Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-022024-033544
José María Gutiérrez, Nicholas R Casewell, Andreas H Laustsen
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
{"title":"Progress and Challenges in the Field of Snakebite Envenoming Therapeutics.","authors":"José María Gutiérrez, Nicholas R Casewell, Andreas H Laustsen","doi":"10.1146/annurev-pharmtox-022024-033544","DOIUrl":"10.1146/annurev-pharmtox-022024-033544","url":null,"abstract":"<p><p>Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"465-485"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Castration-resistant prostate cancer (CRPC) presents significant challenges in clinical management due to its resistance to conventional androgen receptor (AR)-targeting therapies. The advent of proteolysis targeting chimeras (PROTACs) has revolutionized cancer therapy by enabling the targeted degradation of key molecular players implicated in CRPC progression. In this review we discuss the developments of PROTACs for CRPC treatment, focusing on AR and other CRPC-associated regulators. We provide an overview of the strategic trends in AR PROTAC development from the aspect of targeting site selection and preclinical antitumor evaluation, as well as updates on AR degraders in clinical applications. Additionally, we briefly address the current status of selective AR degrader development. Furthermore, we review new developments in PROTACs as potential CRPC treatment paradigms, highlighting those targeting chromatin modulators BRD4, EZH2, and SWI/SNF; transcription regulator SMAD3; and kinases CDK9 and PIM1. Given the molecular targets shared between CRPC and neuroendocrine prostate cancer (NEPC), we also discuss the potential of PROTACs in addressing NEPC.
阉割耐药前列腺癌(CRPC)对传统的雄激素受体(AR)靶向疗法产生耐药性,给临床治疗带来了巨大挑战。蛋白水解靶向嵌合体(PROTACs)的出现使癌症治疗发生了革命性的变化,它可以靶向降解与 CRPC 进展有关的关键分子角色。在本综述中,我们将讨论 PROTACs 用于 CRPC 治疗的发展情况,重点关注 AR 和其他 CRPC 相关调节因子。我们从靶点选择和临床前抗肿瘤评估方面概述了 AR PROTAC 开发的战略趋势,以及 AR 降解剂在临床应用中的最新情况。此外,我们还简要介绍了选择性 AR 降解剂的开发现状。此外,我们还回顾了作为潜在 CRPC 治疗范例的 PROTACs 的新进展,重点介绍了针对染色质调节剂 BRD4、EZH2 和 SWI/SNF;转录调节剂 SMAD3;以及激酶 CDK9 和 PIM1 的 PROTACs。鉴于 CRPC 和神经内分泌性前列腺癌 (NEPC) 具有共同的分子靶点,我们还讨论了 PROTACs 在治疗 NEPC 方面的潜力。
{"title":"PROTACs as Therapeutic Modalities for Drug Discovery in Castration-Resistant Prostate Cancer.","authors":"Ling-Yu Wang, Chiu-Lien Hung, Tsan-Chun Wang, Hung-Chih Hsu, Hsing-Jien Kung, Kwang-Huei Lin","doi":"10.1146/annurev-pharmtox-030624-110238","DOIUrl":"10.1146/annurev-pharmtox-030624-110238","url":null,"abstract":"<p><p>Castration-resistant prostate cancer (CRPC) presents significant challenges in clinical management due to its resistance to conventional androgen receptor (AR)-targeting therapies. The advent of proteolysis targeting chimeras (PROTACs) has revolutionized cancer therapy by enabling the targeted degradation of key molecular players implicated in CRPC progression. In this review we discuss the developments of PROTACs for CRPC treatment, focusing on AR and other CRPC-associated regulators. We provide an overview of the strategic trends in AR PROTAC development from the aspect of targeting site selection and preclinical antitumor evaluation, as well as updates on AR degraders in clinical applications. Additionally, we briefly address the current status of selective AR degrader development. Furthermore, we review new developments in PROTACs as potential CRPC treatment paradigms, highlighting those targeting chromatin modulators BRD4, EZH2, and SWI/SNF; transcription regulator SMAD3; and kinases CDK9 and PIM1. Given the molecular targets shared between CRPC and neuroendocrine prostate cancer (NEPC), we also discuss the potential of PROTACs in addressing NEPC.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"375-396"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-022724-100847
Kai R Trepka, Christine A Olson, Vaibhav Upadhyay, Chen Zhang, Peter J Turnbaugh
Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.
{"title":"Pharma[e]cology: How the Gut Microbiome Contributes to Variations in Drug Response.","authors":"Kai R Trepka, Christine A Olson, Vaibhav Upadhyay, Chen Zhang, Peter J Turnbaugh","doi":"10.1146/annurev-pharmtox-022724-100847","DOIUrl":"10.1146/annurev-pharmtox-022724-100847","url":null,"abstract":"<p><p>Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"355-373"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-061724-080739
Tri Q Do, Björn C Knollmann
Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. RYR2 gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.
