Pub Date : 2024-05-23DOI: 10.1007/s10498-024-09430-x
Arkajyoti Pathak, Samuel Bowman, Shikha Sharma
Advancing underground hydrogen storage (UHS) is essential for a sustainable, emission-free future, with its success highly contingent on the unique properties of each subsurface reservoir. To ensure optimal storage, detailed site assessments are required. One of the critical gaps in knowledge necessary for ensuring safe storage is geochemical redox reactions, especially those involving iron. These redox reactions are crucial as they influence hydrogen retention or loss in the subsurface environments. In this study, we have theoretically addressed hydrogen consumption via abiotic reduction of a Fe3+ oxide under different Fe2+ activities. Simulations indicate that in scenarios, where the initial hydrogen partial pressure is extremely low (around 10−5 bars), decreasing the activity of Fe2+ by a factor of 10 can lead to a marked decrease in the initial hydrogen pressure by a maximum factor of 1000 within a few years. Variations in Fe2+ activity can significantly influence abiotic hydrogen consumption only under very low hydrogen partial pressures. This is primarily due to enhanced dissolution of Fe3+ oxides. In comparison, in conditions where hydrogen partial pressure is higher (> 10−2 bars), reduction of Fe3+ oxide can yield magnetite, resulting in a muted loss of hydrogen over time. The transition in the reduction behavior of Fe3+ oxide from a ‘dissolution-driven’ process to ‘magnetite crystallization,’ which also determines the fate of stored hydrogen, depends on initial hydrogen partial pressure. Our results demonstrate that low quantities of hydrogen can be maintained within typical storage cycles spanning less than a year, depending upon aqueous Fe content.
{"title":"Modeling Impacts of Fe Activity and H2 Partial Pressure on Hydrogen Storage in Shallow Subsurface Reservoirs","authors":"Arkajyoti Pathak, Samuel Bowman, Shikha Sharma","doi":"10.1007/s10498-024-09430-x","DOIUrl":"10.1007/s10498-024-09430-x","url":null,"abstract":"<div><p>Advancing underground hydrogen storage (UHS) is essential for a sustainable, emission-free future, with its success highly contingent on the unique properties of each subsurface reservoir. To ensure optimal storage, detailed site assessments are required. One of the critical gaps in knowledge necessary for ensuring safe storage is geochemical redox reactions, especially those involving iron. These redox reactions are crucial as they influence hydrogen retention or loss in the subsurface environments. In this study, we have theoretically addressed hydrogen consumption via abiotic reduction of a Fe<sup>3+</sup> oxide under different Fe<sup>2+</sup> activities. Simulations indicate that in scenarios, where the initial hydrogen partial pressure is extremely low (around 10<sup>−5</sup> bars), decreasing the activity of Fe<sup>2+</sup> by a factor of 10 can lead to a marked decrease in the initial hydrogen pressure by a maximum factor of 1000 within a few years. Variations in Fe<sup>2+</sup> activity can significantly influence abiotic hydrogen consumption only under very low hydrogen partial pressures. This is primarily due to enhanced dissolution of Fe<sup>3+</sup> oxides. In comparison, in conditions where hydrogen partial pressure is higher (> 10<sup>−2</sup> bars), reduction of Fe<sup>3+</sup> oxide can yield magnetite, resulting in a muted loss of hydrogen over time. The transition in the reduction behavior of Fe<sup>3+</sup> oxide from a ‘dissolution-driven’ process to ‘magnetite crystallization,’ which also determines the fate of stored hydrogen, depends on initial hydrogen partial pressure. Our results demonstrate that low quantities of hydrogen can be maintained within typical storage cycles spanning less than a year, depending upon aqueous Fe content.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 2","pages":"73 - 92"},"PeriodicalIF":1.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1007/s10498-024-09428-5
Tianchen Zhao, Jingjing Dai, Yuanyi Zhao, Chuanyong Ye
Hydromagnesite (HM for short) is a natural carbonate mineral that is widely distributed. It is a high-quality mineral raw material for preparing flame retardants, magnesium oxides, heavy/light basic magnesium carbonates, magnesium hydroxides, and other Mg products. The evaluation of HM resources is of great significance to the development and utilization of salt lake resources. Using remote sensing technology to observe HM resources in salt lake can overcome the shortcomings of traditional prospecting methods such as discontinuous spatial data, time and effort. In addition, spectral analysis is the basis of hyperspectral remote sensing, and more detailed analysis of the spectral characteristics of HM is still lacking; therefore, we measured the reflection spectral curve of HM samples in the area of Jiezechaka by ASD FieldSpec4 short-wave infrared spectrometer and determined the mineral composition and content of HM samples by X-ray diffraction. The analysis indicated three and seven absorption valleys with high and low absorption intensities, respectively, in the reflectance spectral curves of the HM samples in the Jiezechaka area. Then, on this