Pub Date : 2019-06-13DOI: 10.1007/s10498-019-09353-y
Svetlana V. Borzenko, Elena V. Zippa
The reduced sulfur species, sulfide, elemental and thiosulfate were considered in the thermal waters of Jiangxi Province for the first time. It is shown that the sulfur speciation content significantly varies and depends on the pH values. The major part of reduced sulfur refers to sulfide species in the nitric thermal waters, to elemental—in the carbon dioxide thermal waters. The presence of both reduced and oxidized sulfur speciation indicates the possibility of sulfide minerals hydrolysis and disproportionation of the product of this reaction (SO2) with the participation of hot water with the formation of elemental and sulfate sulfur. The isotopic composition of dissolved sulfate and sulfide sulfur speciation has shown that the process of bacterial reduction proceeds in the thermal waters, accompanied by accumulation of relatively heavy sulfur isotope in sulfates. Simultaneously with reduction, the oxidation of both sulfide minerals and newly formed hydrosulfide proceeds with formation of elemental, thiosulfates and also sulfates in the discharge zone was proceeded. It is shown that the process of sulfide oxidation mostly occurs in carbon dioxide thermal waters. Therefore, the elemental sulfur is predominant in carbon dioxide waters. The oxidation process is less significant in the nitric thermal waters, whereby the concentrations of sulfide ion are higher than sulfates. The ambiguous effect of sulfate reduction on the hydrogeochemical environment of the thermal waters is confirmed by the differing value of the carbon isotope ratio of HCO3? in the considered waters. The obtained isotopic composition data 34δS(SO42?) indicate host rocks as a source of sulfates in the thermal waters of Jiangxi Province.
{"title":"Isotopic Composition and Origin of Sulfide and Sulfate Species of Sulfur in Thermal Waters of Jiangxi Province (China)","authors":"Svetlana V. Borzenko, Elena V. Zippa","doi":"10.1007/s10498-019-09353-y","DOIUrl":"https://doi.org/10.1007/s10498-019-09353-y","url":null,"abstract":"<p>The reduced sulfur species, sulfide, elemental and thiosulfate were considered in the thermal waters of Jiangxi Province for the first time. It is shown that the sulfur speciation content significantly varies and depends on the pH values. The major part of reduced sulfur refers to sulfide species in the nitric thermal waters, to elemental—in the carbon dioxide thermal waters. The presence of both reduced and oxidized sulfur speciation indicates the possibility of sulfide minerals hydrolysis and disproportionation of the product of this reaction (SO<sub>2</sub>) with the participation of hot water with the formation of elemental and sulfate sulfur. The isotopic composition of dissolved sulfate and sulfide sulfur speciation has shown that the process of bacterial reduction proceeds in the thermal waters, accompanied by accumulation of relatively heavy sulfur isotope in sulfates. Simultaneously with reduction, the oxidation of both sulfide minerals and newly formed hydrosulfide proceeds with formation of elemental, thiosulfates and also sulfates in the discharge zone was proceeded. It is shown that the process of sulfide oxidation mostly occurs in carbon dioxide thermal waters. Therefore, the elemental sulfur is predominant in carbon dioxide waters. The oxidation process is less significant in the nitric thermal waters, whereby the concentrations of sulfide ion are higher than sulfates. The ambiguous effect of sulfate reduction on the hydrogeochemical environment of the thermal waters is confirmed by the differing value of the carbon isotope ratio of HCO<sub>3</sub><sup>?</sup> in the considered waters. The obtained isotopic composition data <sup>34</sup>δS(SO<sub>4</sub><sup>2?</sup>) indicate host rocks as a source of sulfates in the thermal waters of Jiangxi Province.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 1-2","pages":"49 - 62"},"PeriodicalIF":1.6,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09353-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4543619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-26DOI: 10.1007/s10498-019-09352-z
Sitangshu Chatterjee, Uday K. Sinha, Bishnu P. Biswal, Ajay Jaryal, Pankaj K. Jain, Suraj Patbhaje, Ashutosh Dash
The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO3 type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ13C) points to silicate weathering with soil CO2 coming from C3 type of plants. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (>?50?years) of the recharging waters. Radiocarbon dating (14C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663?year BP (before present).
