首页 > 最新文献

Applications in Plant Sciences最新文献

英文 中文
An open-source LED lamp for use with the LI-6800 photosynthesis system 与 LI-6800 光合作用系统配套使用的开源 LED 灯
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-25 DOI: 10.1002/aps3.11622
Aarón I. Vélez-Ramírez, Juan de Dios Moreno, Uriel G. Pérez-Guerrero, Antonio M. Juarez, Hector Castillo-Arriaga, Josefina Vázquez-Medrano, Ilane Hernández-Morales

Premise

Controlling light flux density during carbon dioxide assimilation measurements is essential in photosynthesis research. Commercial lamps are expensive and are based on monochromatic light-emitting diodes (LEDs), which deviate significantly in their spectral distribution compared to sunlight.

Methods and Results

Using LED-emitted white light with a color temperature similar to sunlight, we developed a cost-effective lamp compatible with the LI-6800 Portable Photosynthesis System. When coupled with customized software, the lamp can be controlled via the LI-6800 console by a user or Python scripts. Testing and calibration show that the lamp meets the quality needed to estimate photosynthesis parameters.

Conclusions

The lamp can be built using a basic electronics lab and a 3D printer. Calibration instructions are supplied and only require equipment commonly available at plant science laboratories. The lamp is a cost-effective alternative to perform photosynthesis research coupled with the popular LI-6800 photosynthesis measuring system.

在光合作用研究中,控制二氧化碳同化测量过程中的光通量密度是至关重要的。商用灯价格昂贵,并且基于单色发光二极管(led),与太阳光相比,其光谱分布偏差很大。方法与结果利用色温与太阳光相似的led发出的白光,我们开发了一种与LI-6800便携式光合作用系统兼容的低成本灯。当与定制软件相结合时,灯可以通过用户或Python脚本通过LI-6800控制台进行控制。测试和校准表明,该灯满足估算光合作用参数所需的质量。结论利用基础电子学实验室和3D打印机可以制作出该灯。提供校准说明,只需要植物科学实验室常用的设备。该灯与流行的LI-6800光合作用测量系统相结合,是一种具有成本效益的光合作用研究替代方案。
{"title":"An open-source LED lamp for use with the LI-6800 photosynthesis system","authors":"Aarón I. Vélez-Ramírez,&nbsp;Juan de Dios Moreno,&nbsp;Uriel G. Pérez-Guerrero,&nbsp;Antonio M. Juarez,&nbsp;Hector Castillo-Arriaga,&nbsp;Josefina Vázquez-Medrano,&nbsp;Ilane Hernández-Morales","doi":"10.1002/aps3.11622","DOIUrl":"10.1002/aps3.11622","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Controlling light flux density during carbon dioxide assimilation measurements is essential in photosynthesis research. Commercial lamps are expensive and are based on monochromatic light-emitting diodes (LEDs), which deviate significantly in their spectral distribution compared to sunlight.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>Using LED-emitted white light with a color temperature similar to sunlight, we developed a cost-effective lamp compatible with the LI-6800 Portable Photosynthesis System. When coupled with customized software, the lamp can be controlled via the LI-6800 console by a user or Python scripts. Testing and calibration show that the lamp meets the quality needed to estimate photosynthesis parameters.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>The lamp can be built using a basic electronics lab and a 3D printer. Calibration instructions are supplied and only require equipment commonly available at plant science laboratories. The lamp is a cost-effective alternative to perform photosynthesis research coupled with the popular LI-6800 photosynthesis measuring system.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring convolutional neural networks for custom botanical data 为定制植物数据定制卷积神经网络
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-21 DOI: 10.1002/aps3.11620
Jamie R. Sykes, Katherine J. Denby, Daniel W. Franks

Premise

Automated disease, weed, and crop classification with computer vision will be invaluable in the future of agriculture. However, existing model architectures like ResNet, EfficientNet, and ConvNeXt often underperform on smaller, specialised datasets typical of such projects.

Methods

We address this gap with informed data collection and the development of a new convolutional neural network architecture, PhytNet. Utilising a novel dataset of infrared cocoa tree images, we demonstrate PhytNet's development and compare its performance with existing architectures. Data collection was informed by spectroscopy data, which provided useful insights into the spectral characteristics of cocoa trees. Cocoa was chosen as a focal species due to the diverse pathology of its diseases, which pose significant challenges for detection.

Results

ResNet18 showed some signs of overfitting, while EfficientNet variants showed distinct signs of overfitting. By contrast, PhytNet displayed excellent attention to relevant features, almost no overfitting, and an exceptionally low computation cost of 1.19 GFLOPS.

Conclusions

We show that PhytNet is a promising candidate for rapid disease or plant classification and for precise localisation of disease symptoms for autonomous systems. We also show that the most informative light spectra for detecting cocoa disease are outside the visible spectrum and that efforts to detect disease in cocoa should be focused on local symptoms, rather than the systemic effects of disease.

