Xuesong Wang, Sara P. Knowles, Sassoum Lo, Zhenyu Jia, Nicholi Vorsa, Ira A. Herniter

Premise

The measurement of leaf morphometric parameters from digital images can be time-consuming or restrictive when using digital image analysis softwares. The Multiple Leaf Sample Extraction System (MuLES) is a new tool that enables high-throughput leaf shape analysis with minimal user input or prerequisites, such as coding knowledge or image modification.

Methods and Results

MuLES uses contrasting pixel color values to distinguish between leaf objects and their background area, eliminating the need for color threshold–based methods or color correction cards typically required in other software methods. The leaf morphometric parameters measured by this software, especially leaf aspect ratio, were able to distinguish between large populations of different accessions for the same species in a high-throughput manner.

Conclusions

MuLES provides a simple method for the rapid measurement of leaf morphometric parameters in large plant populations from digital images and demonstrates the ability of leaf aspect ratio to distinguish between closely related plant types.

当使用数字图像分析软件时,从数字图像中测量叶片形态计量参数可能是耗时或限制性的。多叶样本提取系统(MuLES)是一种新工具,可以在最少的用户输入或先决条件(如编码知识或图像修改)下实现高通量叶片形状分析。MuLES使用对比度像素颜色值来区分树叶对象及其背景区域,从而消除了其他软件方法通常需要的基于颜色阈值的方法或颜色校正卡的需要。该软件测量的叶片形态参数,特别是叶片宽高比,能够高通量地区分同一物种不同种质的大群体。结论MuLES为从数字图像中快速测量大型植物种群的叶片形态参数提供了一种简单的方法,并证明了叶片宽高比在近缘植物类型之间的区分能力。
{"title":"Multiple Leaf Sample Extraction System (MuLES): A tool to improve automated morphometric leaf studies","authors":"Christian S. Bowman,&nbsp;Ryan Traband,&nbsp;Xuesong Wang,&nbsp;Sara P. Knowles,&nbsp;Sassoum Lo,&nbsp;Zhenyu Jia,&nbsp;Nicholi Vorsa,&nbsp;Ira A. Herniter","doi":"10.1002/aps3.11513","DOIUrl":"10.1002/aps3.11513","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The measurement of leaf morphometric parameters from digital images can be time-consuming or restrictive when using digital image analysis softwares. The Multiple Leaf Sample Extraction System (MuLES) is a new tool that enables high-throughput leaf shape analysis with minimal user input or prerequisites, such as coding knowledge or image modification.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>MuLES uses contrasting pixel color values to distinguish between leaf objects and their background area, eliminating the need for color threshold–based methods or color correction cards typically required in other software methods. The leaf morphometric parameters measured by this software, especially leaf aspect ratio, were able to distinguish between large populations of different accessions for the same species in a high-throughput manner.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>MuLES provides a simple method for the rapid measurement of leaf morphometric parameters in large plant populations from digital images and demonstrates the ability of leaf aspect ratio to distinguish between closely related plant types.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/19/APS3-11-e11513.PMC10083438.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States 美国三个芦苇亚种遗传鉴别的DNA分析
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-03-08 DOI: 10.1002/aps3.11512
Denise L. Lindsay, Xin Guan, Nathan E. Harms, James T. Cronin, Laura A. Meyerson, Richard F. Lance

Premise

To genetically discriminate subspecies of the common reed (Phragmites australis), we developed real-time quantitative (qPCR) assays for identifying P. australis subsp. americanus, P. australis subsp. australis, and P. australis subsp. berlandieri.

Methods and Results

Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, Arundo donax and Phalaris arundinacea. One assay amplifies only P. australis subsp. americanus, one amplifies P. australis subsp. australis and/or P. australis subsp. berlandieri, and one amplifies P. australis subsp. americanus and/or P. australis subsp. australis. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.

Conclusions

The newly developed assays were validated using P. australis samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.