basis, the Landsat8 OLI multispectral data and ZY1-02D AHSI hyperspectral data were used as the basic data of remote sensing inversion. As the ZY1-02D AHSI data have 166 bands, which is much more than Landsat8 OLI data, it has a stronger ability to characterize the spectral characteristics of HM and can better meet the requirements of remote sensing inversion. The end member spectra were selected based on PPI and SMACC methods, respectively. The HM information around Jiezechaka Salt Lake in Tibet was extracted by the mixture tuned matched filtering method, and the regional distribution map of HM was made. A confusion matrix operation was used to compare the determination results of the two types of data. Among them, based on Landsat8 data, PPI method was used to obtain end members, and the overall accuracy of HM extraction results was > 69%, and the kappa coefficient was 0.688. Based on Landsat8 data, SMACC method was used to obtain end members, and the overall accuracy of HM extraction results was > 67%, and the kappa coefficient was 0.667. Based on ZY1-02D AHSI data, PPI method was used to obtain end members, and the overall accuracy of HM extraction results was > 76%, and the kappa coefficient was 0.743. Based on ZY1-02D AHSI data, SMACC method was used to obtain end members, and the overall accuracy of HM extraction results was > 73%, and the kappa coefficient was 0.728. It shows that the end members selected by PPI method can better express HM information in the image. Finally, through the overlay analysis of the four results, we concluded that HM outcrops in the Jiezechaka area are mainly distributed in the northwestern and southeastern regions of the lake. This study provides a rapid assessment technique for measuring HM information from salt lakes.
{"title":"MTMF Method for Hydromagnesite Determination Based on Landsat8 and ZY1-02D Data: A Case Study of the Jiezechaka Salt Lake in Tibet","authors":"Tianchen Zhao, Jingjing Dai, Yuanyi Zhao, Chuanyong Ye","doi":"10.1007/s10498-024-09428-5","DOIUrl":"10.1007/s10498-024-09428-5","url":null,"abstract":"<div><p>Hydromagnesite (HM for short) is a natural carbonate mineral that is widely distributed. It is a high-quality mineral raw material for preparing flame retardants, magnesium oxides, heavy/light basic magnesium carbonates, magnesium hydroxides, and other Mg products. The evaluation of HM resources is of great significance to the development and utilization of salt lake resources. Using remote sensing technology to observe HM resources in salt lake can overcome the shortcomings of traditional prospecting methods such as discontinuous spatial data, time and effort. In addition, spectral analysis is the basis of hyperspectral remote sensing, and more detailed analysis of the spectral characteristics of HM is still lacking; therefore, we measured the reflection spectral curve of HM samples in the area of Jiezechaka by ASD FieldSpec4 short-wave infrared spectrometer and determined the mineral composition and content of HM samples by X-ray diffraction. The analysis indicated three and seven absorption valleys with high and low absorption intensities, respectively, in the reflectance spectral curves of the HM samples in the Jiezechaka area. Then, on this basis, the Landsat8 OLI multispectral data and ZY1-02D AHSI hyperspectral data were used as the basic data of remote sensing inversion. As the ZY1-02D AHSI data have 166 bands, which is much more than Landsat8 OLI data, it has a stronger ability to characterize the spectral characteristics of HM and can better meet the requirements of remote sensing inversion. The end member spectra were selected based on PPI and SMACC methods, respectively. The HM information around Jiezechaka Salt Lake in Tibet was extracted by the mixture tuned matched filtering method, and the regional distribution map of HM was made. A confusion matrix operation was used to compare the determination results of the two types of data. Among them, based on Landsat8 data, PPI method was used to obtain end members, and the overall accuracy of HM extraction results was > 69%, and the kappa coefficient was 0.688. Based on Landsat8 data, SMACC method was used to obtain end members, and the overall accuracy of HM extraction results was > 67%, and the kappa coefficient was 0.667. Based on ZY1-02D AHSI data, PPI method was used to obtain end members, and the overall accuracy of HM extraction results was > 76%, and the kappa coefficient was 0.743. Based on ZY1-02D AHSI data, SMACC method was used to obtain end members, and the overall accuracy of HM extraction results was > 73%, and the kappa coefficient was 0.728. It shows that the end members selected by PPI method can better express HM information in the image. Finally, through the overlay analysis of the four results, we concluded that HM outcrops in the Jiezechaka area are mainly distributed in the northwestern and southeastern regions of the lake. This study provides a rapid assessment technique for measuring HM information from salt lakes.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"219 - 238"},"PeriodicalIF":1.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ11B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.