基于计算机视觉的疾病、杂草和作物自动分类在未来的农业中将是无价的。然而,现有的模型架构,如ResNet、EfficientNet和ConvNeXt,在此类项目的典型小型、专门的数据集上往往表现不佳。方法我们通过知情数据收集和开发新的卷积神经网络架构PhytNet来解决这一差距。利用一个新的红外可可树图像数据集,我们展示了PhytNet的开发,并将其性能与现有架构进行了比较。数据收集是由光谱数据提供的,这为可可树的光谱特征提供了有用的见解。可可之所以被选为焦点物种,是因为其疾病的病理多样性,这对检测构成了重大挑战。结果ResNet18显示出一些过拟合的迹象,而EfficientNet变体显示出明显的过拟合迹象。相比之下,PhytNet对相关特征的关注非常好,几乎没有过拟合,并且计算成本非常低,为1.19 GFLOPS。我们表明,PhytNet是一个很有希望的候选系统,用于快速疾病或植物分类,以及对自主系统的疾病症状进行精确定位。我们还表明,用于检测可可疾病的最具信息量的光谱是在可见光谱之外,并且检测可可疾病的努力应该集中在局部症状上,而不是疾病的全身影响。
{"title":"Tailoring convolutional neural networks for custom botanical data","authors":"Jamie R. Sykes,&nbsp;Katherine J. Denby,&nbsp;Daniel W. Franks","doi":"10.1002/aps3.11620","DOIUrl":"10.1002/aps3.11620","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Automated disease, weed, and crop classification with computer vision will be invaluable in the future of agriculture. However, existing model architectures like ResNet, EfficientNet, and ConvNeXt often underperform on smaller, specialised datasets typical of such projects.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We address this gap with informed data collection and the development of a new convolutional neural network architecture, PhytNet. Utilising a novel dataset of infrared cocoa tree images, we demonstrate PhytNet's development and compare its performance with existing architectures. Data collection was informed by spectroscopy data, which provided useful insights into the spectral characteristics of cocoa trees. Cocoa was chosen as a focal species due to the diverse pathology of its diseases, which pose significant challenges for detection.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>ResNet18 showed some signs of overfitting, while EfficientNet variants showed distinct signs of overfitting. By contrast, PhytNet displayed excellent attention to relevant features, almost no overfitting, and an exceptionally low computation cost of 1.19 GFLOPS.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>We show that PhytNet is a promising candidate for rapid disease or plant classification and for precise localisation of disease symptoms for autonomous systems. We also show that the most informative light spectra for detecting cocoa disease are outside the visible spectrum and that efforts to detect disease in cocoa should be focused on local symptoms, rather than the systemic effects of disease.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression-based machine learning models for predicting plant tissue identity 基于表达的机器学习模型预测植物组织身份
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-19 DOI: 10.1002/aps3.11621
Sourabh Palande, Jeremy Arsenault, Patricia Basurto-Lozada, Andrew Bleich, Brianna N. I. Brown, Sophia F. Buysse, Noelle A. Connors, Sikta Das Adhikari, Kara C. Dobson, Francisco Xavier Guerra-Castillo, Maria F. Guerrero-Carrillo, Sophia Harlow, Héctor Herrera-Orozco, Asia T. Hightower, Paulo Izquierdo, MacKenzie Jacobs, Nicholas A. Johnson, Wendy Leuenberger, Alessandro Lopez-Hernandez, Alicia Luckie-Duque, Camila Martínez-Avila, Eddy J. Mendoza-Galindo, David Cruz Plancarte, Jenny M. Schuster, Harry Shomer, Sidney C. Sitar, Anne K. Steensma, Joanne Elise Thomson, Damián Villaseñor-Amador, Robin Waterman, Brandon M. Webster, Madison Whyte, Sofía Zorilla-Azcué, Beronda L. Montgomery, Aman Y. Husbands, Arjun Krishnan, Sarah Percival, Elizabeth Munch, Robert VanBuren, Daniel H. Chitwood, Alejandra Rougon-Cardoso

Premise

The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research.

Methods

Here, we examine the ability of models based on Arabidopsis gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on Arabidopsis data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on Arabidopsis data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64.

Results

The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. k-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants.

Discussion

Our data-driven results highlight that the assertion that knowledge from Arabidopsis is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on Arabidopsis and prioritize plant diversity.