前提为了对普通芦苇(Phragmites australis)的亚种进行遗传鉴别,我们开发了实时定量(qPCR)方法来鉴定芦苇亚种。americanus,P.australis亚种。australis和P.australis亚种。berlandieri。方法和结果利用研究产生的叶绿体DNA序列,我们开发了三种新的qPCR检测方法。对每个亚种的个体和两个非目标物种,即圆腹蛛和圆腹蛛进行了分析验证。一种测定法仅扩增P.australis亚种。美洲,一个扩增了P.australis亚种。australis和/或P.australis亚种。berlandieri,其中一个扩增了P.australis亚种。americanus和/或P.australis亚种。澳大利亚。该方案通过提供所有三个亚种的遗传歧视,增强了目前可用的快速鉴定方法。结论使用来自美国各地的P.australis样品对新开发的测定方法进行了验证。在该地理范围之外应用这些分析之前,应进行额外的测试。
{"title":"DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States","authors":"Denise L. Lindsay,&nbsp;Xin Guan,&nbsp;Nathan E. Harms,&nbsp;James T. Cronin,&nbsp;Laura A. Meyerson,&nbsp;Richard F. Lance","doi":"10.1002/aps3.11512","DOIUrl":"https://doi.org/10.1002/aps3.11512","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>To genetically discriminate subspecies of the common reed (<i>Phragmites australis</i>), we developed real-time quantitative (qPCR) assays for identifying <i>P. australis</i> subsp. <i>americanus</i>, <i>P. australis</i> subsp. <i>australis</i>, and <i>P. australis</i> subsp. <i>berlandieri</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, <i>Arundo donax</i> and <i>Phalaris arundinacea</i>. One assay amplifies only <i>P. australis</i> subsp. <i>americanus</i>, one amplifies <i>P. australis</i> subsp. <i>australis</i> and/or <i>P. australis</i> subsp. <i>berlandieri</i>, and one amplifies <i>P. australis</i> subsp. <i>americanus</i> and/or <i>P. australis</i> subsp. <i>australis</i>. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The newly developed assays were validated using <i>P. australis</i> samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50140455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acclimation and hardening of a slow-growing woody species emblematic to western North America from in vitro plantlets 驯化和硬化一种生长缓慢的木本物种象征着北美西部从离体植株
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-03-02 DOI: 10.1002/aps3.11515
Peggy Martinez, Marcelo Serpe, Rachael Barron, Sven Buerki

Premise

Determining the tolerance of plant populations to climate change requires the development of biotechnological protocols producing genetically identical individuals used for genotype-by-environment experiments. Such protocols are missing for slow-growth, woody plants; to address this gap, this study uses Artemisia tridentata, a western North American keystone shrub, as model.

Methods and Results

The production of individual lines is a two-step process: in vitro propagation under aseptic conditions followed by ex vitro acclimation and hardening. Due to aseptic growth conditions, in vitro plantlets exhibit maladapted phenotypes, and this protocol focuses on presenting an approach promoting morphogenesis for slow-growth, woody species. Survival was used as the main criterion determining successful acclimation and hardening. Phenotypic changes were confirmed by inspecting leaf anatomy, and shoot water potential was used to ensure that plantlets were not water stressed.

Conclusions

Although our protocol has lower survival rates (11–41%) compared to protocols developed for herbaceous, fast-growing species, it provides a benchmark for slow-growth, woody species occurring in dry ecosystems.

