Jess Gersony, Anju Manandhar, Uri Hochberg, Nora Abdellaoui, Paula Llanos, Jacques Dumais, N Michele Holbrook, Fulton E Rockwell
Background and aims: Nolana mollis is a dominant plant species in the hyperarid Atacama Desert. A previous hypothesis states that N. mollis owes its success to the condensation of atmospheric water from undersaturated air onto its leaf surfaces by exuded salts, and absorption of this water by its leaves, or by shallow roots following drip onto the soil surface; living roots of N. mollis were suggested to only exist near the soil surface.
Methods: We conducted a field experiment with three treatments to establish the source of N. mollis's water: control, root cutting to block uptake of all soil moisture, and plastic skirting at the soil surface to block leaf drip of atmospheric water.
Key results: Xylem tensions monotonically increased after root cutting until the plants wilted irreversibly, diverging clearly from the skirted and control treatments showing diurnal patterns of increasing tension in the day followed by recovery overnight.
Conclusions: Hydration in N. mollis requires access to deep soil water, motivating an alternative hypothesis: imperfect salt exclusion at the root surface and salt exudation by the leaf results in less root fouling and lower xylem tensions, while during the day evaporation of the surface brine, condensed overnight, increases the water use efficiency of carbon gain.
{"title":"Making dew in the Atacama Desert: a paradigmatic case of plant water uptake water from an unsaturated atmosphere fails a test.","authors":"Jess Gersony, Anju Manandhar, Uri Hochberg, Nora Abdellaoui, Paula Llanos, Jacques Dumais, N Michele Holbrook, Fulton E Rockwell","doi":"10.1093/aob/mcae221","DOIUrl":"https://doi.org/10.1093/aob/mcae221","url":null,"abstract":"<p><strong>Background and aims: </strong>Nolana mollis is a dominant plant species in the hyperarid Atacama Desert. A previous hypothesis states that N. mollis owes its success to the condensation of atmospheric water from undersaturated air onto its leaf surfaces by exuded salts, and absorption of this water by its leaves, or by shallow roots following drip onto the soil surface; living roots of N. mollis were suggested to only exist near the soil surface.</p><p><strong>Methods: </strong>We conducted a field experiment with three treatments to establish the source of N. mollis's water: control, root cutting to block uptake of all soil moisture, and plastic skirting at the soil surface to block leaf drip of atmospheric water.</p><p><strong>Key results: </strong>Xylem tensions monotonically increased after root cutting until the plants wilted irreversibly, diverging clearly from the skirted and control treatments showing diurnal patterns of increasing tension in the day followed by recovery overnight.</p><p><strong>Conclusions: </strong>Hydration in N. mollis requires access to deep soil water, motivating an alternative hypothesis: imperfect salt exclusion at the root surface and salt exudation by the leaf results in less root fouling and lower xylem tensions, while during the day evaporation of the surface brine, condensed overnight, increases the water use efficiency of carbon gain.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosalie Hermans, Caroline A E Strömberg, Tessi Löffelmann, Luc Vrydaghs, Lien Speleers, Alexandre Chevalier, Karin Nys, Christophe Snoeck
Background and aims: The absence of a modern plant-based 'dicotyledon' phytolith reference baseline impedes the accurate interpretation of fossil phytolith records in archaeological and palaeoecological research within North-western Europe. This study aims to fill this gap by documenting and analysing the phytolith record from modern dicotyledon taxa occurring in this region.
Methods: Phytoliths were extracted from several plant parts of 117 plant specimens representing 74 species (1-2 specimens/species). The study employed light microscopy to examine phytolith production (non-producer, trace, common, or abundant) and phytolith assemblage composition. The data were analysed statistically to (a) determine the influence of taxonomy and plant part on phytolith presence (absent/present) using a Mixed Model, (b) assess phytolith assemblage variation using a Permutational Multivariate Analysis of Variance (PerMANOVA), and (c) identify patterns among sample groups including segregation for plant part, life form (forbs vs shrubs/trees), and order using a Linear Discriminant Analyses (LDA).
Key results: Morphotype analysis reveals diagnostic morphotypes and features for specific plant families, genera, and plant parts. LDA effectively segregated plant parts and life forms, though taxonomic groupings showed limited segregation. Phytolith presence (absent/present) was found to vary, influenced by both plant part and taxonomy. For species examined through two specimens, although phytolith production varied considerably, phytolith assemblage composition was consistent.