{"title":"An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India","authors":"Sitangshu Chatterjee, Uday K. Sinha, Bishnu P. Biswal, Ajay Jaryal, Pankaj K. Jain, Suraj Patbhaje, Ashutosh Dash","doi":"10.1007/s10498-019-09352-z","DOIUrl":"https://doi.org/10.1007/s10498-019-09352-z","url":null,"abstract":"<p>The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO<sub>3</sub> type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ<sup>13</sup>C) points to silicate weathering with soil CO<sub>2</sub> coming from C<sub>3</sub> type of plants. Stable isotopes (δ<sup>18</sup>O, δ<sup>2</sup>H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (>?50?years) of the recharging waters. Radiocarbon dating (<sup>14</sup>C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663?year BP (before present).</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 1-2","pages":"63 - 89"},"PeriodicalIF":1.6,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09352-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4990140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-20DOI: 10.1007/s10498-019-09350-1
J. Viers, S. Carretier, Y. Auda, O. S. Pokrovsky, P. Seyler, F. Chabaux, V. Regard, V. Tolorza, G. Herail
Several rivers of Chile from the latitude 30°–38° have been sampled during a stable anticyclonic period (October 2008). Firstly, our aim was to evaluate the dissolved chemical composition (major and trace elements) of poorly known central Chilean rivers. Secondly, we used a co-inertia analysis (see Dolédec and Chessel in Freshw Biol 31:277–294, 1994) to explore the possible relationships between the concentrations of elements and the environmental parameters [surface of the basin (km2)/mining activity (%)/average height (m)/watershed mean slope (%)/% of the surface covered by vegetation, sedimentary rocks, volcano-sedimentary rocks, volcanic rocks, granitoid rocks/erosion rate (mm/year)]. Globally, the major elements concentration could be explained by a strong control of mixed silicate and carbonate and evaporate lithology. The statistical treatment reveals that the highest metal and metalloids loads of Tinguiririca, Cachapoal, Aconcagua, Choapa, Illapel and Limari could be explained by the contribution of the mining activities in the uppermost part of these watersheds and/or by the higher geochemical background. Indeed, it remains difficult to decipher between a real mining impact and a higher geochemical background. Even if these rivers could be impacted by AMD process, the size of these watersheds is capable of diluting AMD waters by the alkaline character of tributaries that induce acid neutralization and decrease the level of metals and metalloids.
在稳定的反气旋期间(2008年10月),对智利纬度30°-38°的几条河流进行了采样。首先,我们的目标是评估鲜为人知的智利中部河流的溶解化学成分(主要和微量元素)。其次,我们使用共惯性分析(见doldec和Chessel in Freshw Biol 31:27 - 294, 1994)来探索元素浓度与环境参数[盆地表面积(km2)/采矿活动(%)/平均高度(m)/流域平均坡度(%)/植被覆盖面、沉积岩、火山沉积岩、火山岩、花岗岩/侵蚀速率(mm/年)]之间的可能关系。从整体上看,主要元素的富集可以用混合硅酸盐和碳酸盐以及蒸发岩性的强烈控制来解释。统计处理表明,廷吉里里卡、卡恰波尔、阿空加瓜、乔阿帕、伊拉佩尔和利马里的金属和类金属负荷最高,可以解释为这些流域最上部的采矿活动和/或较高的地球化学背景。事实上,在真正的采矿影响和更高的地球化学背景之间仍然很难破译。即使这些河流可能受到AMD过程的影响,这些流域的大小也能够通过支流的碱性特征来稀释AMD水,从而诱导酸中和并降低金属和类金属的水平。
{"title":"Geochemistry of Chilean Rivers Within the Central Zone: Distinguishing the Impact of Mining, Lithology and Physical Weathering","authors":"J. Viers, S. Carretier, Y. Auda, O. S. Pokrovsky, P. Seyler, F. Chabaux, V. Regard, V. Tolorza, G. Herail","doi":"10.1007/s10498-019-09350-1","DOIUrl":"https://doi.org/10.1007/s10498-019-09350-1","url":null,"abstract":"<p>Several rivers of Chile from the latitude 30°–38° have been sampled during a stable anticyclonic period (October 2008). Firstly, our aim was to evaluate the dissolved chemical composition (major and trace elements) of poorly known central Chilean rivers. Secondly, we used a co-inertia analysis (see Dolédec and Chessel in Freshw Biol 31:277–294, 1994) to explore the possible relationships between the concentrations of elements and the environmental parameters [surface of the basin (km<sup>2</sup>)/mining activity (%)/average height (m)/watershed mean slope (%)/% of the surface covered by vegetation, sedimentary rocks, volcano-sedimentary rocks, volcanic rocks, granitoid rocks/erosion rate (mm/year)]. Globally, the major elements concentration could be explained by a strong control of mixed silicate and carbonate and evaporate lithology. The statistical treatment reveals that the highest metal and metalloids loads of Tinguiririca, Cachapoal, Aconcagua, Choapa, Illapel and Limari could be explained by the contribution of the mining activities in the uppermost part of these watersheds and/or by the higher geochemical background. Indeed, it remains difficult to decipher between a real mining impact and a higher geochemical background. Even if these rivers could be impacted by AMD process, the size of these watersheds is capable of diluting AMD waters by the alkaline character of tributaries that induce acid neutralization and decrease the level of metals and metalloids.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 1-2","pages":"27 - 48"},"PeriodicalIF":1.6,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09350-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4796533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-15DOI: 10.1007/s10498-019-09351-0