确定植物种群对气候变化的耐受性需要开发生物技术方案,生产用于环境基因型实验的基因相同的个体。对于生长缓慢的木本植物来说,这样的协议是缺失的;为了解决这一差距,本研究使用了北美西部的一种关键灌木——三叉戟蒿作为模型。方法与结果单株的生产分为两个步骤:无菌条件下的体外繁殖,然后是体外驯化和硬化。由于无菌生长条件,体外植株表现出不适应的表型,本协议的重点是提出一种促进缓慢生长的木本物种形态发生的方法。生存是决定驯化和硬化成功与否的主要标准。叶片解剖检查证实了表型变化,并利用茎部水势来确保植株不受水分胁迫。结论:虽然与草本速生物种相比,我们的方案存活率较低(11-41%),但它为干旱生态系统中生长缓慢的木本物种提供了一个基准。
{"title":"Acclimation and hardening of a slow-growing woody species emblematic to western North America from in vitro plantlets","authors":"Peggy Martinez,&nbsp;Marcelo Serpe,&nbsp;Rachael Barron,&nbsp;Sven Buerki","doi":"10.1002/aps3.11515","DOIUrl":"10.1002/aps3.11515","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Determining the tolerance of plant populations to climate change requires the development of biotechnological protocols producing genetically identical individuals used for genotype-by-environment experiments. Such protocols are missing for slow-growth, woody plants; to address this gap, this study uses <i>Artemisia tridentata</i>, a western North American keystone shrub, as model.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>The production of individual lines is a two-step process: in vitro propagation under aseptic conditions followed by ex vitro acclimation and hardening. Due to aseptic growth conditions, in vitro plantlets exhibit maladapted phenotypes, and this protocol focuses on presenting an approach promoting morphogenesis for slow-growth, woody species. Survival was used as the main criterion determining successful acclimation and hardening. Phenotypic changes were confirmed by inspecting leaf anatomy, and shoot water potential was used to ensure that plantlets were not water stressed.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Although our protocol has lower survival rates (11–41%) compared to protocols developed for herbaceous, fast-growing species, it provides a benchmark for slow-growth, woody species occurring in dry ecosystems.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/24/APS3-11-e11515.PMC10083460.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 审稿人致谢
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-02-04 DOI: 10.1002/aps3.11511
<p>The editors gratefully acknowledge our reviewers, who have generously given their time and expertise to review manuscripts submitted to <i>Applications in Plant Sciences</i>. The list includes those who reviewed manuscripts from December 31, 2021, to December 31, 2022. Thank you for helping <i>APPS</i> maintain a prompt and fair peer-review process.</p><p>Anderson, Craig</p><p>Arseneau, Jean-Rene</p><p>Aucique, Carlos</p><p>Ávila-Lovera, Eleinis</p><p>Bachle, Seton</p><p>Banerjee, Sagnik</p><p>Barve, Vijay</p><p>Bieker, Vanessa</p><p>Blischak, Paul</p><p>Blonder, Benjamin</p><p>Bonnet, Pierre</p><p>Boquete Seoane, Teresa</p><p>Borràs, Joshua</p><p>Breman, Elinor</p><p>Brennan, Andrea</p><p>Brolly, Matthew</p><p>Bunn, Eric</p><p>Butler, Christopher</p><p>Cai, Liming</p><p>Carneiro de Melo