Conclusions: This study establishes a 'dicotyledon' phytolith baseline for North-western Europe, showing that the phytolith record can be informative in terms of plant part and life form and that several phytolith morphotypes and/or features are taxonomically diagnostic below 'dicotyledon' level. The findings constitute a foundation upon which future research can build, refining and expanding our knowledge of the North-western European region.
{"title":"Phytoliths in dicotyledons occurring in North-western Europe: Establishing a baseline.","authors":"Rosalie Hermans, Caroline A E Strömberg, Tessi Löffelmann, Luc Vrydaghs, Lien Speleers, Alexandre Chevalier, Karin Nys, Christophe Snoeck","doi":"10.1093/aob/mcae217","DOIUrl":"10.1093/aob/mcae217","url":null,"abstract":"<p><strong>Background and aims: </strong>The absence of a modern plant-based 'dicotyledon' phytolith reference baseline impedes the accurate interpretation of fossil phytolith records in archaeological and palaeoecological research within North-western Europe. This study aims to fill this gap by documenting and analysing the phytolith record from modern dicotyledon taxa occurring in this region.</p><p><strong>Methods: </strong>Phytoliths were extracted from several plant parts of 117 plant specimens representing 74 species (1-2 specimens/species). The study employed light microscopy to examine phytolith production (non-producer, trace, common, or abundant) and phytolith assemblage composition. The data were analysed statistically to (a) determine the influence of taxonomy and plant part on phytolith presence (absent/present) using a Mixed Model, (b) assess phytolith assemblage variation using a Permutational Multivariate Analysis of Variance (PerMANOVA), and (c) identify patterns among sample groups including segregation for plant part, life form (forbs vs shrubs/trees), and order using a Linear Discriminant Analyses (LDA).</p><p><strong>Key results: </strong>Morphotype analysis reveals diagnostic morphotypes and features for specific plant families, genera, and plant parts. LDA effectively segregated plant parts and life forms, though taxonomic groupings showed limited segregation. Phytolith presence (absent/present) was found to vary, influenced by both plant part and taxonomy. For species examined through two specimens, although phytolith production varied considerably, phytolith assemblage composition was consistent.</p><p><strong>Conclusions: </strong>This study establishes a 'dicotyledon' phytolith baseline for North-western Europe, showing that the phytolith record can be informative in terms of plant part and life form and that several phytolith morphotypes and/or features are taxonomically diagnostic below 'dicotyledon' level. The findings constitute a foundation upon which future research can build, refining and expanding our knowledge of the North-western European region.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelsey R Carter, Molly A Cavaleri, Owen K Atkin, Nur H A Bahar, Alex W Cheesman, Zineb Choury, Kristine Y Crous, Christopher E Doughty, Mirindi E Dusenge, Kim S Ely, John R Evans, Jéssica Fonseca da Silva, Alida C Mau, Belinda E Medlyn, Patrick Meir, Richard J Norby, Jennifer Read, Sasha C Reed, Peter B Reich, Alistair Rogers, Shawn P Serbin, Martijn Slot, Elsa C Schwartz, Edgard S Tribuzy, Johan Uddling, Angelica Vårhammar, Anthony P Walker, Klaus Winter, Tana E Wood, Jin Wu
Background and aims: Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.
Methods: We used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity, and elevation, as well as also how responses differed among successional strategy, leaf habit, and light environment.
Key results: Optimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for "light" than "shaded" leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen. Most global modeling efforts consider all tropical forests as a single "broadleaf evergreen" functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modeling efforts.
Conclusions: This novel research will inform modeling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming.
{"title":"Photosynthetic responses to temperature across the tropics: a meta-analytic approach.","authors":"Kelsey R Carter, Molly A Cavaleri, Owen K Atkin, Nur H A Bahar, Alex W Cheesman, Zineb Choury, Kristine Y Crous, Christopher E Doughty, Mirindi E Dusenge, Kim S Ely, John R Evans, Jéssica Fonseca da Silva, Alida C Mau, Belinda E Medlyn, Patrick Meir, Richard J Norby, Jennifer Read, Sasha C Reed, Peter B Reich, Alistair Rogers, Shawn P Serbin, Martijn Slot, Elsa C Schwartz, Edgard S Tribuzy, Johan Uddling, Angelica Vårhammar, Anthony P Walker, Klaus Winter, Tana E Wood, Jin Wu","doi":"10.1093/aob/mcae206","DOIUrl":"https://doi.org/10.1093/aob/mcae206","url":null,"abstract":"<p><strong>Background and aims: </strong>Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.</p><p><strong>Methods: </strong>We used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity, and elevation, as well as also how responses differed among successional strategy, leaf habit, and light environment.</p><p><strong>Key results: </strong>Optimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for \"light\" than \"shaded\" leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen. Most global modeling efforts consider all tropical forests as a single \"broadleaf evergreen\" functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modeling efforts.</p><p><strong>Conclusions: </strong>This novel research will inform modeling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Intra-individual variation in Galium odoratum is affected by experimental drought and shading.","authors":"","doi":"10.1093/aob/mcae211","DOIUrl":"https://doi.org/10.1093/aob/mcae211","url":null,"abstract":"","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José C Del Valle, Melissa León-Osper, Carlos Domínguez-González, Mª Luisa Buide, Montserrat Arista, Pedro L Ortiz, Justen B Whittall, Eduardo Narbona
Background and aims: Flower colour is a key feature in plant-pollinator interactions that make the flowers visible amid the surrounding green vegetation. Green flowers are expected to be scarcely conspicuous to pollinators; however, many of them are visited by pollinators even in the absence of other traits that might attract pollinators (e.g., floral scents). In this study, we investigate how entomophilous species with green flowers are perceived by pollinators.