Véronique E. Oldham, Matthew G. Siebecker, Matthew R. Jones, Alfonso Mucci, Bradley M. Tebo, George W. Luther III
Dissolved and solid-phase speciation of Mn and Fe was measured in the porewaters of sediments recovered from three sites in the Greater St. Lawrence Estuary: the Saguenay Fjord, the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL). At all sites and most depths, metal organic ligand complexes (Mn(III)–L and Fe(III)–L) dominated the sedimentary porewater speciation, making up to 100% of the total dissolved Mn or Fe. We propose that these complexes play a previously underestimated role in maintaining oxidized soluble metal species in sedimentary systems and in stabilizing organic matter in the form of soluble metal–organic complexes. In the fjord porewaters, strong (log KCOND?>?13.2) and weak (log KCOND?<?13.2) Mn(III)–L complexes were detected, whereas only weak Mn(III)–L complexes were detected at the pelagic and hemipelagic sites of the GSL and LSLE, respectively. At the fjord site, Mn(III)–L complexes were kinetically stabilized against reduction by Fe(II), even when Fe(II) concentrations were as high as 57?μM. Only dissolved Mn(II) was released from the sediments to overlying waters, suggesting that Mn(III) may be preferentially oxidized by sedimentary microbes at or near the sediment–water interface. We calculated the dissolved Mn(II) fluxes from the sediments to the overlying waters to be 0.24?μmol?cm?2?year?1 at the pelagic site (GSL), 11?μmol?cm?2?year?1 at the hemipelagic site (LSLE) and 2.0?μmol?cm?2?year?1 in the fjord. The higher benthic flux in the LSLE reflects the lower oxygen concentrations (dO2) of the bottom waters and sediments at this site, which favor the reductive dissolution of Mn oxides as well as the decrease in the oxidation rate of dissolved Mn(II) diffusing through the oxic layer of the sediment and its release to the overlying water.
{"title":"The Speciation and Mobility of Mn and Fe in Estuarine Sediments","authors":"Véronique E. Oldham, Matthew G. Siebecker, Matthew R. Jones, Alfonso Mucci, Bradley M. Tebo, George W. Luther III","doi":"10.1007/s10498-019-09351-0","DOIUrl":"https://doi.org/10.1007/s10498-019-09351-0","url":null,"abstract":"<p>Dissolved and solid-phase speciation of Mn and Fe was measured in the porewaters of sediments recovered from three sites in the Greater St. Lawrence Estuary: the Saguenay Fjord, the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL). At all sites and most depths, metal organic ligand complexes (Mn(III)–L and Fe(III)–L) dominated the sedimentary porewater speciation, making up to 100% of the total dissolved Mn or Fe. We propose that these complexes play a previously underestimated role in maintaining oxidized soluble metal species in sedimentary systems and in stabilizing organic matter in the form of soluble metal–organic complexes. In the fjord porewaters, strong (log <i>K</i><sub>COND</sub>?>?13.2) and weak (log <i>K</i><sub>COND</sub>?<?13.2) Mn(III)–L complexes were detected, whereas only weak Mn(III)–L complexes were detected at the pelagic and hemipelagic sites of the GSL and LSLE, respectively. At the fjord site, Mn(III)–L complexes were kinetically stabilized against reduction by Fe(II), even when Fe(II) concentrations were as high as 57?μM. Only dissolved Mn(II) was released from the sediments to overlying waters, suggesting that Mn(III) may be preferentially oxidized by sedimentary microbes at or near the sediment–water interface. We calculated the dissolved Mn(II) fluxes from the sediments to the overlying waters to be 0.24?μmol?cm<sup>?2</sup>?year<sup>?1</sup> at the pelagic site (GSL), 11?μmol?cm<sup>?2</sup>?year<sup>?1</sup> at the hemipelagic site (LSLE) and 2.0?μmol?cm<sup>?2</sup>?year<sup>?1</sup> in the fjord. The higher benthic flux in the LSLE reflects the lower oxygen concentrations (dO<sub>2</sub>) of the bottom waters and sediments at this site, which favor the reductive dissolution of Mn oxides as well as the decrease in the oxidation rate of dissolved Mn(II) diffusing through the oxic layer of the sediment and its release to the overlying water.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 1-2","pages":"3 - 26"},"PeriodicalIF":1.6,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09351-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4619378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-26DOI: 10.1007/s10498-019-09349-8
E. Dişli
The Upper Tigris River Basin is one of the biggest basins in Turkey, where municipal, agricultural and industrial water supplies are highly dependent on groundwater and surface water resources. The interpretation of plots for different major ions indicates that the chemical compositions of the surface/groundwater in the Upper Tigris River Basin are dominated Ca2+, Mg2+, HCO3? and SO42? which have been arisen largely from chemical weathering of carbonate and evaporate rock, and reverse ion exchange reactions. Isotopic composition of surface and groundwater samples is influenced by two main air mass trajectories: one originating from the Central Anatolia that is cold and rainy and another originating from the rains falling over northeastern Syria that is warm and rainy, with warm winds. The relative abundance of cations and anions in water samples is in the order: Ca2+??>?Mg2+??>?Na+??>?K+ for cations and HCO