Moura, Carina</p><p>Chano, Victor</p><p>Chen, Jeffery</p><p>Cohen, James</p><p>Colin, Ricardo</p><p>Contreras, Dori</p><p>Copetti, Dario</p><p>Del-Bem, Luiz Eduardo</p><p>Derkarabetian, Shahan</p><p>dos Santos, Renato</p><p>Dowell, Jordan</p><p>Downing, Jason</p><p>Duitama, Jorge</p><p>Elser, Justin</p><p>Fahlgren, Noah</p><p>Feltus, Frank</p><p>Feng, Xianzhong</p><p>Fetter, Karl</p><p>Goke, Alex</p><p>Gole, Pushkar</p><p>Gorai, Mustapha</p><p>Gratzfeld, Joachim</p><p>Griffiths, Marcus</p><p>Gueta, Tomer</p><p>Haque, Taslima</p><p>Herrera, Cayetano</p><p>Hodel, Richard</p><p>Hoff, Katharina</p><p>Ijaz, Muhammad Fazal</p><p>Inouye, David</p><p>James, Ryan</p><p>Jernstedt, Judy</p><p>Jin, Xiao-Hua</p><p>Johnson, Gabriel</p><p>Johnson, Mark</p><p>Johnson, Matthew</p><p>Jud, Nathan</p><p>Kim, Sangtae</p><p>Klymiuk, Ashley</p><p>Krieg, Christopher</p><p>Landis, Jacob</p><p>Landoni, Beatrice</p><p>Lara-Mondragón, Cecilia</p><p>Larridon, Isabel</p><p>Legland, David</p><p>Leroy, Thibault</p><p>Liang, Zhikai</p><p>Liesenberg, Veraldo</p><p>Lobdell, Matthew</p><p>Lücking, Robert</p><p>Machado-Neto, Nelson</p><p>Marchant, Blaine</p><p>Marimuthu, MohanPremAnand</p><p>Marks, Elias</p><p>Maruthachalam, Ravi</p><p>Mata Rosas, Martin</p><p>Mathys, Aurore</p><p>McCormick, Melissa</p><p>McDaniel, Stuart</p><p>Mehta, Angela</p><p>Meng, Xiaoxi</p><p>Monks, Leonie</p><p>Moyers, Brook</p><p>Mseddi, Khalil</p><p>Nath, Onkar</p><p>O'Connor, Rory</p><p>Olsson, Sanna</p><p>Oraby, Hanaa A. S.</p><p>Osmundson, Todd</p><p>Oso, Oluwatobi</p><p>Padilla-García, Nélida</p><p>Pelosi, Jessie</p><p>Pence, Valerie</p><p>Phartyal, Shyam</p><p>Popova, Elena</p><p>Pritchard, Hugh</p><p>Przelomska, Natalia</p><p>Pucker, Boas</p><p>Rezadoost, Mohammad Hossein</p><p>Royer, Anne</p><p>Rzanny, Michael</p><p>Saggiomo, Vittorio</p><p>Saroja, Seethapathy G.</p><p>Sassone, Agostina</p><p>Schmitt, Sylvain</p><p>Scott, Michael</p><p>Sedio, Brian</p><p>Shan, Shengchen</p><p>Shi, Rui</p><p>Siniscalchi, Carolina M.</p><p>Smith, Stacey</p><p>Stutz, Samantha</p><p>Sudianto, Edi</p><p>Takekawa, John</p><p>Teixeira-Costa, Luiza</p><p>Thybring, Emil Engelund</p><p>Tippery, Nicholas</p><p>Van De Verg, Scott</p><p>Walle
编辑们感谢我们的审稿人,他们慷慨地付出了他们的时间和专业知识来审查提交给《植物科学应用》的手稿。该名单包括从2021年12月31日到2022年12月31日的审稿人员。感谢您帮助APPS保持及时和公平的同行评审过程。安德森、克雷格·阿尔森诺、让-雷内·奥西克、CarlosÁvila-Lovera、埃莱尼什·巴赫、塞顿·班纳吉、萨尼克·巴夫、维杰·比克尔、凡妮莎·布利沙克、保罗·布朗德、本杰明·博内特、皮埃尔·博克特·西恩、TeresaBorràs、约书亚·阿布瑞曼、埃利诺·布伦南、安德烈·阿布罗利、马修·邦恩、埃里克·巴特勒、克里斯托弗·蔡、利明·卡内罗·德梅洛·莫拉、卡里纳查诺、维克多·陈、杰弗里·科恩、詹姆斯·科林、里卡多·孔特雷拉斯、多里科佩蒂、达里奥·德尔·本姆、路易斯·爱德华·德拉卡拉贝蒂安、沙汉多斯·桑托斯、雷纳托·道尔、乔丹·唐宁、杰森·杜伊塔马、JorgeElser、JustinFahlgren、NoahFeltus、FrankFeng、XianzhongFetter、KarlGoke、alexgoole、PushkarGorai、MustaphaGratzfeld、JoachimGriffiths、MarcusGueta、TomerHaque、TaslimaHerrera、CayetanoHodel、RichardHoff、KatharinaIjaz、Muhammad FazalInouye、DavidJames、RyanJernstedt、JudyJin、晓华johnson、GabrielJohnson、MarkJohnson、MatthewJud、NathanKim、SangtaeKlymiuk、AshleyKrieg、ChristopherLandis、jacblandoni、BeatriceLara-Mondragón、CeciliaLarridon、IsabelLegland、DavidLeroy、ThibaultLiang、ZhikaiLiesenberg, VeraldoLobdell, matthewllcking, RobertMachado-Neto, NelsonMarchant, BlaineMarimuthu, MohanPremAnandMarks, EliasMaruthachalam, RaviMata