拟南芥作为模式生物的选择对基因组科学的发展起着至关重要的作用。选择以农业或生态为基础的模式物种的竞争框架被拒绝,而支持在物种中建立知识,以促进基因组研究。方法基于拟南芥基因表达数据,研究拟南芥基因表达模型在其他开花植物中预测组织特性的能力。比较不同的机器学习算法,在拟南芥数据上训练和测试的模型获得了接近完美的精度和召回值,而当使用拟南芥数据训练的模型预测开花植物的组织身份时,精度值在0.69至0.74之间,召回率在0.54至0.64之间。结果对拟南芥地下组织身份的预测比其他组织类型更准确,预测组织身份的能力与与拟南芥的系统发育距离无关。k近邻算法是最成功的算法,这表明基因表达特征,而不是标记基因,在建立植物组织和细胞类型预测模型方面更有价值。我们的数据驱动的结果强调,断言从拟南芥的知识可以翻译到其他植物并不总是正确的。考虑到目前丰富的测序数据,我们应该重新评估对拟南芥的科学重点,优先考虑植物多样性。
{"title":"Expression-based machine learning models for predicting plant tissue identity","authors":"Sourabh Palande,&nbsp;Jeremy Arsenault,&nbsp;Patricia Basurto-Lozada,&nbsp;Andrew Bleich,&nbsp;Brianna N. I. Brown,&nbsp;Sophia F. Buysse,&nbsp;Noelle A. Connors,&nbsp;Sikta Das Adhikari,&nbsp;Kara C. Dobson,&nbsp;Francisco Xavier Guerra-Castillo,&nbsp;Maria F. Guerrero-Carrillo,&nbsp;Sophia Harlow,&nbsp;Héctor Herrera-Orozco,&nbsp;Asia T. Hightower,&nbsp;Paulo Izquierdo,&nbsp;MacKenzie Jacobs,&nbsp;Nicholas A. Johnson,&nbsp;Wendy Leuenberger,&nbsp;Alessandro Lopez-Hernandez,&nbsp;Alicia Luckie-Duque,&nbsp;Camila Martínez-Avila,&nbsp;Eddy J. Mendoza-Galindo,&nbsp;David Cruz Plancarte,&nbsp;Jenny M. Schuster,&nbsp;Harry Shomer,&nbsp;Sidney C. Sitar,&nbsp;Anne K. Steensma,&nbsp;Joanne Elise Thomson,&nbsp;Damián Villaseñor-Amador,&nbsp;Robin Waterman,&nbsp;Brandon M. Webster,&nbsp;Madison Whyte,&nbsp;Sofía Zorilla-Azcué,&nbsp;Beronda L. Montgomery,&nbsp;Aman Y. Husbands,&nbsp;Arjun Krishnan,&nbsp;Sarah Percival,&nbsp;Elizabeth Munch,&nbsp;Robert VanBuren,&nbsp;Daniel H. Chitwood,&nbsp;Alejandra Rougon-Cardoso","doi":"10.1002/aps3.11621","DOIUrl":"10.1002/aps3.11621","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The selection of <i>Arabidopsis</i> as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Here, we examine the ability of models based on <i>Arabidopsis</i> gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on <i>Arabidopsis</i> data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on <i>Arabidopsis</i> data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from <i>Arabidopsis</i>. <i>k</i>-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>Our data-driven results highlight that the assertion that knowledge from <i>Arabidopsis</i> is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on <i>Arabidopsis</i> and prioritize plant diversity.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FlowerMate: Multidimensional reciprocity and inaccuracy indices for style-polymorphic plant populations FlowerMate:花柱多态植物群体的多维互易性和不准确性指标
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-11 DOI: 10.1002/aps3.11618
Violeta Simón-Porcar, A. Jesús Muñoz-Pajares, Juan Arroyo, Steven D. Johnson

Premise

Heterostyly in plants promotes pollen transfer between floral morphs, because female and male sex organs are located at roughly reciprocal heights within the flowers of each morph. Reciprocity indices, which assess the one-dimensional variation in the height of sex organs, are used to define the phenotypic structure of heterostyly in plant populations and to make inferences about selection. Other reciprocal stylar polymorphisms (e.g., enantiostyly) may function in a similar manner to heterostyly. In-depth assessment of their potential fit with pollinators requires accounting for the multidimensional variation in the location of sex organs.

Methods and Results

We have adapted the existing reciprocity indices used for heterostylous plant populations to incorporate multidimensional data. We illustrate the computation of the adapted and original indices in the freely available R package FlowerMate.

Conclusions

FlowerMate provides fast computation of reliable indices to facilitate understanding of the evolution and function of the full diversity of reciprocal polymorphisms.

植物的花柱异位性促进了花粉在不同花型之间的传递,因为雌花和雄花的性器官大致位于不同花型的倒数高度。互易指数是评价性器官高度一维变异的指标,用于确定植物群体中异种结构的表型结构,并对选择进行推断。其他相互的花柱多态性(例如,对映花柱)可能以与异质花柱相似的方式起作用。深入评估它们与传粉者的潜在匹配需要考虑性器官位置的多维变化。方法与结果对现有的异花柱植物种群互易指数进行了改进,纳入了多维数据。我们举例说明了在免费的R包FlowerMate中改编和原始索引的计算。结论FlowerMate提供了可靠的快速计算指标,有助于了解互反多态性的进化和功能。
{"title":"FlowerMate: Multidimensional reciprocity and inaccuracy indices for style-polymorphic plant populations","authors":"Violeta Simón-Porcar,&nbsp;A. Jesús Muñoz-Pajares,&nbsp;Juan Arroyo,&nbsp;Steven D. Johnson","doi":"10.1002/aps3.11618","DOIUrl":"10.1002/aps3.11618","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Heterostyly in plants promotes pollen transfer between floral morphs, because female and male sex organs are located at roughly reciprocal heights within the flowers of each morph. Reciprocity indices, which assess the one-dimensional variation in the height of sex organs, are used to define the phenotypic structure of heterostyly in plant populations and to make inferences about selection. Other reciprocal stylar polymorphisms (e.g., enantiostyly) may function in a similar manner to heterostyly. In-depth assessment of their potential fit with pollinators requires accounting for the multidimensional variation in the location of sex organs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>We have adapted the existing reciprocity indices used for heterostylous plant populations to incorporate multidimensional data. We illustrate the computation of the adapted and original indices in the freely available R package FlowerMate.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>FlowerMate provides fast computation of reliable indices to facilitate understanding of the evolution and function of the full diversity of reciprocal polymorphisms.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Truly the best of both worlds: Merging lineage-specific and universal probe kits to maximize phylogenomic inference 真正两全其美:合并谱系特异性和通用探针试剂盒,以最大限度地进行系统基因组推断
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-09-25 DOI: 10.1002/aps3.11615
Luiz Henrique M. Fonseca, Pieter Asselman, Katherine R. Goodrich, Francis J. Nge, Vincent Soulé, Kathryn Mercier, Thomas L. P. Couvreur, Lars W. Chatrou