{"title":"Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin","authors":"Wenxia Li, Zhanjie Qin, Weiliang Miao, Yulong Li, Wenjing Chang, Yongsheng Du, Binkai Li, Xiying Zhang","doi":"10.1007/s10498-024-09427-6","DOIUrl":"10.1007/s10498-024-09427-6","url":null,"abstract":"<div><p>The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ<sup>11</sup>B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"97 - 119"},"PeriodicalIF":1.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140655924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahai Basin (MH), located in the northern Qaidam Basin (QB), possesses abundant K-rich brine resources. The investigation on the origin of deep K-rich confined brine and the variations in K–Mg elements corresponding to the evolution in MH shed light on the significance of assessment and utilization of brine deposits. This study presents multiple isotopes (δ18O–δD, 87Sr/86Sr) and hydrochemical characteristics for various waters (including river water, surface brine, intercrystalline brine, confined brine and anticlinal brine) in the MH. Our findings corroborate that: (1) confined brine exhibits relatively high K+ (average value of 6.88 g/L) and low Ca2+–Sr2+ concentrations, compared to anticlinal brine, and its chemical composition resembles the evolution of Yuqia River in Ca–SO4–HCO3 diagram, suggesting that contemporary river water is the primary source of confined brine. (2) The δ18O–δD values of confined brine in MH ranged from − 17.80 to − 27.40‰ and 1.50 to 2.40‰, respectively, and fall on the right field of the local evaporation line, indicating successive evaporation and concentration processes. (3) The 87Sr/86Sr ratios (0.71142–0.71145) of confined brine fall between river water (0.71150–0.71183) and anticlinal brine (0.71135), combining with river water and confined brine which exhibit low Sr content, and further confirming the origin of confined brine is a mixture by river and anticlinal brine and much river recharge budget. (4) Considering the evolution of sedimentary facies (Dezongmahai Lake area as an example) and the gradual increase in K and Mg contents in MH, the enrichment of K and Mg exhibits a certain correlation with the evolution of MH. Notably, the brine in the northeast of the basin displays the highest levels of K and Mg, indicating that this region serves as the ultimate depositional center.
马海盆地(Mahai Basin,MH)位于柴达木盆地(Qaidam Basin,QB)北部,拥有丰富的富钾卤水资源。对马海盆地深层富钾封闭卤水的成因以及与演化相应的钾镁元素变化进行研究,对评估和利用卤水矿床具有重要意义。本研究介绍了MH中不同水体(包括河水、地表卤水、晶间卤水、封闭卤水和反斜面卤水)的多种同位素(δ18O-δD、87Sr/86Sr)和水化学特征。我们的研究结果证实(1) 与反斜面卤水相比,封闭卤水表现出相对较高的 K+(平均值为 6.88 g/L)和较低的 Ca2+-Sr2+浓度,其化学成分在 Ca-SO4-HCO3 图中与于洽河的演化过程相似,表明当代河水是封闭卤水的主要来源。(2)MH中封闭卤水的δ18O-δD值分别为-17.80~-27.40‰和1.50~2.40‰,落在局部蒸发线的右侧区域,表明蒸发和浓缩过程是连续进行的。(3)封闭卤水的 87Sr/86Sr 比值(0.71142-0.71145)介于河水(0.71150-0.71183)和反滨卤水(0.71135)之间,结合河水和封闭卤水的低 Sr 含量,进一步证实封闭卤水的成因是由河水和反滨卤水混合而成,且河流补给量大。(4) 考虑到沉积面的演化(以德宗玛海湖区为例)以及卤水中 K 和 Mg 含量的逐渐增加,K 和 Mg 的富集与卤水的演化具有一定的相关性。值得注意的是,盆地东北部的卤水中 K 和 Mg 含量最高,表明该地区是最终的沉积中心。
{"title":"Origin and Evolution of Deep K-Rich Confined Brine in Mahai Basin, Qinghai–Tibet Plateau","authors":"Fukang Yang, Qishun Fan, Guang Han, Wanlu Wang, Jiubo Liu, Hongkui Bai","doi":"10.1007/s10498-024-09424-9","DOIUrl":"10.1007/s10498-024-09424-9","url":null,"abstract":"<div><p>Mahai Basin (MH), located in the northern Qaidam Basin (QB), possesses abundant K-rich brine resources. The investigation on the origin of deep K-rich confined brine and the variations in K–Mg elements corresponding to the evolution in MH shed light on the significance of assessment and utilization of brine deposits. This study presents multiple isotopes (δ<sup>18</sup>O–δD, <sup>87</sup>Sr/<sup>86</sup>Sr) and hydrochemical characteristics for various waters (including river water, surface brine, intercrystalline brine, confined brine and anticlinal brine) in the MH. Our findings corroborate that: (1) confined brine exhibits relatively high K<sup>+</sup> (average value of 6.88 g/L) and low Ca<sup>2+</sup>–Sr<sup>2+</sup> concentrations, compared to anticlinal brine, and its chemical composition resembles the evolution of Yuqia River in Ca–SO<sub>4</sub>–HCO<sub>3</sub> diagram, suggesting that contemporary river water is the primary source of confined brine. (2) The δ<sup>18</sup>O–δD values of confined brine in MH ranged from − 17.80 to − 27.40‰ and 1.50 to 