Rosas, MartinMathys, aurroremccormick, MelissaMcDaniel, StuartMehta, AngelaMeng, XiaoxiMonks, LeonieMoyers, BrookMseddi, KhalilNath, OnkarO'Connor, rorysson, sanannoraby, Hanaa a.s.osmundson, ToddOso, OluwatobiPadilla-García, nsamliapelosi, jesessiepence, ValeriePhartyal, ShyamPopova, ElenaPritchard, HughPrzelomska, NataliaPucker, BoasRezadoost,Mohammad HosseinRoyer, AnneRzanny, MichaelSaggiomo, VittorioSaroja, Seethapathy G.Sassone, AgostinaSchmitt, SylvainScott, michaeldio, BrianShan, ShengchenShi, ruisisiscalchi, Carolina M.Smith, StaceyStutz, SamanthaSudianto, EdiTakekawa, JohnTeixeira-Costa, LuizaThybring, Emil EngelundTippery, NicholasVan De Verg, ScottWaller, EricaWang, lewang, YonglongWeinhold, alexanderwetewa, ErangaWorkman, RachaelWu, HuaruiXu,杨建平,杨俊波,杨俊波,YuguoZale, Peter
{"title":"Acknowledgment of Reviewers","authors":"","doi":"10.1002/aps3.11511","DOIUrl":"10.1002/aps3.11511","url":null,"abstract":"&lt;p&gt;The editors gratefully acknowledge our reviewers, who have generously given their time and expertise to review manuscripts submitted to &lt;i&gt;Applications in Plant Sciences&lt;/i&gt;. The list includes those who reviewed manuscripts from December 31, 2021, to December 31, 2022. Thank you for helping &lt;i&gt;APPS&lt;/i&gt; maintain a prompt and fair peer-review process.&lt;/p&gt;&lt;p&gt;Anderson, Craig&lt;/p&gt;&lt;p&gt;Arseneau, Jean-Rene&lt;/p&gt;&lt;p&gt;Aucique, Carlos&lt;/p&gt;&lt;p&gt;Ávila-Lovera, Eleinis&lt;/p&gt;&lt;p&gt;Bachle, Seton&lt;/p&gt;&lt;p&gt;Banerjee, Sagnik&lt;/p&gt;&lt;p&gt;Barve, Vijay&lt;/p&gt;&lt;p&gt;Bieker, Vanessa&lt;/p&gt;&lt;p&gt;Blischak, Paul&lt;/p&gt;&lt;p&gt;Blonder, Benjamin&lt;/p&gt;&lt;p&gt;Bonnet, Pierre&lt;/p&gt;&lt;p&gt;Boquete Seoane, Teresa&lt;/p&gt;&lt;p&gt;Borràs, Joshua&lt;/p&gt;&lt;p&gt;Breman, Elinor&lt;/p&gt;&lt;p&gt;Brennan, Andrea&lt;/p&gt;&lt;p&gt;Brolly, Matthew&lt;/p&gt;&lt;p&gt;Bunn, Eric&lt;/p&gt;&lt;p&gt;Butler, Christopher&lt;/p&gt;&lt;p&gt;Cai, Liming&lt;/p&gt;&lt;p&gt;Carneiro de Melo Moura, Carina&lt;/p&gt;&lt;p&gt;Chano, Victor&lt;/p&gt;&lt;p&gt;Chen, Jeffery&lt;/p&gt;&lt;p&gt;Cohen, James&lt;/p&gt;&lt;p&gt;Colin, Ricardo&lt;/p&gt;&lt;p&gt;Contreras, Dori&lt;/p&gt;&lt;p&gt;Copetti, Dario&lt;/p&gt;&lt;p&gt;Del-Bem, Luiz Eduardo&lt;/p&gt;&lt;p&gt;Derkarabetian, Shahan&lt;/p&gt;&lt;p&gt;dos Santos, Renato&lt;/p&gt;&lt;p&gt;Dowell, Jordan&lt;/p&gt;&lt;p&gt;Downing, Jason&lt;/p&gt;&lt;p&gt;Duitama, Jorge&lt;/p&gt;&lt;p&gt;Elser, Justin&lt;/p&gt;&lt;p&gt;Fahlgren, Noah&lt;/p&gt;&lt;p&gt;Feltus, Frank&lt;/p&gt;&lt;p&gt;Feng, Xianzhong&lt;/p&gt;&lt;p&gt;Fetter, Karl&lt;/p&gt;&lt;p&gt;Goke, Alex&lt;/p&gt;&lt;p&gt;Gole, Pushkar&lt;/p&gt;&lt;p&gt;Gorai, Mustapha&lt;/p&gt;&lt;p&gt;Gratzfeld, Joachim&lt;/p&gt;&lt;p&gt;Griffiths, Marcus&lt;/p&gt;&lt;p&gt;Gueta, Tomer&lt;/p&gt;&lt;p&gt;Haque, Taslima&lt;/p&gt;&lt;p&gt;Herrera, Cayetano&lt;/p&gt;&lt;p&gt;Hodel, Richard&lt;/p&gt;&lt;p&gt;Hoff, Katharina&lt;/p&gt;&lt;p&gt;Ijaz, Muhammad