Premise

Hybridization capture kits are now commonly used for reduced representation approaches in genomic sequencing, with both universal and clade-specific kits available. Here, we present a probe kit targeting 799 low-copy genes for the plant family Annonaceae.

Methods

This new version of the kit combines the original 469 genes from the previous Annonaceae kit with 334 genes from the universal Angiosperms353 kit. We also compare the results obtained using the original Angiosperms353 kit with our custom approach using a subset of specimens. Parsimony-informative sites and the results of maximum likelihood phylogenetic inference were assessed for combined matrices using the genera Asimina and Deeringothamnus.

Results

The Annonaceae799 genes derived from the Angiosperms353 kit have extremely high recovery rates. Off-target reads were also detected. When evaluating size, the proportion of on- and off-target regions, and the number of parsimony-informative sites, the genes incorporated from the Angiosperms353 panel generally outperformed the genes from the original Annonaceae probe kit.

Discussion

We demonstrated that the new sequences from the Angiosperms353 probe set are variable and relevant for future studies on species-level phylogenomics and within-species studies in the Annonaceae. The integration of kits also establishes a connection between projects and makes new genes available for phylogenetic and population studies.

前提杂交捕获试剂盒现在通常用于基因组测序中减少代表性的方法,具有通用和分支特异性试剂盒。在此,我们提出了一种针对番木瓜科植物799个低拷贝基因的探针试剂盒。方法将以前的Annonaceae试剂盒中的469个基因与通用的Angiosperms353试剂盒中的334个基因进行组合。我们还比较了使用原始Angiosperms353试剂盒与我们使用样本子集的定制方法获得的结果。利用Asimina属和Deeringothamnus属组合基质,对简约信息位点和最大似然系统发育推断结果进行了评估。结果从Angiosperms353试剂盒中提取的Annonaceae799基因回收率极高。脱靶读取也被检测到。在评估大小、靶区和非靶区比例以及简约信息位点数量时,从Angiosperms353面板中整合的基因总体上优于从原始的Annonaceae探针试剂盒中整合的基因。我们证明了来自Angiosperms353探针组的新序列是可变的,并且与未来的物种水平系统基因组学研究和番麻科物种内研究相关。套件的整合还建立了项目之间的联系,并为系统发育和人口研究提供了新的基因。
{"title":"Truly the best of both worlds: Merging lineage-specific and universal probe kits to maximize phylogenomic inference","authors":"Luiz Henrique M. Fonseca,&nbsp;Pieter Asselman,&nbsp;Katherine R. Goodrich,&nbsp;Francis J. Nge,&nbsp;Vincent Soulé,&nbsp;Kathryn Mercier,&nbsp;Thomas L. P. Couvreur,&nbsp;Lars W. Chatrou","doi":"10.1002/aps3.11615","DOIUrl":"10.1002/aps3.11615","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Hybridization capture kits are now commonly used for reduced representation approaches in genomic sequencing, with both universal and clade-specific kits available. Here, we present a probe kit targeting 799 low-copy genes for the plant family Annonaceae.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>This new version of the kit combines the original 469 genes from the previous Annonaceae kit with 334 genes from the universal Angiosperms353 kit. We also compare the results obtained using the original Angiosperms353 kit with our custom approach using a subset of specimens. Parsimony-informative sites and the results of maximum likelihood phylogenetic inference were assessed for combined matrices using the genera <i>Asimina</i> and <i>Deeringothamnus</i>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The Annonaceae799 genes derived from the Angiosperms353 kit have extremely high recovery rates. Off-target reads were also detected. When evaluating size, the proportion of on- and off-target regions, and the number of parsimony-informative sites, the genes incorporated from the Angiosperms353 panel generally outperformed the genes from the original Annonaceae probe kit.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>We demonstrated that the new sequences from the Angiosperms353 probe set are variable and relevant for future studies on species-level phylogenomics and within-species studies in the Annonaceae. The integration of kits also establishes a connection between projects and makes new genes available for phylogenetic and population studies.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11615","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAD2matrix: Phylogenomic matrix concatenation, indel coding, and more BAD2matrix:系统基因组矩阵连接、索引编码等
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-09-24 DOI: 10.1002/aps3.11604
Nelson R. Salinas, Gil Eshel, Gloria M. Coruzzi, Rob DeSalle, Michael Tessler, Damon P. Little