2.40‰, respectively, and fall on the right field of the local evaporation line, indicating successive evaporation and concentration processes. (3) The <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.71142–0.71145) of confined brine fall between river water (0.71150–0.71183) and anticlinal brine (0.71135), combining with river water and confined brine which exhibit low Sr content, and further confirming the origin of confined brine is a mixture by river and anticlinal brine and much river recharge budget. (4) Considering the evolution of sedimentary facies (Dezongmahai Lake area as an example) and the gradual increase in K and Mg contents in MH, the enrichment of K and Mg exhibits a certain correlation with the evolution of MH. Notably, the brine in the northeast of the basin displays the highest levels of K and Mg, indicating that this region serves as the ultimate depositional center.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"239 - 258"},"PeriodicalIF":1.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1007/s10498-024-09426-7
Jie Ren, Quansheng Zhao, Shuya Hu
Brine groundwater in Quaternary salt lakes is widely exploited to extract potassium, lithium, and boron; the complex hydrogeological parameters of brine aquifers could cause significant difficulties in brine resource assessment and exploitation. However, the origin and porosity of brine aquifers remain unclear. This study presents an approach that utilizes geochemical indicator analysis with paleogeographic reconstruction to better assess porosity in salt lake aquifers. We identified 15 representative boreholes in Mahai Salt Lake, and the lithology, porosity, and chloride contents of their respective sediments, the pore porosity of each borehole in the study area ranges from 38.17 to 0.51%, the average chloride content of each borehole ranges from 26.63 to 38.74%, found that the vertical porosity fluctuations of halite deposits were significantly larger than those of detrital deposits, the sediments in the boreholes consisted predominantly of halite-containing debris or fine-debris-containing halite, reflecting the paleoenvironmental signatures of the salt lake. According to lithology and sedimentary environment, four brine aquifers were classified and the chloride and porosity distribution characteristics in the I–IV brine aquifers were further illustrated. Based on information of paleolake evolution in Qaidam Basin, we established a conceptual model to identify the impact factors for the porosity distribution pattern in the I–IV brine aquifers.
{"title":"Characteristics and Origin of Brine Aquifers Porosity in Quaternary Salt Lake: A Case Study in Mahai Salt Lake, Qaidam Basin","authors":"Jie Ren, Quansheng Zhao, Shuya Hu","doi":"10.1007/s10498-024-09426-7","DOIUrl":"10.1007/s10498-024-09426-7","url":null,"abstract":"<div><p>Brine groundwater in Quaternary salt lakes is widely exploited to extract potassium, lithium, and boron; the complex hydrogeological parameters of brine aquifers could cause significant difficulties in brine resource assessment and exploitation. However, the origin and porosity of brine aquifers remain unclear. This study presents an approach that utilizes geochemical indicator analysis with paleogeographic reconstruction to better assess porosity in salt lake aquifers. We identified 15 representative boreholes in Mahai Salt Lake, and the lithology, porosity, and chloride contents of their respective sediments, the pore porosity of each borehole in the study area ranges from 38.17 to 0.51%, the average chloride content of each borehole ranges from 26.63 to 38.74%, found that the vertical porosity fluctuations of halite deposits were significantly larger than those of detrital deposits, the sediments in the boreholes consisted predominantly of halite-containing debris or fine-debris-containing halite, reflecting the paleoenvironmental signatures of the salt lake. According to lithology and sedimentary environment, four brine aquifers were classified and the chloride and porosity distribution characteristics in the I–IV brine aquifers were further illustrated. Based on information of paleolake evolution in Qaidam Basin, we established a conceptual model to identify the impact factors for the porosity distribution pattern in the I–IV brine aquifers.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"259 - 271"},"PeriodicalIF":1.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1007/s10498-024-09422-x