Ryanodine 受体 2 型(RyR2)是心脏肌浆网(SR)中主要的细胞内钙释放通道。在遗传性和结构性心脏病中,RyR2 的病理性亢进会导致心律失常的风险。RYR2 功能增益突变会导致儿茶酚胺能多态性室性心动过速。在结构性心脏病(即心力衰竭)中,翻译后修饰使 RyR2 通道泄漏,导致舒张期病理性钙释放,导致心律失常发生和收缩功能障碍。因此,RyR2 是心律失常性心脏病的治疗靶点。我们概述了 RyR2 的结构和功能,然后回顾了美国食品和药物管理局批准和研究的 RyR2 抑制剂。根据 RyR2 抑制剂的作用机制,提出了 RyR2 抑制剂的治疗分类。I 类 RyR2 抑制剂(如福来尼特)不改变 SR 钙含量,主要用于抗心律失常。II 类 RyR2 抑制剂(如丹曲林)可增加 SR 钙含量,因此作为抗心律失常药物的效果较差,但在 SR 钙含量降低的情况下(如心力衰竭)更适合使用。
{"title":"Inhibitors of Intracellular RyR2 Calcium Release Channels as Therapeutic Agents in Arrhythmogenic Heart Diseases.","authors":"Tri Q Do, Björn C Knollmann","doi":"10.1146/annurev-pharmtox-061724-080739","DOIUrl":"10.1146/annurev-pharmtox-061724-080739","url":null,"abstract":"<p><p>Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. <i>RYR2</i> gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"443-463"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1146/annurev-pharmtox-061724-080905
Jared S Elenbaas, Paul C Lee, Ved Patel, Nathan O Stitziel
Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding SVEP1, a human coronary artery disease risk locus. Our analyses highlight SVEP1's causal link to cardiometabolic disease and glaucoma, as well as the surprising discovery of SVEP1 as the first known physiologic ligand for PEAR1, a critical receptor governing platelet reactivity. We further employ these techniques to dissect the interactions between SVEP1, PEAR1, and the Ang/Tie pathway, with therapeutic implications for a constellation of diseases. This review underscores the potential of molecular GWASs to guide drug discovery and unravel the complexities of human health and disease by demonstrating an integrative approach that grounds mechanistic research in human biology.
{"title":"Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease.","authors":"Jared S Elenbaas, Paul C Lee, Ved Patel, Nathan O Stitziel","doi":"10.1146/annurev-pharmtox-061724-080905","DOIUrl":"10.1146/annurev-pharmtox-061724-080905","url":null,"abstract":"<p><p>Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding <i>SVEP1</i>, a human coronary artery disease risk locus. Our analyses highlight SVEP1's causal link to cardiometabolic disease and glaucoma, as well as the surprising discovery of SVEP1 as the first known physiologic ligand for PEAR1, a critical receptor governing platelet reactivity. We further employ these techniques to dissect the interactions between SVEP1, PEAR1, and the Ang/Tie pathway, with therapeutic implications for a constellation of diseases. This review underscores the potential of molecular GWASs to guide drug discovery and unravel the complexities of human health and disease by demonstrating an integrative approach that grounds mechanistic research in human biology.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":"65 1","pages":"131-148"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-061724-080836
Victoria R Saca, Colin Burdette, Thomas P Sakmar
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.
{"title":"GPCR Biosensors to Study Conformational Dynamics and Signaling in Drug Discovery.","authors":"Victoria R Saca, Colin Burdette, Thomas P Sakmar","doi":"10.1146/annurev-pharmtox-061724-080836","DOIUrl":"10.1146/annurev-pharmtox-061724-080836","url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"7-28"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-031524-025239
Evan D Kelly, Mark J Ranek, Manling Zhang, David A Kass, Grace K Muller
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
{"title":"Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics.","authors":"Evan D Kelly, Mark J Ranek, Manling Zhang, David A Kass, Grace K Muller","doi":"10.1146/annurev-pharmtox-031524-025239","DOIUrl":"10.1146/annurev-pharmtox-031524-025239","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"415-441"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12757971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-030124-111214
Chubin Zhang, Leon P Barron, Stephen R Stürzenbaum
The use of pharmaceuticals has grown substantially and their consequential release via wastewaters poses a potential threat to aquatic and terrestrial environments. While transportation prediction models for aquatic environments are well established, they cannot be universally extrapolated to terrestrial systems. Pharmaceuticals and their metabolites are, for example, readily detected in the excreta of terrestrial organisms (including humans). Furthermore, the trophic transfer of pharmaceuticals to and from food webs is often overlooked, which in turn highlights a public health concern and emphasizes the pressing need to elucidate how today's potpourri of pharmaceuticals affect the terrestrial system, their biophysical behaviors, and their interactions with soil metazoans. This review explores the existing knowledge base of pharmaceutical exposure sources, mobility, persistence, (bio)availability, (bio)accumulation, (bio)magnification, and trophic transfer of pharmaceuticals through the soil and terrestrial food chains.