Methods: We obtained reflectance spectra data of 30 European species that display green or green-yellow flowers to the human eye. These data were used to perform spectral analyses, calculate both chromatic (colour contrast against the background) and achromatic (colour contrast that relies on the signals from the green-sensitive photoreceptors) cues, and model colour perception by hymenopterans (bees) and dipterans (flies).
Key results: The visibility of green flowers to bees and flies (i.e., their chromatic contrast values) was lower compared to other floral colours commonly pollinated by these insects, whereas green-yellow flowers were as conspicuous as the other flower colours. Green flowers with low chromatic contrast values exhibited higher achromatic contrasts, which is used to detect distant flowers at narrow visual angles, than green-yellow flowers. Additionally, the marker points (i.e., sharp transition in floral reflectance that aid pollinators in locating them) of green and green-yellow flowers aligned to some degree with the colour discrimination abilities of bees and flies.
Conclusions: We found that many entomophilous green and green-yellow flowers are conspicuous to bees and flies through their chromatic or achromatic contrasts. While acquiring pigments like carotenoids, which impart a yellowish hue to flowers and enhances their visibility to pollinators, could increase their conspicuousness, the metabolic costs of pigment production, along with the use of alternative strategies to attract pollinators, may have constrained carotenoid emergence in certain lineages of green-flowered species.
{"title":"Green flowers need yellow to get noticed in a green world.","authors":"José C Del Valle, Melissa León-Osper, Carlos Domínguez-González, Mª Luisa Buide, Montserrat Arista, Pedro L Ortiz, Justen B Whittall, Eduardo Narbona","doi":"10.1093/aob/mcae213","DOIUrl":"https://doi.org/10.1093/aob/mcae213","url":null,"abstract":"<p><strong>Background and aims: </strong>Flower colour is a key feature in plant-pollinator interactions that make the flowers visible amid the surrounding green vegetation. Green flowers are expected to be scarcely conspicuous to pollinators; however, many of them are visited by pollinators even in the absence of other traits that might attract pollinators (e.g., floral scents). In this study, we investigate how entomophilous species with green flowers are perceived by pollinators.</p><p><strong>Methods: </strong>We obtained reflectance spectra data of 30 European species that display green or green-yellow flowers to the human eye. These data were used to perform spectral analyses, calculate both chromatic (colour contrast against the background) and achromatic (colour contrast that relies on the signals from the green-sensitive photoreceptors) cues, and model colour perception by hymenopterans (bees) and dipterans (flies).</p><p><strong>Key results: </strong>The visibility of green flowers to bees and flies (i.e., their chromatic contrast values) was lower compared to other floral colours commonly pollinated by these insects, whereas green-yellow flowers were as conspicuous as the other flower colours. Green flowers with low chromatic contrast values exhibited higher achromatic contrasts, which is used to detect distant flowers at narrow visual angles, than green-yellow flowers. Additionally, the marker points (i.e., sharp transition in floral reflectance that aid pollinators in locating them) of green and green-yellow flowers aligned to some degree with the colour discrimination abilities of bees and flies.</p><p><strong>Conclusions: </strong>We found that many entomophilous green and green-yellow flowers are conspicuous to bees and flies through their chromatic or achromatic contrasts. While acquiring pigments like carotenoids, which impart a yellowish hue to flowers and enhances their visibility to pollinators, could increase their conspicuousness, the metabolic costs of pigment production, along with the use of alternative strategies to attract pollinators, may have constrained carotenoid emergence in certain lineages of green-flowered species.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinlong Li, Andrea C Westerband, Ian J Wright, Xueqin Li, Jingui Du, Quanlin Zhong, Dandan Hu, Dongliang Cheng
Background and aims: The whole-plant economics spectrum (PES) describes coordination between organ-level traits that together determine resource use strategies and is relevant for understanding plant responses to environmental change. Whereas coordination between organs has previously been explored across species, it remains unclear whether patterns observed across species hold within species. In addition, the key driving forces underlying this coordination warrant clarification.