Andrea Gómez-Hernández, Nadia Martínez-Villegas, Jejanny Lucero Hernández-Martínez, Javier Aguilar Carrillo de Albornoz, Diana Meza-Figueroa
<div><p>Arsenic (As) contamination in soil and groundwater poses significant environmental and human health concerns. While chemical mechanisms like solubility equilibria, oxidation–reduction, and ionic exchange reactions have been studied to understand As retention in soil, the influence of capillarity on As transport remains poorly understood, particularly in semiarid soils with broader capillary fringes. This research aims to shed light on the capillary contribution to As attenuation and mobilization in the groundwater, focusing on degraded soil in the northeast of San Luis Potosí, Mexico. Groundwater surveys revealed a remarkable depletion of As concentrations from 91.50 to 11.27 mg L<sup>−1</sup>, indicating potential As sorption by the underlying shallow aquifer. We examined soil samples collected from the topsoil to the saturated zone using advanced analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and wet chemical analyses. Our findings unveiled the presence of three distinct zones in the soil column: (1) the A horizon with heavy metals, (2) dispersed calcium sulfate dihydrate crystals and stratified gypsum, and (3) a higher concentration of arsenic in the capillary fringe. Notably, the capillary fringe exhibited a significant accumulation of As, constituting 40% (169.22 mg kg<sup>−1</sup>) of the total arsenic proportion accumulated (359.27 mg kg<sup>−1</sup>). The arsenic behavior in the capillary fringe solid phase correlated with total iron behavior, but they were distributed among different mineral fractions. The labile fraction, rich in arsenic, contrasted with the more recalcitrant fractions, which exhibited higher iron content. Further, thermodynamic stability assessments using the geochemical code PHREEQC revealed the critical role of Ca<sub>5</sub>H<sub>2</sub>(AsO<sub>4</sub>)<sub>4</sub>:9H<sub>2</sub>O in controlling HAsO<sub>4</sub><sup>2−</sup> and the formation of HAsO<sub>4</sub>:2H<sub>2</sub>O and CaHAsO<sub>4</sub>:H<sub>2</sub>O. During experimentation, we observed arsenate dissolution, indicating the potential mobilization of As in aqueous species. This mobilization was found to vary depending on redox conditions and may become labile during flooding events or water table variations, especially when As concentrations are low compared to metal cations, as demonstrated in our experiments. Our research underscores the significance of developing accurate geochemical conceptual models that incorporate capillarity to predict As leaching and remobilization accurately. This study presents novel insights into the understanding of As transport mechanisms and suggests the necessity of considering capillarity in geochemical models. By comprehending the capillary contribution to As attenuation, we can develop effective strategies to mitigate As contamination in semiarid soils and safeguard groundwater quality, thereby addressing crucial environmental and public he
{"title":"Unraveling the Role of Capillarity in Arsenic Mobility: Insights from a Sedimentary–Karstic Aquifer in Semiarid Soil","authors":"Andrea Gómez-Hernández, Nadia Martínez-Villegas, Jejanny Lucero Hernández-Martínez, Javier Aguilar Carrillo de Albornoz, Diana Meza-Figueroa","doi":"10.1007/s10498-024-09422-x","DOIUrl":"10.1007/s10498-024-09422-x","url":null,"abstract":"<div><p>Arsenic (As) contamination in soil and groundwater poses significant environmental and human health concerns. While chemical mechanisms like solubility equilibria, oxidation–reduction, and ionic exchange reactions have been studied to understand As retention in soil, the influence of capillarity on As transport remains poorly understood, particularly in semiarid soils with broader capillary fringes. This research aims to shed light on the capillary contribution to As attenuation and mobilization in the groundwater, focusing on degraded soil in the northeast of San Luis Potosí, Mexico. Groundwater surveys revealed a remarkable depletion of As concentrations from 91.50 to 11.27 mg L<sup>−1</sup>, indicating potential As sorption by the underlying shallow aquifer. We examined soil samples collected from the