Plants have developed finely tuned, cellular mechanisms to respond to a variety of intrinsic and extrinsic stimuli. In several examples, these responses necessitate rearrangements of the cytoplasm that are coordinated by a network of actin microfilaments and microtubules, dynamic polymers collectively known as the cytoskeleton. This review focuses on five different cellular responses in which the actin cytoskeleton redistributes following extracellular stimulation: pollen tube tip growth and the self-incompatibility response; root hair responses to bacterial nodulation factors; light-mediated plastid positioning; nonhost resistance to fungal attack; and guard cell shape and turgor changes. For each of these systems, there is reasonable knowledge about what signals induce the plant response and the function(s) of the actin rearrangement. This review aims to build beyond a description of cytoskeletal changes and look at specific actin-binding proteins that have been implicated as effectors of each response, as sites of action for second messengers, and as fundamental coordinators of actin dynamics.
Plants vary considerably in their physiological response to selenium (Se). Some plant species growing on seleniferous soils are Se tolerant and accumulate very high concentrations of Se (Se accumulators), but most plants are Se nonaccumulators and are Se-sensitive. This review summarizes knowledge of the physiology and biochemistry of both types of plants, particularly with regard to Se uptake and transport, biochemical pathways of assimilation, volatilization and incorporation into proteins, and mechanisms of toxicity and tolerance. Molecular approaches are providing new insights into the role of sulfate transporters and sulfur assimilation enzymes in selenate uptake and metabolism, as well as the question of Se essentiality in plants. Recent advances in our understanding of the plant's ability to metabolize Se into volatile Se forms (phytovolatilization) are discussed, along with the application of phytoremediation for the cleanup of Se contaminated environments.