Methods: In this study we used univariate (regression analysis) and multivariate (principal components analysis, network analysis) analyses to investigate the environmental drivers of intraspecific trait variation (ITV) and consequently, trait covariation, focusing on leaf and fine root traits. We sampled 60 individuals of Schima superba, a widespread evergreen tree, across five elevations in a subtropical forest in China, measuring traits associated with resource use and capture, including photosynthesis, specific root length and root diameter.
Key results: Leaf and root traits were significantly correlated within species, forming a PES. We found that plants at low and high elevation had more resource acquisitive traits than at intermediate elevation. Notably, leaf and root traits, as well as a composite variable that contained both, varied nonlinearly with elevation. Leaf trait variation was driven primarily by temperature, whereas root trait variation and a composite variable containing leaf and root traits, was most strongly influenced by temperature and plant-available soil phosphorus.
Conclusions: Our findings show that the coordinated responses of individual traits to climate and soil properties underlie intraspecific variation in whole-plant resource use strategies across environmental gradients. These findings are contrary to recent studies that have found evidence of decoupling between above- and below-ground traits, which suggests that there is selection for coordination among traits in S. superba. Thus, our study enhances our understanding of the key drivers, as well as the ecological significance of environmentally-driven ITV.
{"title":"Temperature and plant-available soil phosphorus drive intraspecific variation in plant economic traits of Schima superba across an elevation gradient.","authors":"Jinlong Li, Andrea C Westerband, Ian J Wright, Xueqin Li, Jingui Du, Quanlin Zhong, Dandan Hu, Dongliang Cheng","doi":"10.1093/aob/mcae212","DOIUrl":"https://doi.org/10.1093/aob/mcae212","url":null,"abstract":"<p><strong>Background and aims: </strong>The whole-plant economics spectrum (PES) describes coordination between organ-level traits that together determine resource use strategies and is relevant for understanding plant responses to environmental change. Whereas coordination between organs has previously been explored across species, it remains unclear whether patterns observed across species hold within species. In addition, the key driving forces underlying this coordination warrant clarification.</p><p><strong>Methods: </strong>In this study we used univariate (regression analysis) and multivariate (principal components analysis, network analysis) analyses to investigate the environmental drivers of intraspecific trait variation (ITV) and consequently, trait covariation, focusing on leaf and fine root traits. We sampled 60 individuals of Schima superba, a widespread evergreen tree, across five elevations in a subtropical forest in China, measuring traits associated with resource use and capture, including photosynthesis, specific root length and root diameter.</p><p><strong>Key results: </strong>Leaf and root traits were significantly correlated within species, forming a PES. We found that plants at low and high elevation had more resource acquisitive traits than at intermediate elevation. Notably, leaf and root traits, as well as a composite variable that contained both, varied nonlinearly with elevation. Leaf trait variation was driven primarily by temperature, whereas root trait variation and a composite variable containing leaf and root traits, was most strongly influenced by temperature and plant-available soil phosphorus.</p><p><strong>Conclusions: </strong>Our findings show that the coordinated responses of individual traits to climate and soil properties underlie intraspecific variation in whole-plant resource use strategies across environmental gradients. These findings are contrary to recent studies that have found evidence of decoupling between above- and below-ground traits, which suggests that there is selection for coordination among traits in S. superba. Thus, our study enhances our understanding of the key drivers, as well as the ecological significance of environmentally-driven ITV.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thainã R Monteiro, Rogério V S Gonçalves, Francismeire J Telles, Gudryan J Barônio, Anselmo Nogueira, Vinícius L G Brito
Background: Floral adaptations supposedly favour pollen grains to cross the numerous barriers faced during their journey to stigmas. Stamen dimorphism and specialized petals, like the cucculus in the Cassieae tribe (Fabaceae), are commonly observed in flowers that offer only pollen as a resource for bee pollinators. Here, we experimentally investigated whether the stamen dimorphism and cucculus enhance pollen placement on the bee's body.
Methods: We used 3D-printed bee models to apply artificial vibrations on the flowers of Chamaechrista latistipula with their cucculus deflected or maintained in its original position and their anther pores manipulated. After each simulated flower visit, we captured photographs of the artificial bee from four distinct angles. Employing digital imaging techniques, we documented the presence and location of pollen and stigma on the bee's body.