Fazal&lt;/p&gt;&lt;p&gt;Inouye, David&lt;/p&gt;&lt;p&gt;James, Ryan&lt;/p&gt;&lt;p&gt;Jernstedt, Judy&lt;/p&gt;&lt;p&gt;Jin, Xiao-Hua&lt;/p&gt;&lt;p&gt;Johnson, Gabriel&lt;/p&gt;&lt;p&gt;Johnson, Mark&lt;/p&gt;&lt;p&gt;Johnson, Matthew&lt;/p&gt;&lt;p&gt;Jud, Nathan&lt;/p&gt;&lt;p&gt;Kim, Sangtae&lt;/p&gt;&lt;p&gt;Klymiuk, Ashley&lt;/p&gt;&lt;p&gt;Krieg, Christopher&lt;/p&gt;&lt;p&gt;Landis, Jacob&lt;/p&gt;&lt;p&gt;Landoni, Beatrice&lt;/p&gt;&lt;p&gt;Lara-Mondragón, Cecilia&lt;/p&gt;&lt;p&gt;Larridon, Isabel&lt;/p&gt;&lt;p&gt;Legland, David&lt;/p&gt;&lt;p&gt;Leroy, Thibault&lt;/p&gt;&lt;p&gt;Liang, Zhikai&lt;/p&gt;&lt;p&gt;Liesenberg, Veraldo&lt;/p&gt;&lt;p&gt;Lobdell, Matthew&lt;/p&gt;&lt;p&gt;Lücking, Robert&lt;/p&gt;&lt;p&gt;Machado-Neto, Nelson&lt;/p&gt;&lt;p&gt;Marchant, Blaine&lt;/p&gt;&lt;p&gt;Marimuthu, MohanPremAnand&lt;/p&gt;&lt;p&gt;Marks, Elias&lt;/p&gt;&lt;p&gt;Maruthachalam, Ravi&lt;/p&gt;&lt;p&gt;Mata Rosas, Martin&lt;/p&gt;&lt;p&gt;Mathys, Aurore&lt;/p&gt;&lt;p&gt;McCormick, Melissa&lt;/p&gt;&lt;p&gt;McDaniel, Stuart&lt;/p&gt;&lt;p&gt;Mehta, Angela&lt;/p&gt;&lt;p&gt;Meng, Xiaoxi&lt;/p&gt;&lt;p&gt;Monks, Leonie&lt;/p&gt;&lt;p&gt;Moyers, Brook&lt;/p&gt;&lt;p&gt;Mseddi, Khalil&lt;/p&gt;&lt;p&gt;Nath, Onkar&lt;/p&gt;&lt;p&gt;O'Connor, Rory&lt;/p&gt;&lt;p&gt;Olsson, Sanna&lt;/p&gt;&lt;p&gt;Oraby, Hanaa A. S.&lt;/p&gt;&lt;p&gt;Osmundson, Todd&lt;/p&gt;&lt;p&gt;Oso, Oluwatobi&lt;/p&gt;&lt;p&gt;Padilla-García, Nélida&lt;/p&gt;&lt;p&gt;Pelosi, Jessie&lt;/p&gt;&lt;p&gt;Pence, Valerie&lt;/p&gt;&lt;p&gt;Phartyal, Shyam&lt;/p&gt;&lt;p&gt;Popova, Elena&lt;/p&gt;&lt;p&gt;Pritchard, Hugh&lt;/p&gt;&lt;p&gt;Przelomska, Natalia&lt;/p&gt;&lt;p&gt;Pucker, Boas&lt;/p&gt;&lt;p&gt;Rezadoost, Mohammad Hossein&lt;/p&gt;&lt;p&gt;Royer, Anne&lt;/p&gt;&lt;p&gt;Rzanny, Michael&lt;/p&gt;&lt;p&gt;Saggiomo, Vittorio&lt;/p&gt;&lt;p&gt;Saroja, Seethapathy G.&lt;/p&gt;&lt;p&gt;Sassone, Agostina&lt;/p&gt;&lt;p&gt;Schmitt, Sylvain&lt;/p&gt;&lt;p&gt;Scott, Michael&lt;/p&gt;&lt;p&gt;Sedio, Brian&lt;/p&gt;&lt;p&gt;Shan, Shengchen&lt;/p&gt;&lt;p&gt;Shi, Rui&lt;/p&gt;&lt;p&gt;Siniscalchi, Carolina M.&lt;/p&gt;&lt;p&gt;Smith, Stacey&lt;/p&gt;&lt;p&gt;Stutz, Samantha&lt;/p&gt;&lt;p&gt;Sudianto, Edi&lt;/p&gt;&lt;p&gt;Takekawa, John&lt;/p&gt;&lt;p&gt;Teixeira-Costa, Luiza&lt;/p&gt;&lt;p&gt;Thybring, Emil Engelund&lt;/p&gt;&lt;p&gt;Tippery, Nicholas&lt;/p&gt;&lt;p&gt;Van De Verg, Scott&lt;/p&gt;&lt;p&gt;Walle","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10755294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying a modified metabarcoding approach for the sequencing of macrofungal specimens from fungarium collections 应用改良元条形码方法对真菌标本进行测序
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-02-02 DOI: 10.1002/aps3.11508
C. Gary Olds, Jessie W. Berta-Thompson, Justin J. Loucks, Richard A. Levy, Andrew W. Wilson