Premise

Common steps in phylogenomic matrix production include biological sequence concatenation, morphological data concatenation, insertion/deletion (indel) coding, gene content (presence/absence) coding, removing uninformative characters for parsimony analysis, recording with reduced amino acid alphabets, and occupancy filtering. Existing software does not accomplish these tasks on a phylogenomic scale using a single program.

Methods and Results

BAD2matrix is a Python script that performs the above-mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences as well as morphological data. The script works in UNIX-like environments (e.g., LINUX, MacOS, Windows Subsystem for LINUX).

Conclusions

BAD2matrix helps simplify phylogenomic pipelines and can be downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU General Public License v2.

系统基因组矩阵生成的常见步骤包括生物序列拼接、形态学数据拼接、插入/删除(indel)编码、基因内容(存在/不存在)编码、去除无信息字符进行简约分析、用还原氨基酸字母记录和占用过滤。现有的软件不能使用单个程序在系统基因组规模上完成这些任务。方法和结果BAD2matrix是一个Python脚本,可以执行上述步骤,构建DNA或氨基酸序列以及形态数据的系统基因组矩阵。该脚本工作在类unix环境中(例如,LINUX, MacOS, Windows Subsystem for LINUX)。BAD2matrix有助于简化系统基因组学管道,可以在GNU通用公共许可证v2下从https://github.com/dpl10/BAD2matrix/tree/master下载。
{"title":"BAD2matrix: Phylogenomic matrix concatenation, indel coding, and more","authors":"Nelson R. Salinas,&nbsp;Gil Eshel,&nbsp;Gloria M. Coruzzi,&nbsp;Rob DeSalle,&nbsp;Michael Tessler,&nbsp;Damon P. Little","doi":"10.1002/aps3.11604","DOIUrl":"10.1002/aps3.11604","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Common steps in phylogenomic matrix production include biological sequence concatenation, morphological data concatenation, insertion/deletion (indel) coding, gene content (presence/absence) coding, removing uninformative characters for parsimony analysis, recording with reduced amino acid alphabets, and occupancy filtering. Existing software does not accomplish these tasks on a phylogenomic scale using a single program.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>BAD2matrix is a Python script that performs the above-mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences as well as morphological data. The script works in UNIX-like environments (e.g., LINUX, MacOS, Windows Subsystem for LINUX).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>BAD2matrix helps simplify phylogenomic pipelines and can be downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU General Public License v2.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient and effective RNA extraction protocol for ferns 蕨类植物高效、有效的 RNA 提取方案
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-09-05 DOI: 10.1002/aps3.11617
Jessie A. Pelosi, Ruth Davenport, W. Brad Barbazuk, Emily B. Sessa, Li-Yaung Kuo

Premise

The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial.

Methods

We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns—a lineage of plants high in secondary compounds—and in an array of tissue types. Two alternative options (precipitation vs. clean-up without intermediate precipitation) are presented, both of which yield high-quality RNA extracts with optical density (OD) ratios of OD 260/280 = 1.9–2.1 and OD 260/230 > 1.6, and RNA integrity numbers >7.

Conclusions

This study presents an efficient protocol for the extraction of high-quality RNA from multiple tissues and across the fern phylogeny, a clade of plants that still lags behind other major lineages in the development of genomic resources. We hope that this method can be used to help facilitate the closing of this gap.

前提提取高质量的 RNA 是分析基因表达和基因空间的关键第一步。我们开发了一种基于十六烷基三甲基溴化铵(CTAB)的 RNA 提取方案,该方案在蕨类植物--一种次生化合物含量较高的植物--的大量系统发育过程中以及在一系列组织类型中始终表现良好。本研究提出了两种可供选择的方案(沉淀与无中间沉淀的清理),这两种方案都能获得高质量的 RNA 提取液,其光密度(OD)比分别为 OD 260/280 = 1.9-2.1 和 OD 260/230 >1.6,RNA 完整性数为 >7。 结论 本研究提出了一种从多种组织和整个蕨类系统发育过程中提取高质量 RNA 的高效方案,蕨类是一个在基因组资源开发方面仍然落后于其他主要品系的植物支系。我们希望这种方法能有助于缩小这一差距。
{"title":"An efficient and effective RNA extraction protocol for ferns","authors":"Jessie A. Pelosi,&nbsp;Ruth Davenport,&nbsp;W. Brad Barbazuk,&nbsp;Emily B. Sessa,&nbsp;Li-Yaung Kuo","doi":"10.1002/aps3.11617","DOIUrl":"10.1002/aps3.11617","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns—a lineage of plants high in secondary compounds—and in an array of tissue types. Two alternative options (precipitation vs. clean-up without intermediate precipitation) are presented, both of which yield high-quality RNA extracts with optical density (OD) ratios of OD 260/280 = 1.9–2.1 and OD 260/230 &gt; 1.6, and RNA integrity numbers &gt;7.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This study presents an efficient protocol for the extraction of high-quality RNA from multiple tissues and across the fern phylogeny, a clade of plants that still lags behind other major lineages in the development of genomic resources. We hope that this method can be used to help facilitate the closing of this gap.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
florabr: An R package to explore and spatialize species distribution using Flora e Funga do Brasil florabr:利用 Flora e Funga do Brasil 探索和空间化物种分布的 R 软件包
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-08-29 DOI: 10.1002/aps3.11616
Weverton C. F. Trindade