topsoil to the saturated zone using advanced analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and wet chemical analyses. Our findings unveiled the presence of three distinct zones in the soil column: (1) the A horizon with heavy metals, (2) dispersed calcium sulfate dihydrate crystals and stratified gypsum, and (3) a higher concentration of arsenic in the capillary fringe. Notably, the capillary fringe exhibited a significant accumulation of As, constituting 40% (169.22 mg kg<sup>−1</sup>) of the total arsenic proportion accumulated (359.27 mg kg<sup>−1</sup>). The arsenic behavior in the capillary fringe solid phase correlated with total iron behavior, but they were distributed among different mineral fractions. The labile fraction, rich in arsenic, contrasted with the more recalcitrant fractions, which exhibited higher iron content. Further, thermodynamic stability assessments using the geochemical code PHREEQC revealed the critical role of Ca<sub>5</sub>H<sub>2</sub>(AsO<sub>4</sub>)<sub>4</sub>:9H<sub>2</sub>O in controlling HAsO<sub>4</sub><sup>2−</sup> and the formation of HAsO<sub>4</sub>:2H<sub>2</sub>O and CaHAsO<sub>4</sub>:H<sub>2</sub>O. During experimentation, we observed arsenate dissolution, indicating the potential mobilization of As in aqueous species. This mobilization was found to vary depending on redox conditions and may become labile during flooding events or water table variations, especially when As concentrations are low compared to metal cations, as demonstrated in our experiments. Our research underscores the significance of developing accurate geochemical conceptual models that incorporate capillarity to predict As leaching and remobilization accurately. This study presents novel insights into the understanding of As transport mechanisms and suggests the necessity of considering capillarity in geochemical models. By comprehending the capillary contribution to As attenuation, we can develop effective strategies to mitigate As contamination in semiarid soils and safeguard groundwater quality, thereby addressing crucial environmental and public he","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 2","pages":"49 - 71"},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s10498-024-09425-8
Honglu Xiang, Qishun Fan, Qingkuan Li, Yongsheng Du, Guang Han, Jiubo Liu, Hongkui Bai
There are typical salt lake-type borate deposits in the northern Qaidam Basin, which are mainly distributed in Da Qaidam Lake (DQL), Xiao Qaidam Lake, and Mahai Basin (MHB). DQL has deposited famous solid borates and enriched a large number of brine boron deposits. It is the earliest industrial production base in China. Nanbaxian (NBX) to the west of DQL is a unique area where solid borates are deposited in MHB. Although there are three salt lakes in the MHB, borate deposits were only deposited in the salt pits of NBX, and the formation process of these borate deposits remains to be clarified. In this study, the major elements, boron contents, and d11B values in the water and sediments of NBX were investigated in conjunction with the B-Na-Mg equivalence diagrams and relevant data from other salt lakes to elucidate the source of boron in MHB and the depositional conditions of borate minerals in NBX. The results are as follows: (1) The source of boron in NBX differs from that in three salt lakes in MHB. The source in NBX is mainly constrained by the weathering and fluid-rock (Boron-bearing ultra-high pressure metamorphic belt) interaction, while that in Dezongmahai and Niulangzhinv–Balunmahai lakes are primarily controlled by river water and anticlinal brine, respectively. (2) The high boron content (0.28 to 41.38 mg/L) and low d11B values (- 34.71‰ to - 6.14‰) of the water-soluble phase of sediments in NBX are consistent with geochemical characteristics (d11B: - 23.67‰ to - 3.0‰) of borates in DQL, demonstrating that the re-dissolution of borate deposits in NBX. (3) Deposition of borate minerals in the MHB requires ionic equivalents of Mg, Na, and B to 0.02 to 0.4, 0.25 to 0.75, and 0.2 to 0.7, respectively. Additionally, the brine hydrochemistry in which the borate are deposited must be of the carbonate or sulfate type, and the brine water should be greater than 8 in pH and 400 mg/L in boron content. This study provides a theoretical basis for exploring and exploiting salt lake-type borate deposits.