Premise

Fungaria are an underutilized resource for understanding fungal biodiversity. The effort and cost of producing DNA barcode sequence data for large numbers of fungal specimens can be prohibitive. This study applies a modified metabarcoding approach that provides a labor-efficient and cost-effective solution for sequencing the fungal DNA barcodes of hundreds of specimens at once.

Methods

We applied a two-step PCR approach using nested, barcoded primers to sequence the fungal nrITS2 region of 766 macrofungal specimens using the Illumina platform. The specimens represent a broad taxonomic sampling of the Dikarya. Of these, 382 Lactarius specimens were analyzed to identify molecular operational taxonomic units (MOTUs) using a phylogenetic approach. The raw sequences were trimmed, filtered, assessed, and analyzed using the DADA2 amplicon de-noising toolkit and Biopython. The sequences were compared to the NCBI and UNITE databases and Sanger nrITS sequences from the same specimens.

Results

The taxonomic identities derived from the nrITS2 sequence data were >90% accurate across all specimens sampled. A phylogenetic analysis of the Lactarius sequences identified 20 MOTUs.

Discussion

The results demonstrate the capacity of these methods to produce nrITS2 sequences from large numbers of fungarium specimens. This provides an opportunity to more effectively use fungarium collections to advance fungal diversity identification and documentation.

前提Fungaria是一种未被充分利用的了解真菌生物多样性的资源。为大量真菌标本生产DNA条形码序列数据的努力和成本可能令人望而却步。本研究采用了一种改进的元条形码方法,为同时测序数百个标本的真菌DNA条形码提供了一种劳动效率和成本效益的解决方案。方法采用两步PCR方法,采用嵌套式条形码引物,利用Illumina平台对766份大型真菌标本的nrITS2区域进行测序。这些标本代表了Dikarya的广泛分类样本。利用系统发育方法对382份乳牛标本进行分子操作分类单位(MOTUs)鉴定。使用DADA2放大器去噪工具包和Biopython对原始序列进行裁剪、过滤、评估和分析。将序列与NCBI和UNITE数据库以及来自同一标本的Sanger nrITS序列进行比较。结果从nrITS2序列数据中获得的分类身份在所有样本中准确率为90%。对乳酸菌序列进行系统发育分析,鉴定出20个motu。结果表明,这些方法能够从大量真菌标本中获得nrITS2序列。这为更有效地利用真菌收藏来推进真菌多样性鉴定和文献记录提供了机会。
{"title":"Applying a modified metabarcoding approach for the sequencing of macrofungal specimens from fungarium collections","authors":"C. Gary Olds,&nbsp;Jessie W. Berta-Thompson,&nbsp;Justin J. Loucks,&nbsp;Richard A. Levy,&nbsp;Andrew W. Wilson","doi":"10.1002/aps3.11508","DOIUrl":"10.1002/aps3.11508","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Fungaria are an underutilized resource for understanding fungal biodiversity. The effort and cost of producing DNA barcode sequence data for large numbers of fungal specimens can be prohibitive. This study applies a modified metabarcoding approach that provides a labor-efficient and cost-effective solution for sequencing the fungal DNA barcodes of hundreds of specimens at once.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We applied a two-step PCR approach using nested, barcoded primers to sequence the fungal nrITS2 region of 766 macrofungal specimens using the Illumina platform. The specimens represent a broad taxonomic sampling of the Dikarya. Of these, 382 <i>Lactarius</i> specimens were analyzed to identify molecular operational taxonomic units (MOTUs) using a phylogenetic approach. The raw sequences were trimmed, filtered, assessed, and analyzed using the DADA2 amplicon de-noising toolkit and Biopython. The sequences were compared to the NCBI and UNITE databases and Sanger nrITS sequences from the same specimens.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The taxonomic identities derived from the nrITS2 sequence data were &gt;90% accurate across all specimens sampled. A phylogenetic analysis of the <i>Lactarius</i> sequences identified 20 MOTUs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>The results demonstrate the capacity of these methods to produce nrITS2 sequences from large numbers of fungarium specimens. This provides an opportunity to more effectively use fungarium collections to advance fungal diversity identification and documentation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA release from plant tissue using focused ultrasound extraction (FUSE) 聚焦超声提取(FUSE)技术从植物组织中释放DNA
IF 3.6 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2023-01-28 DOI: 10.1002/aps3.11510
Alexia Stettinius, Hal Holmes, Qian Zhang, Isabelle Mehochko, Misa Winters, Ruby Hutchison, Adam Maxwell, Jason Holliday, Eli Vlaisavljevich

Premise

Sample preparation in genomics is a critical step that is often overlooked in molecular workflows and impacts the success of downstream genetic applications. This study explores the use of a recently developed focused ultrasound extraction (FUSE) technique to enable the rapid release of DNA from plant tissues for genetic analysis.