Key results: Our findings reveal that the cucculus redistributes pollen grains on the bee's body. There is a remarkable increase in pollen density (approximately tenfold) on the lateral side adjacent to the cucculus, precisely where the stigma contacts the bee when the cucculus is unmanipulated. Furthermore, the cucculus also enhances pollen placement on the ventral region of the bee, indicating its additional function. The cucculus also increases the accuracy of pollen grains on the adjacent lateral region of the bee's body, irrespective of the pollen grains released by small or large anthers.
Conclusions: Floral specialized traits, such as modified petals and stamen dimorphism, can modify the fate of pollen grains and ultimately contribute to the male reproductive performance in pollen flowers with poricidal anthers. The cucculus exhibits a dual role by promoting pollen placement in optimal regions for pollination and probably supporting pollen grains for bee feeding. These findings provide valuable insights into the adaptive significance of floral traits and their impact on the reproductive success of pollen flowers.
{"title":"A modified petal and stamen dimorphism interact to enhance pollen placement by a buzz-pollinated flower.","authors":"Thainã R Monteiro, Rogério V S Gonçalves, Francismeire J Telles, Gudryan J Barônio, Anselmo Nogueira, Vinícius L G Brito","doi":"10.1093/aob/mcae210","DOIUrl":"https://doi.org/10.1093/aob/mcae210","url":null,"abstract":"<p><strong>Background: </strong>Floral adaptations supposedly favour pollen grains to cross the numerous barriers faced during their journey to stigmas. Stamen dimorphism and specialized petals, like the cucculus in the Cassieae tribe (Fabaceae), are commonly observed in flowers that offer only pollen as a resource for bee pollinators. Here, we experimentally investigated whether the stamen dimorphism and cucculus enhance pollen placement on the bee's body.</p><p><strong>Methods: </strong>We used 3D-printed bee models to apply artificial vibrations on the flowers of Chamaechrista latistipula with their cucculus deflected or maintained in its original position and their anther pores manipulated. After each simulated flower visit, we captured photographs of the artificial bee from four distinct angles. Employing digital imaging techniques, we documented the presence and location of pollen and stigma on the bee's body.</p><p><strong>Key results: </strong>Our findings reveal that the cucculus redistributes pollen grains on the bee's body. There is a remarkable increase in pollen density (approximately tenfold) on the lateral side adjacent to the cucculus, precisely where the stigma contacts the bee when the cucculus is unmanipulated. Furthermore, the cucculus also enhances pollen placement on the ventral region of the bee, indicating its additional function. The cucculus also increases the accuracy of pollen grains on the adjacent lateral region of the bee's body, irrespective of the pollen grains released by small or large anthers.</p><p><strong>Conclusions: </strong>Floral specialized traits, such as modified petals and stamen dimorphism, can modify the fate of pollen grains and ultimately contribute to the male reproductive performance in pollen flowers with poricidal anthers. The cucculus exhibits a dual role by promoting pollen placement in optimal regions for pollination and probably supporting pollen grains for bee feeding. These findings provide valuable insights into the adaptive significance of floral traits and their impact on the reproductive success of pollen flowers.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Backgrounds and aims: Shading, water deficit, and crop load shape plant development in a very plastic way. They directly influence the plant's carbon supply and demand to and from the different organs via metabolic, hydraulic and hormonal mechanisms. However, how the multiple environmental factors combine through these mechanisms and how they interplay with carbon status, vegetative and reproductive development and carbon assimilation of the plant needs to be investigated in the context of current climatic and technological constraints.
Methods: With this aim, two experiments were conducted on potted grapevines, subjected to ten combinations of treatments. Axis organogenesis, berry characteristics at harvest (weight, number and total soluble content) and a series of leaf traits (gas exchanges, non-structural carbohydrate contents, water potential and SPAD values) were measured.
Key results: Grapevine development showed different responses corresponding to different sink priorities: under shade, vegetative development was maintained at the expense of berries, whereas under high crop load and water deficit, berry growth was the priority sink. These responses were accompanied by changes in the specific leaf area in agreement with the shade avoidance syndrome. These different strategies affected the plant carbon status as estimated through the starch content in leaves. Leaf starch content was not affected by shade, while it decreased under water deficit and crop load conditions. Carbon assimilation was decreased under water deficit, low crop load and shading conditions. Hydraulic properties and leaf nitrogen content correlated withthis decrease while plant carbon status has a very low impact. Finally, no major interaction between the different types of constraints were observed both on morphological and functional variables.