Premise

The Flora e Funga do Brasil project is the most comprehensive effort to reliably document Brazilian plant and fungal diversity. It involves the collaborative work of hundreds of taxonomists, integrating detailed and standardized morphological descriptions, nomenclatural status, and geographic distribution information of plants, algae, and fungi collected throughout Brazil. Despite the extensive information available, managing the information from the Flora e Funga do Brasil website poses certain challenges.

Methods and Results

florabr is an R package developed to facilitate the exploration and geographical analysis of species information derived from the Flora e Funga do Brasil. Unique to florabr is its ability to interact with the latest, or any other version of the dataset, which undergoes weekly updates. I illustrate the practical application of florabr in common tasks in biogeography and conservation studies.

Conclusions

florabr is anticipated to be of significant interest to biogeographers, ecologists, curators of biological collections, and taxonomists actively contributing to the Flora e Funga do Brasil.

前提条件Flora e Funga do Brasil 项目是可靠记录巴西植物和真菌多样性的最全面的工作。该项目涉及数百名分类学家的合作工作,整合了在巴西各地收集到的植物、藻类和真菌的详细和标准化形态描述、命名状况和地理分布信息。方法和结果florabr是一个R软件包,开发它的目的是为了方便探索和地理分析来自巴西植物志的物种信息。florabr 的独特之处在于它能够与每周更新的最新版数据集或任何其他版本的数据集进行交互。我说明了 florabr 在生物地理学和保护研究的常见任务中的实际应用。结论预计生物地理学家、生态学家、生物收藏馆馆长以及积极为巴西植物志做出贡献的分类学家会对 florabr 产生浓厚的兴趣。
{"title":"florabr: An R package to explore and spatialize species distribution using Flora e Funga do Brasil","authors":"Weverton C. F. Trindade","doi":"10.1002/aps3.11616","DOIUrl":"10.1002/aps3.11616","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>The Flora e Funga do Brasil project is the most comprehensive effort to reliably document Brazilian plant and fungal diversity. It involves the collaborative work of hundreds of taxonomists, integrating detailed and standardized morphological descriptions, nomenclatural status, and geographic distribution information of plants, algae, and fungi collected throughout Brazil. Despite the extensive information available, managing the information from the Flora e Funga do Brasil website poses certain challenges.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and Results</h3>\u0000 \u0000 <p>florabr is an R package developed to facilitate the exploration and geographical analysis of species information derived from the Flora e Funga do Brasil. Unique to florabr is its ability to interact with the latest, or any other version of the dataset, which undergoes weekly updates. I illustrate the practical application of florabr in common tasks in biogeography and conservation studies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>florabr is anticipated to be of significant interest to biogeographers, ecologists, curators of biological collections, and taxonomists actively contributing to the Flora e Funga do Brasil.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified framework to investigate and interpret hybrid and allopolyploid biodiversity across biological scales 跨生物尺度调查和解释杂交种和异源多倍体生物多样性的统一框架
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-08-22 DOI: 10.1002/aps3.11612
Christopher P. Krieg

Premise

Hybridization and polyploidization are common in vascular plants and important drivers of biodiversity by facilitating speciation and ecological diversification. A primary limitation to making broad synthetic discoveries in hybrid and allopolyploid biodiversity research is the absence of a standardized framework to compare data across studies and biological scales.

Methods

Here, I present a new quantitative framework to investigate and interpret patterns in hybrid and allopolyploid biology called the divergence index (DI). The DI framework produces standardized data that are comparable across studies and variables. To show how the DI framework can be used to synthesize data, I analyzed published biochemical, physiological, and ecological trait data of hybrids and allopolyploids. I also apply key ecological and evolutionary concepts in hybrid and polyploid biology to translate nominal outcomes, including transgression, intermediacy, expansion, and contraction, in continuous DI space.

Results

Biochemical, physiological, ecological, and evolutionary data can all be analyzed, visualized, and interpreted in the DI framework. The DI framework is particularly suited to standardize and compare variables with very different scales. When using the DI framework to understand niche divergence, a metric of niche overlap can be used to complement insights to centroid and breadth changes.

Discussion

The DI framework is an accessible framework for hybrid and allopolyploid biology and represents a flexible and intuitive tool that can be used to reconcile outstanding problems in plant biodiversity research.