{"title":"Pollution of Soil by Pharmaceuticals: Implications for Metazoan and Environmental Health.","authors":"Chubin Zhang, Leon P Barron, Stephen R Stürzenbaum","doi":"10.1146/annurev-pharmtox-030124-111214","DOIUrl":"10.1146/annurev-pharmtox-030124-111214","url":null,"abstract":"<p><p>The use of pharmaceuticals has grown substantially and their consequential release via wastewaters poses a potential threat to aquatic and terrestrial environments. While transportation prediction models for aquatic environments are well established, they cannot be universally extrapolated to terrestrial systems. Pharmaceuticals and their metabolites are, for example, readily detected in the excreta of terrestrial organisms (including humans). Furthermore, the trophic transfer of pharmaceuticals to and from food webs is often overlooked, which in turn highlights a public health concern and emphasizes the pressing need to elucidate how today's potpourri of pharmaceuticals affect the terrestrial system, their biophysical behaviors, and their interactions with soil metazoans. This review explores the existing knowledge base of pharmaceutical exposure sources, mobility, persistence, (bio)availability, (bio)accumulation, (bio)magnification, and trophic transfer of pharmaceuticals through the soil and terrestrial food chains.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"547-565"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1146/annurev-pharmtox-061724-080727
Yalin Sun, Ahmed Hasbi, Susan R George
G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers. Greater acceptance of oligomerization occurred with the recognition that GPCR interactions form heteromeric receptor complexes, which was validated in vivo, often with pharmacologic, signaling, and functional properties distinct from the constituent protomers. GPCR heteromerization is reviewed in the context of brain disorders, with examples illustrating their functional implication in diverse neuropsychiatric and neurodegenerative disorders, making them an enormous unexploited resource for selective pharmacotherapy target identification. The strategies for development of heteromer-selective ligands are discussed as a new opportunity to precisely target the function of a receptor complex with greater specificity, in contrast to the classical ligands targeting individual receptors.
{"title":"G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders.","authors":"Yalin Sun, Ahmed Hasbi, Susan R George","doi":"10.1146/annurev-pharmtox-061724-080727","DOIUrl":"10.1146/annurev-pharmtox-061724-080727","url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers. Greater acceptance of oligomerization occurred with the recognition that GPCR interactions form heteromeric receptor complexes, which was validated in vivo, often with pharmacologic, signaling, and functional properties distinct from the constituent protomers. GPCR heteromerization is reviewed in the context of brain disorders, with examples illustrating their functional implication in diverse neuropsychiatric and neurodegenerative disorders, making them an enormous unexploited resource for selective pharmacotherapy target identification. The strategies for development of heteromer-selective ligands are discussed as a new opportunity to precisely target the function of a receptor complex with greater specificity, in contrast to the classical ligands targeting individual receptors.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":"65 1","pages":"215-236"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1146/annurev-pharmtox-031524-021631
Benoît Delabays, Chiara De Paoli, Andrea Miller-Nesbitt, Vincent Mooser
Genetically driven clinical trial enrichment has been proposed to accelerate and reduce the cost of developing new therapeutics. Usage of this approach has not been comprehensively reviewed. We searched Ovid MEDLINE, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, and WHO ICTRP for articles published between 2010 and 2023. Excluding absorption, distribution, metabolism, and elimination pharmacogenetic studies and anti-infectives, we found 95 completed, 4 terminated, and 22 ongoing prospective genetically enriched trials on 110 drugs for 48 nononcology, nonrare syndromic indications. Trial sizes ranged from 4 to 6,147 participants (median 72) and covered numerous disease areas, particularly neurology (30), metabolism (22), and psychiatry (17). Fifty-six completed studies (60%) met their primary end point. Overall, this scoping review demonstrates that genetically enriched trials are feasible and scalable across disease areas and provide critical information for further development, or attrition, of investigational drugs. Large, appropriately designed disease-, hospital-, or population-based biobanks will undoubtedly facilitate this type of precision drug development approach.
{"title":"Genetically Enriched Clinical Trials for Precision Development of Noncancer Therapeutics: A Scoping Review.","authors":"Benoît Delabays, Chiara De Paoli, Andrea Miller-Nesbitt, Vincent Mooser","doi":"10.1146/annurev-pharmtox-031524-021631","DOIUrl":"10.1146/annurev-pharmtox-031524-021631","url":null,"abstract":"<p><p>Genetically driven clinical trial enrichment has been proposed to accelerate and reduce the cost of developing new therapeutics. Usage of this approach has not been comprehensively reviewed. We searched Ovid MEDLINE, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, and WHO ICTRP for articles published between 2010 and 2023. Excluding absorption, distribution, metabolism, and elimination pharmacogenetic studies and anti-infectives, we found 95 completed, 4 terminated, and 22 ongoing prospective genetically enriched trials on 110 drugs for 48 nononcology, nonrare syndromic indications. Trial sizes ranged from 4 to 6,147 participants (median 72) and covered numerous disease areas, particularly neurology (30), metabolism (22), and psychiatry (17). Fifty-six completed studies (60%) met their primary end point. Overall, this scoping review demonstrates that genetically enriched trials are feasible and scalable across disease areas and provide critical information for further development, or attrition, of investigational drugs. Large, appropriately designed disease-, hospital-, or population-based biobanks will undoubtedly facilitate this type of precision drug development approach.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":"149-167"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}