Conclusions: Depending on the type of abiotic constraints, grapevine exhibits specific morphogenetic responses at plant and leaf levels. The absence of interaction between the different constraints showed that grapevine is able to exhibit independent responses to shade and water deficit. This result is of major importance to further design new agricultural systems facing multiple abiotic constraints, such as those in agroforestery and agrivolatic system.
{"title":"Source-sink manipulations through shading, crop load and water deficit affect plant morphogenesis and carbon sink priorities leading to contrasted plant carbon status in grapevine.","authors":"Magali Poupard, Agustina Gallo, Romain Boulord, Pablo Guillem, Gaëlle Rolland, Thierry Simonneau, Angélique Christophe, Benoît Pallas","doi":"10.1093/aob/mcae203","DOIUrl":"https://doi.org/10.1093/aob/mcae203","url":null,"abstract":"<p><strong>Backgrounds and aims: </strong>Shading, water deficit, and crop load shape plant development in a very plastic way. They directly influence the plant's carbon supply and demand to and from the different organs via metabolic, hydraulic and hormonal mechanisms. However, how the multiple environmental factors combine through these mechanisms and how they interplay with carbon status, vegetative and reproductive development and carbon assimilation of the plant needs to be investigated in the context of current climatic and technological constraints.</p><p><strong>Methods: </strong>With this aim, two experiments were conducted on potted grapevines, subjected to ten combinations of treatments. Axis organogenesis, berry characteristics at harvest (weight, number and total soluble content) and a series of leaf traits (gas exchanges, non-structural carbohydrate contents, water potential and SPAD values) were measured.</p><p><strong>Key results: </strong>Grapevine development showed different responses corresponding to different sink priorities: under shade, vegetative development was maintained at the expense of berries, whereas under high crop load and water deficit, berry growth was the priority sink. These responses were accompanied by changes in the specific leaf area in agreement with the shade avoidance syndrome. These different strategies affected the plant carbon status as estimated through the starch content in leaves. Leaf starch content was not affected by shade, while it decreased under water deficit and crop load conditions. Carbon assimilation was decreased under water deficit, low crop load and shading conditions. Hydraulic properties and leaf nitrogen content correlated withthis decrease while plant carbon status has a very low impact. Finally, no major interaction between the different types of constraints were observed both on morphological and functional variables.</p><p><strong>Conclusions: </strong>Depending on the type of abiotic constraints, grapevine exhibits specific morphogenetic responses at plant and leaf levels. The absence of interaction between the different constraints showed that grapevine is able to exhibit independent responses to shade and water deficit. This result is of major importance to further design new agricultural systems facing multiple abiotic constraints, such as those in agroforestery and agrivolatic system.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina A Schmidt, Ute Schmiedel, Frederic Carstens, Anna-Lena Rau, Barbara Rudolph-Bartsch
Background and aims: Oophytum (Aizoaceae) is a locally endemic genus of the extremely fast evolving subfamily Ruschioideae and consists of only two formally accepted species (O. nanum and O. oviforme). Both species are leaf-succulent dwarf shrubs and habitat specialists on quartz fields in the Knersvlakte, a renowned biodiversity hotspot in the arid winter-rainfall Succulent Karoo Biome of South Africa. Quartz fields present specialised patchy habitats with an island-like distribution in the landscape. Oophytum oviforme grows in the south-western part, whereas O. nanum covers most of the remaining Knersvlakte. These species co-occur in a small area but within different quartz islands. We investigated the effects of the patchy distribution, environmental conditions and potential effects of paleoclimatic changes on the genetics of Oophytum.
Methods: Phylogenetic and population genetic analyses of 35 populations of the genus, covering its entire distribution area, were conducted using four cpDNA markers and an AFLP dataset. These were combined with environmental data via a principal component analysis and comparative heatmap analyses.
Key results: The genetic pattern of the Oophytum metapopulation is a tripartite division with a northern, central and western group. This geographical pattern does not correspond to the two-species concept of Oophytum. Only the western O. oviforme populations form a monophyletic lineage, whereas the central populations of O. oviforme are genetic hybrids of O. nanum populations. The highly restricted gene flow often resulted in private gene pools with very low genetic diversity, in contrast to the hybrid gene pools of the central and edge populations.
Conclusions: Oophytum is an exceptional example of an extremely fast-evolving genus that illustrates the high speciation rate of the Ruschioideae and their success as one of the leading plant groups of the drought-prone succulent Karoo Biome. The survival strategy of these dwarf quartz-field endemics is an interplay of adaptation to diverse island habitats, highly restricted gene flow, occasional long-distance dispersal, migration, founder effects and hybridisation events within a small and restricted area caused by glacial and interglacial changing climate conditions from Pleistocene up to Present. These findings have important implications for future conservation management strategies.