{"title":"Source and Formation of Boron Deposits in Mahai Basin on the Northern Qinghai-Tibet Plateau: Clues from Hydrochemistry and Boron Isotopes","authors":"Honglu Xiang, Qishun Fan, Qingkuan Li, Yongsheng Du, Guang Han, Jiubo Liu, Hongkui Bai","doi":"10.1007/s10498-024-09425-8","DOIUrl":"10.1007/s10498-024-09425-8","url":null,"abstract":"<div><p>There are typical salt lake-type borate deposits in the northern Qaidam Basin, which are mainly distributed in Da Qaidam Lake (DQL), Xiao Qaidam Lake, and Mahai Basin (MHB). DQL has deposited famous solid borates and enriched a large number of brine boron deposits. It is the earliest industrial production base in China. Nanbaxian (NBX) to the west of DQL is a unique area where solid borates are deposited in MHB. Although there are three salt lakes in the MHB, borate deposits were only deposited in the salt pits of NBX, and the formation process of these borate deposits remains to be clarified. In this study, the major elements, boron contents, and d<sup>11</sup>B values in the water and sediments of NBX were investigated in conjunction with the B-Na-Mg equivalence diagrams and relevant data from other salt lakes to elucidate the source of boron in MHB and the depositional conditions of borate minerals in NBX. The results are as follows: (1) The source of boron in NBX differs from that in three salt lakes in MHB. The source in NBX is mainly constrained by the weathering and fluid-rock (Boron-bearing ultra-high pressure metamorphic belt) interaction, while that in Dezongmahai and Niulangzhinv–Balunmahai lakes are primarily controlled by river water and anticlinal brine, respectively. (2) The high boron content (0.28 to 41.38 mg/L) and low d<sup>11</sup>B values (- 34.71‰ to - 6.14‰) of the water-soluble phase of sediments in NBX are consistent with geochemical characteristics (d<sup>11</sup>B: - 23.67‰ to - 3.0‰) of borates in DQL, demonstrating that the re-dissolution of borate deposits in NBX. (3) Deposition of borate minerals in the MHB requires ionic equivalents of Mg, Na, and B to 0.02 to 0.4, 0.25 to 0.75, and 0.2 to 0.7, respectively. Additionally, the brine hydrochemistry in which the borate are deposited must be of the carbonate or sulfate type, and the brine water should be greater than 8 in pH and 400 mg/L in boron content. This study provides a theoretical basis for exploring and exploiting salt lake-type borate deposits.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"143 - 161"},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1007/s10498-024-09423-w
Vladimir A. Kholodov, Natalia N. Danchenko, Aliya R. Ziganshina, Nadezhda V. Yaroslavtseva, Igor P. Semiletov
Soil-derived dissolved organic matter (DOM) has a significant impact on aquatic ecosystems. Identifying the fluorescence signatures of DOM from different soils in river and sea waters can provide valuable insights into its migration patterns. This makes crucial assessing the contributions of pH, salinity, and other milieu parameters to the variability of DOM optical properties. Present study investigates the changes in DOM of Chernozems under varying salinity using UV–visible absorbance spectroscopy and 3D-fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC). Water-extractable organic matter (WEOM) extracted from soils of two field experiments of contrasting land use: long-term bare fallow (LTBF) and annually mown steppe (Steppe), was used as a proxy for DOM. Diluted extracts were incubated with varying NaCl concentrations in the dark and then examined. Steppe WEOM exhibited fair constancy of optical parameters under increasing salinity, while significant changes of the optical indices and of PARAFAC components’s loadings were observed for LTBF WEOM. The remarkable stability of the Steppe WEOM can be attributed to its chemical diversity. Two distinct and sufficiently stable humic-like PARAFAC components have the potential to serve as markers of Chernozem DOM. The findings clearly demonstrate that salinity itself slightly reduces absorption and fluorescence and changes some optical indices of WEOM of Chernozems.
源自土壤的溶解有机物(DOM)对水生生态系统有重大影响。识别河水和海水中来自不同土壤的溶解有机物的荧光特征可以为了解其迁移模式提供宝贵的信息。因此,评估 pH 值、盐度和其他环境参数对 DOM 光学特性变化的影响至关重要。本研究采用紫外可见吸收光谱和三维荧光光谱以及并行因子分析(EEMs-PARAFAC)方法,研究了切尔诺贝利的 DOM 在不同盐度条件下的变化。从长期裸露休耕(LTBF)和每年刈割一次的干草原(Steppe)这两种土地利用方式截然不同的田间试验土壤中提取的水提取有机物(WEOM)被用作 DOM 的替代物。稀释后的提取物在黑暗中与不同浓度的氯化钠一起培养,然后进行检测。在盐度增加的情况下,草原 WEOM 的光学参数表现出相当的稳定性,而 LTBF WEOM 的光学指数和 PARAFAC 成分的负载量则出现了显著变化。Steppe WEOM 的显著稳定性可归因于其化学多样性。两种独特且足够稳定的腐殖质类 PARAFAC 成分有可能成为切尔诺泽姆 DOM 的标记。研究结果清楚地表明,盐度本身会略微降低吸收和荧光,并改变切尔诺贝利WEOM的某些光学指数。