前提杂交和多倍体化在维管束植物中很常见,通过促进物种分化和生态多样化而成为生物多样性的重要驱动力。在杂交和全多倍体生物多样性研究中进行广泛合成发现的一个主要限制因素是缺乏一个标准化框架来比较不同研究和生物尺度的数据。 方法 在这里,我提出了一种新的定量框架,用于研究和解释杂交种和异源多倍体生物学中的模式,即分歧指数(DI)。分歧指数框架产生的标准化数据在不同研究和变量之间具有可比性。为了展示如何利用 DI 框架综合数据,我分析了已发表的杂交种和异源多倍体的生化、生理和生态性状数据。我还应用了杂交种和多倍体生物学中的关键生态学和进化概念,在连续的 DI 空间中转化名义结果,包括跃迁、中间性、扩展和收缩。 结果 生化、生理、生态和进化数据都可以在 DI 框架内进行分析、可视化和解释。DI 框架尤其适用于标准化和比较不同尺度的变量。在使用 DI 框架了解生态位分异时,可以使用生态位重叠度量来补充对中心点和广度变化的认识。 讨论 DI 框架是杂交种和异源多倍体生物学的一个简单易行的框架,是一个灵活直观的工具,可用于解决植物生物多样性研究中的突出问题。
{"title":"A unified framework to investigate and interpret hybrid and allopolyploid biodiversity across biological scales","authors":"Christopher P. Krieg","doi":"10.1002/aps3.11612","DOIUrl":"10.1002/aps3.11612","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Premise</h3>\u0000 \u0000 <p>Hybridization and polyploidization are common in vascular plants and important drivers of biodiversity by facilitating speciation and ecological diversification. A primary limitation to making broad synthetic discoveries in hybrid and allopolyploid biodiversity research is the absence of a standardized framework to compare data across studies and biological scales.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Here, I present a new quantitative framework to investigate and interpret patterns in hybrid and allopolyploid biology called the divergence index (DI). The DI framework produces standardized data that are comparable across studies and variables. To show how the DI framework can be used to synthesize data, I analyzed published biochemical, physiological, and ecological trait data of hybrids and allopolyploids. I also apply key ecological and evolutionary concepts in hybrid and polyploid biology to translate nominal outcomes, including transgression, intermediacy, expansion, and contraction, in continuous DI space.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Biochemical, physiological, ecological, and evolutionary data can all be analyzed, visualized, and interpreted in the DI framework. The DI framework is particularly suited to standardize and compare variables with very different scales. When using the DI framework to understand niche divergence, a metric of niche overlap can be used to complement insights to centroid and breadth changes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>The DI framework is an accessible framework for hybrid and allopolyploid biology and represents a flexible and intuitive tool that can be used to reconcile outstanding problems in plant biodiversity research.</p>\u0000 </section>\u0000 </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charting the course for new discoveries in polyploid lineages 为多倍体系的新发现指明方向
IF 2.4 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-08-21 DOI: 10.1002/aps3.11613
Michael R. McKain, Ya Yang, Agnieszka Golicz, Briana L. Gross
<p>Methods for generating and analyzing data from polyploid species are not new to <i>Applications in Plant Sciences</i>, yet a special issue on the topic still presents an exciting opportunity to explore newly emerging research techniques. The complexity associated with the existence of multiple genomes in a single nucleus has meant that despite decades of research, there are still unexplored frontiers at the molecular, phylogenetic, ecological, and evolutionary levels. Some uncharted areas persist despite the forays of excellent research by dedicated scientists, and some remain unmapped because the community avoids polyploid species due to a lack of tools or data. The eight articles in this special issue provide new waypoints and allow us to push the boundaries of our knowledge of polyploid lineages. The tools and applications offered here range from critical techniques for determining the ploidy level of an organism, through synthetic reviews of the optimal treatment of polyploid data for phylogenomics and population genomics, to leveraging and developing new tools to further our understanding of genome dynamics and whole-plant responses to polyploidy. We look forward to the impact that these tools and innovative approaches will have in accelerating the expansion of research into the nature and impact of polyploidy across plant taxa in the coming years.</p><p>Despite the generally acknowledged prevalence of polyploidy across plants, determining the ploidy of any given species or specimen is far from trivial. Techniques for answering this question include direct chromosome counts, but also indirect measures through flow cytometry (Smith et al., <span>2018</span>), measurements of spore sizes (Kuo et al., <span>2021</span>), and even spectroscopy (Buono and Albach, <span>2023</span>). This issue features two new tools to facilitate the accurate assessment of ploidy—one method with a long tradition in plant science, and another that takes advantage of modern sequencing data. Ramirez-Castillo et al. (<span>2024</span>) developed a method using croziers, or fiddleheads, to count chromosomes