背景和目的:Oophytum (Aizoaceae) 是一个当地特有的属,属于进化极快的蔷薇亚科,只有两个正式认可的物种(O. nanum 和 O. oviforme)。这两个物种都是多叶矮小灌木,是南非干旱的冬季降雨多汁卡鲁生物群落中著名的生物多样性热点地区 Knersvlakte 石英田的栖息地专家。石英田是一种特殊的成片栖息地,在景观中呈岛屿状分布。Oophytum oviforme 生长在西南部,而 O. nanum 则覆盖了其余 Knersvlakte 的大部分地区。这些物种共同分布在一小块区域内,但属于不同的石英岛。我们研究了斑点状分布、环境条件和古气候变化对 Oophytum 遗传学的潜在影响:方法:使用四个 cpDNA 标记和一个 AFLP 数据集对该属的 35 个种群进行了系统发育和种群遗传分析,这些分析涵盖了该属的整个分布区。通过主成分分析和比较热图分析将这些数据与环境数据相结合:主要结果:Oophytum 元种群的遗传模式是由北部、中部和西部三部分组成的。这种地理格局与 Oophytum 的双物种概念并不相符。只有西部的 O. oviforme 种群形成了单系,而中部的 O. oviforme 种群则是 O. nanum 种群的遗传杂交种。高度受限的基因流动往往导致遗传多样性极低的私有基因库,与中部和边缘种群的杂交基因库形成鲜明对比:Oophytum 是一个极速进化属的特殊例子,它说明了蔷薇科植物的高物种进化率,以及它们作为易受干旱影响的多汁卡鲁生物群落的主要植物类群之一所取得的成功。这些矮小的石英地特有植物的生存策略是适应多样化的岛屿生境、高度受限的基因流动、偶尔的远距离扩散、迁移、创始者效应和杂交事件的相互作用,这些都是由从更新世至今的冰川期和间冰期不断变化的气候条件造成的狭小而受限的区域内发生的。这些发现对未来的保护管理策略具有重要意义。
{"title":"Diversity on a small scale - phylogeography of the locally endemic dwarf succulent genus Oophytum (Aizoaceae) in the Knersvlakte of South Africa.","authors":"Sabrina A Schmidt, Ute Schmiedel, Frederic Carstens, Anna-Lena Rau, Barbara Rudolph-Bartsch","doi":"10.1093/aob/mcae207","DOIUrl":"https://doi.org/10.1093/aob/mcae207","url":null,"abstract":"<p><strong>Background and aims: </strong>Oophytum (Aizoaceae) is a locally endemic genus of the extremely fast evolving subfamily Ruschioideae and consists of only two formally accepted species (O. nanum and O. oviforme). Both species are leaf-succulent dwarf shrubs and habitat specialists on quartz fields in the Knersvlakte, a renowned biodiversity hotspot in the arid winter-rainfall Succulent Karoo Biome of South Africa. Quartz fields present specialised patchy habitats with an island-like distribution in the landscape. Oophytum oviforme grows in the south-western part, whereas O. nanum covers most of the remaining Knersvlakte. These species co-occur in a small area but within different quartz islands. We investigated the effects of the patchy distribution, environmental conditions and potential effects of paleoclimatic changes on the genetics of Oophytum.</p><p><strong>Methods: </strong>Phylogenetic and population genetic analyses of 35 populations of the genus, covering its entire distribution area, were conducted using four cpDNA markers and an AFLP dataset. These were combined with environmental data via a principal component analysis and comparative heatmap analyses.</p><p><strong>Key results: </strong>The genetic pattern of the Oophytum metapopulation is a tripartite division with a northern, central and western group. This geographical pattern does not correspond to the two-species concept of Oophytum. Only the western O. oviforme populations form a monophyletic lineage, whereas the central populations of O. oviforme are genetic hybrids of O. nanum populations. The highly restricted gene flow often resulted in private gene pools with very low genetic diversity, in contrast to the hybrid gene pools of the central and edge populations.</p><p><strong>Conclusions: </strong>Oophytum is an exceptional example of an extremely fast-evolving genus that illustrates the high speciation rate of the Ruschioideae and their success as one of the leading plant groups of the drought-prone succulent Karoo Biome. The survival strategy of these dwarf quartz-field endemics is an interplay of adaptation to diverse island habitats, highly restricted gene flow, occasional long-distance dispersal, migration, founder effects and hybridisation events within a small and restricted area caused by glacial and interglacial changing climate conditions from Pleistocene up to Present. These findings have important implications for future conservation management strategies.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background and aims: Bamboo is a grass in the Poaceae family with various applications. Bamboo leaves can accumulate high silica. However, silica deposition in bamboo has received limited study. Therefore, this research investigated silica accumulation in Dendrocalamus copelandii leaves. The study includes the localisation of silica through phytolith morphology, examination of the distribution patterns of phytoliths in epidermal tissues, analysis of silica accumulation within specialised silica cells (short cells), and analysis of silicon concentration across various leaf developmental stages.