{"title":"Direct Salinity Effect on Absorbance and Fluorescence of Chernozem Water-Extractable Organic Matter","authors":"Vladimir A. Kholodov, Natalia N. Danchenko, Aliya R. Ziganshina, Nadezhda V. Yaroslavtseva, Igor P. Semiletov","doi":"10.1007/s10498-024-09423-w","DOIUrl":"10.1007/s10498-024-09423-w","url":null,"abstract":"<div><p>Soil-derived dissolved organic matter (DOM) has a significant impact on aquatic ecosystems. Identifying the fluorescence signatures of DOM from different soils in river and sea waters can provide valuable insights into its migration patterns. This makes crucial assessing the contributions of pH, salinity, and other milieu parameters to the variability of DOM optical properties. Present study investigates the changes in DOM of Chernozems under varying salinity using UV–visible absorbance spectroscopy and 3D-fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC). Water-extractable organic matter (WEOM) extracted from soils of two field experiments of contrasting land use: long-term bare fallow (LTBF) and annually mown steppe (Steppe), was used as a proxy for DOM. Diluted extracts were incubated with varying NaCl concentrations in the dark and then examined. Steppe WEOM exhibited fair constancy of optical parameters under increasing salinity, while significant changes of the optical indices and of PARAFAC components’s loadings were observed for LTBF WEOM. The remarkable stability of the Steppe WEOM can be attributed to its chemical diversity. Two distinct and sufficiently stable humic-like PARAFAC components have the potential to serve as markers of Chernozem DOM. The findings clearly demonstrate that salinity itself slightly reduces absorption and fluorescence and changes some optical indices of WEOM of Chernozems.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 1","pages":"31 - 48"},"PeriodicalIF":1.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The solid-liquid phase equilibria of aqueous system containing the sulfates of lithium and potassium (Li2SO4 + K2SO4 + H2O) at T = 303.2 and 318.2 K were done by isothermal dissolution method. The phase equilibria data (solubility, density, and refractive index) of the system were determined experimentally. The corresponding solid-liquid phase diagram, density/refractive index versus composition diagrams, were plotted. There are two ternary invariant points and three crystallization regions corresponding to Li2SO4·H2O, LiKSO4, and K2SO4 in the phase diagram of system Li2SO4 + K2SO4 + H2O at 303.2 and 318.2 K. A comparision of system Li2SO4 + K2SO4 + H2O at different temperature (T = 288.2, 303.2, 318.2 and 348.2 K) shown that the double salt LiKSO4 was formed in the above mentioned temperatures, and the crystallization region of the LiKSO4 increases gradually with the increase of temperature.
{"title":"Solid-liquid Equilibria (SLE) of the System Containing the Sulfates of Lithium and Potassium at 303.2 and 318.2 K","authors":"Zhihao Yao, Xudong Yu, Zhixing Zhao, Xia Feng, Yousheng Yang, Qi Li, Ying Zeng, Hao Jiang, Yiran Li","doi":"10.1007/s10498-023-09420-5","DOIUrl":"10.1007/s10498-023-09420-5","url":null,"abstract":"<div><p>The solid-liquid phase equilibria of aqueous system containing the sulfates of lithium and potassium (Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O) at <i>T</i> = 303.2 and 318.2 K were done by isothermal dissolution method. The phase equilibria data (solubility, density, and refractive index) of the system were determined experimentally. The corresponding solid-liquid phase diagram, density/refractive index versus composition diagrams, were plotted. There are two ternary invariant points and three crystallization regions corresponding to Li<sub>2</sub>SO<sub>4</sub>·H<sub>2</sub>O, LiKSO<sub>4</sub>, and K<sub>2</sub>SO<sub>4</sub> in the phase diagram of system Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O at 303.2 and 318.2 K. A comparision of system Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O at different temperature (<i>T</i> = 288.2, 303.2, 318.2 and 348.2 K) shown that the double salt LiKSO<sub>4</sub> was formed in the above mentioned temperatures, and the crystallization region of the LiKSO<sub>4</sub> increases gradually with the increase of temperature.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"273 - 286"},"PeriodicalIF":1.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1007/s10498-024-09421-y
Katelin Pedersen, Tyler Cyronak, Morgan Goodrich, David I. Kline, Lauren B. Linsmayer, Ralph Torres, Martin Tresguerres, Andreas J. Andersson
There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.
{"title":"Short-Term Spatiotemporal Variability in Seawater Carbonate Chemistry at Two Contrasting Reef Locations in Bocas del Toro, Panama","authors":"Katelin Pedersen, Tyler Cyronak, Morgan Goodrich, David I. Kline, Lauren B. Linsmayer, Ralph Torres, Martin Tresguerres, Andreas J. Andersson","doi":"10.1007/s10498-024-09421-y","DOIUrl":"10.1007/s10498-024-09421-y","url":null,"abstract":"<div><p>There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 1","pages":"1 - 29"},"PeriodicalIF":1.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-024-09421-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}