Methods

FUSE generates a dense acoustic cavitation bubble cloud that pulverizes targeted tissue into acellular debris. This technique was applied to leaf samples of American chestnut (Castanea dentata), tulip poplar (Liriodendron tulipifera), red maple (Acer rubrum), and chestnut oak (Quercus montana).

Results

We observed that FUSE can extract high quantities of DNA in 9–15 min, compared to the 30 min required for control DNA extraction methods. FUSE extracted DNA quantities of 24.33 ± 6.51 ng/mg and 35.32 ± 9.21 ng/mg from American chestnut and red maple, respectively, while control methods yielded 6.22 ± 0.87 ng/mg and 11.51 ± 1.95 ng/mg, respectively. The quality of the DNA released by FUSE allowed for successful amplification and next-generation sequencing.

Discussion

These results indicate that FUSE can improve DNA extraction efficiency for leaf tissues. Continued development of this technology aims to adapt to field-deployable systems to increase the cataloging of genetic biodiversity, particularly in low-resource biodiversity hotspots.

在基因组学中,样品制备是分子工作流程中经常被忽视的关键步骤,并影响下游遗传应用的成功。本研究探讨了使用最近开发的聚焦超声提取(FUSE)技术,使DNA从植物组织中快速释放用于遗传分析。方法FUSE产生密集的声空化气泡云,将目标组织粉碎成脱细胞碎片。该技术应用于美洲板栗(Castanea dentata)、郁金香白杨树(Liriodendron tulipifera)、红枫(Acer rubrum)和栗树栎(Quercus montana)的叶片样品。结果我们观察到FUSE可以在9-15分钟内提取大量的DNA,而对照组的DNA提取方法需要30分钟。FUSE提取美洲板栗和红枫的DNA量分别为24.33±6.51 ng/mg和35.32±9.21 ng/mg,而对照方法提取的DNA量分别为6.22±0.87 ng/mg和11.51±1.95 ng/mg。FUSE释放的DNA质量允许成功扩增和下一代测序。这些结果表明,FUSE可以提高叶片组织DNA的提取效率。该技术的持续发展旨在适应可实地部署的系统,以增加遗传生物多样性的编目,特别是在低资源生物多样性热点地区。
{"title":"DNA release from plant tissue using focused ultrasound extraction (FUSE)","authors":"Alexia Stettinius,&nbsp;Hal Holmes,&nbsp;Qian Zhang,&nbsp;Isabelle Mehochko,&nbsp;Misa Winters,&nbsp;Ruby Hutchison,&nbsp;Adam Maxwell,&nbsp;Jason Holliday,&nbsp;Eli Vlaisavljevich","doi":"10.1002/aps3.11510","DOIUrl":"10.1002/aps3.11510","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Sample preparation in genomics is a critical step that is often overlooked in molecular workflows and impacts the success of downstream genetic applications. This study explores the use of a recently developed focused ultrasound extraction (FUSE) technique to enable the rapid release of DNA from plant tissues for genetic analysis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>FUSE generates a dense acoustic cavitation bubble cloud that pulverizes targeted tissue into acellular debris. This technique was applied to leaf samples of American chestnut (<i>Castanea dentata</i>), tulip poplar (<i>Liriodendron tulipifera</i>), red maple (<i>Acer rubrum</i>), and chestnut oak (<i>Quercus montana</i>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We observed that FUSE can extract high quantities of DNA in 9–15 min, compared to the 30 min required for control DNA extraction methods. FUSE extracted DNA quantities of 24.33 ± 6.51 ng/mg and 35.32 ± 9.21 ng/mg from American chestnut and red maple, respectively, while control methods yielded 6.22 ± 0.87 ng/mg and 11.51 ± 1.95 ng/mg, respectively. The quality of the DNA released by FUSE allowed for successful amplification and next-generation sequencing.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>These results indicate that FUSE can improve DNA extraction efficiency for leaf tissues. Continued development of this technology aims to adapt to field-deployable systems to increase the cataloging of genetic biodiversity, particularly in low-resource biodiversity hotspots.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/34/APS3-11-e11510.PMC9934592.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10768800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applications in Plant Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1