Methods: We employed imaging techniques, including Differential interference contrast and Scanning electron microscope incorporated with an energy-dispersive X-ray spectrometer, to investigate silica accumulation in bamboo leaves. We also analysed silicon concentration using Inductively coupled plasma-optical emission spectroscopy.
Key results: Leaves of D. copelandii exhibited 11 phytolith morphotypes, such as BILOBATE, POLYLOBATE, SADDLE, ACUTE, ACUTE BULBOSUS, MICROHAIR, STOMATA, BULLIFORM FLABELLATE, ELONGATE SINUATE, ELONGATE ENTIRE and TRACHEARY. Most of these phytoliths were found in short cells (BILOBATE, POLYLOBATE and SADDLE) of epidermal tissues. The short cells were arranged transversely along the leaf length. BILOBATE was found in both the abaxial and adaxial epidermis, while SADDLE was found only in the abaxial epidermis. Silica accumulation in the short cells of unexpanded leaves begins at the leaf apex, spreads to the middle and base positions, and accumulates first in the abaxial before the adaxial epidermis. Moreover, bamboo leaves accumulate more silicon concentration as they age.
Conclusions: Phytolith morphotypes and silica accumulation in epidermal short cells are key factors in understanding silica deposition. Leaf age and climate significantly impact silicon concentration in bamboo leaves. Our findings are informative for archaeological studies and for plant taxonomical classification. The results are also applicable for biotechnological applications.
{"title":"Exploring silica accumulation in bamboo leaves: A study on phytolith morphology and epidermal patterning in the tropical giant bamboo Dendrocalamus copelandii.","authors":"Naritsa Rotmuenwai, Ketsara Aryuyo, Nuttida Kruethaworn, Witoon Wattananit, Nimnara Yookongkaew","doi":"10.1093/aob/mcae209","DOIUrl":"https://doi.org/10.1093/aob/mcae209","url":null,"abstract":"<p><strong>Background and aims: </strong>Bamboo is a grass in the Poaceae family with various applications. Bamboo leaves can accumulate high silica. However, silica deposition in bamboo has received limited study. Therefore, this research investigated silica accumulation in Dendrocalamus copelandii leaves. The study includes the localisation of silica through phytolith morphology, examination of the distribution patterns of phytoliths in epidermal tissues, analysis of silica accumulation within specialised silica cells (short cells), and analysis of silicon concentration across various leaf developmental stages.</p><p><strong>Methods: </strong>We employed imaging techniques, including Differential interference contrast and Scanning electron microscope incorporated with an energy-dispersive X-ray spectrometer, to investigate silica accumulation in bamboo leaves. We also analysed silicon concentration using Inductively coupled plasma-optical emission spectroscopy.</p><p><strong>Key results: </strong>Leaves of D. copelandii exhibited 11 phytolith morphotypes, such as BILOBATE, POLYLOBATE, SADDLE, ACUTE, ACUTE BULBOSUS, MICROHAIR, STOMATA, BULLIFORM FLABELLATE, ELONGATE SINUATE, ELONGATE ENTIRE and TRACHEARY. Most of these phytoliths were found in short cells (BILOBATE, POLYLOBATE and SADDLE) of epidermal tissues. The short cells were arranged transversely along the leaf length. BILOBATE was found in both the abaxial and adaxial epidermis, while SADDLE was found only in the abaxial epidermis. Silica accumulation in the short cells of unexpanded leaves begins at the leaf apex, spreads to the middle and base positions, and accumulates first in the abaxial before the adaxial epidermis. Moreover, bamboo leaves accumulate more silicon concentration as they age.</p><p><strong>Conclusions: </strong>Phytolith morphotypes and silica accumulation in epidermal short cells are key factors in understanding silica deposition. Leaf age and climate significantly impact silicon concentration in bamboo leaves. Our findings are informative for archaeological studies and for plant taxonomical classification. The results are also applicable for biotechnological applications.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}