in different fern species. Although roots are typically used for mitotic chromosome counts, the ability to incorporate croziers as potential sources of material allows for a wider array of availability for samples. Ramirez-Castillo et al. use an enzyme pretreatment with a cellulose–pectinase solution to improve permeability of the tissue for the uptake of colchicine to arrest chromosomes at metaphase. Chromosome counting is the original method by which polyploidy was first described in plants (reviewed in Soltis et al., <span>2014</span>), and the method of Ramirez-Castillo et al. continues this legacy. Moving from chromosomes to sequence data, Gaynor et al. (<span>2024</span>) present nQuack, an R package that allows for ploidy estimation from sequence data ranging from whole-genome resequencing to target enrichment. Building on the methodology of nQuire (Weiß
本期的论文为下一轮的实证创新奠定了基础,探讨了一系列具有挑战性但又令人兴奋的方法,研究人员可以通过这些方法开辟新的领域,推动我们对多倍体系的认识不断向前发展,从倍性水平的基本问题到复杂的表型网络,不一而足。Phillips(2024 年)和 Ning 等人(2024 年)的综述强调了这一领域取得的令人瞩目的进展,他们综合了各种分析技术,以以前无法实现的方式处理来自复杂多倍体基因组的基因组数据。与此同时,实际确定单系倍性的新方法(Gaynor 等人,2024 年;Ramirez-Castillo 等人,2024 年)也极具价值,它提供了关键信息,没有这些信息,研究人员就无法开展下游分析。在这两个极端之间,有一些方法和应用可以进一步加深我们对多倍体系中亚基因组的起源和动态的理解(Ortiz 和 Sharbrough,2024 年;Reynolds 等,2024 年),还有一种创新的方法可用于探究多倍体的表型整合(Baker 等,2024 年),以及一种新的框架可用于系统地比较异源多倍体与祖系的表型和生态差异(Krieg,2024 年)。反思这里的进展,我们希望它们能让研究人员继续快速扩展,超越传统的研究体系,进入新的类群和新的地域。M.R.M.、Y.Y.和A.G.负责本特刊中所有稿件的编辑工作。B.L.G.领导了稿件的撰写和编辑工作,所有作者都参与了最终版本的文字和编辑工作。所有作者都批准了稿件的最终版本。
{"title":"Charting the course for new discoveries in polyploid lineages","authors":"Michael R. McKain,&nbsp;Ya Yang,&nbsp;Agnieszka Golicz,&nbsp;Briana L. Gross","doi":"10.1002/aps3.11613","DOIUrl":"10.1002/aps3.11613","url":null,"abstract":"&lt;p&gt;Methods for generating and analyzing data from polyploid species are not new to &lt;i&gt;Applications in Plant Sciences&lt;/i&gt;, yet a special issue on the topic still presents an exciting opportunity to explore newly emerging research techniques. The complexity associated with the existence of multiple genomes in a single nucleus has meant that despite decades of research, there are still unexplored frontiers at the molecular, phylogenetic, ecological, and evolutionary levels. Some uncharted areas persist despite the forays of excellent research by dedicated scientists, and some remain unmapped because the community avoids polyploid species due to a lack of tools or data. The eight articles in this special issue provide new waypoints and allow us to push the boundaries of our knowledge of polyploid lineages. The tools and applications offered here range from critical techniques for determining the ploidy level of an organism, through synthetic reviews of the optimal treatment of polyploid data for phylogenomics and population genomics, to leveraging and developing new tools to further our understanding of genome dynamics and whole-plant responses to polyploidy. We look forward to the impact that these tools and innovative approaches will have in accelerating the expansion of research into the nature and impact of polyploidy across plant taxa in the coming years.&lt;/p&gt;&lt;p&gt;Despite the generally acknowledged prevalence of polyploidy across plants, determining the ploidy of any given species or specimen is far from trivial. Techniques for answering this question include direct chromosome counts, but also indirect measures through flow cytometry (Smith et al., &lt;span&gt;2018&lt;/span&gt;), measurements of spore sizes (Kuo et al., &lt;span&gt;2021&lt;/span&gt;), and even spectroscopy (Buono and Albach, &lt;span&gt;2023&lt;/span&gt;). This issue features two new tools to facilitate the accurate assessment of ploidy—one method with a long tradition in plant science, and another that takes advantage of modern sequencing data. Ramirez-Castillo et al. (&lt;span&gt;2024&lt;/span&gt;) developed a method using croziers, or fiddleheads, to count chromosomes in different fern species. Although roots are typically used for mitotic chromosome counts, the ability to incorporate croziers as potential sources of material allows for a wider array of availability for samples. Ramirez-Castillo et al. use an enzyme pretreatment with a cellulose–pectinase solution to improve permeability of the tissue for the uptake of colchicine to arrest chromosomes at metaphase. Chromosome counting is the original method by which polyploidy was first described in plants (reviewed in Soltis et al., &lt;span&gt;2014&lt;/span&gt;), and the method of Ramirez-Castillo et al. continues this legacy. Moving from chromosomes to sequence data, Gaynor et al. (&lt;span&gt;2024&lt;/span&gt;) present nQuack, an R package that allows for ploidy estimation from sequence data ranging from whole-genome resequencing to target enrichment. Building on the methodology of nQuire (Weiß ","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applications in Plant Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1