首页 > 最新文献

Aquatic Geochemistry最新文献

英文 中文
Effects of Bioirrigation and Salinity on Arsenic Distributions in Ferruginous Concretions from Salt Marsh Sediment Cores (Southern Brazil) 生物灌溉和盐度对巴西南部盐沼沉积物含铁固结物中砷分布的影响
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-17 DOI: 10.1007/s10498-020-09387-7
Larissa Costa, Nicolai Mirlean, Guilherme Quintana, Segun Adebayo, Karen Johannesson

Arsenic (As), iron (Fe), and manganese (Mn) contents were measured in sediment nodules and associated pore waters obtained from sediment cores collected from a salt marsh on Pólvora Island (southern Brazil). Sediment cores were obtained when brackish water dominated the estuary, at two different environments: an unvegetated mudflat colonized by crabs (Neohelice granulata), and a low intertidal stand vegetated by Spartina alterniflora. We determined the percentage of nodules in each depth interval of the cores, along with redox potential, and As, Fe, and Mn contents of the nodules. The mineralogy of the nodules was investigated, and results showed they are mainly composed by quartz, phyllosilicates, and amorphous Fe–Mn oxides/oxyhydroxides. Pore water results showed that bioturbation by local crabs supports oxygen penetration to depths of ca. 25 cm below the salt marsh surface, with lower Fe contents in pore water associated with the brackish period. However, S. alterniflora growth appears to have a greater impact on sediment geochemistry of Fe, Mn, and possibly As due to sulfate reduction and the associated decrease in pore water pH. Higher Fe concentrations were observed in the pore waters during the period of brackish water dominance, which also corresponded to the S. alterniflora growth season. The study demonstrates that differences in geochemical conditions (e.g., Fe content) that can develop in salt marsh sediments owing to different types of bioirrigation processes (i.e., bioirrigation driven by crabs versus that related to the growth of S. alterniflora) play important roles in the biogeochemical cycling of As.

从Pólvora岛(巴西南部)的盐沼中采集的沉积物岩心中,测量了沉积物结核和相关孔隙水中的砷(As)、铁(Fe)和锰(Mn)含量。沉积物岩心是在咸淡水为主的河口,在两个不同的环境中获得的:一个是由蟹(Neohelice granulata)定居的无植被泥滩,一个是由互花米草(Spartina interniflora)生长的低潮间带。我们测定了岩心中每个深度段的结核百分比、氧化还原电位以及结核中As、Fe和Mn的含量。对结核进行了矿物学研究,结果表明结核主要由石英、层状硅酸盐和无定形铁锰氧化物/氢氧化物组成。孔隙水结果表明,当地螃蟹的生物扰动支持氧气渗透到盐沼表面以下约25 cm的深度,孔隙水中铁含量较低与微咸期有关。然而,互花草的生长似乎对沉积物的Fe、Mn和As的地球化学影响更大,这可能是由于硫酸盐的还原和孔隙水ph的降低。在微淡水占优势的时期,孔隙水中的Fe浓度较高,这也与互花草的生长季节相对应。研究表明,盐沼沉积物中不同类型的生物灌溉过程(即螃蟹驱动的生物灌溉与互花草生长相关的生物灌溉)所形成的地球化学条件(如铁含量)的差异在砷的生物地球化学循环中起着重要作用。
{"title":"Effects of Bioirrigation and Salinity on Arsenic Distributions in Ferruginous Concretions from Salt Marsh Sediment Cores (Southern Brazil)","authors":"Larissa Costa,&nbsp;Nicolai Mirlean,&nbsp;Guilherme Quintana,&nbsp;Segun Adebayo,&nbsp;Karen Johannesson","doi":"10.1007/s10498-020-09387-7","DOIUrl":"10.1007/s10498-020-09387-7","url":null,"abstract":"<div><p>Arsenic (As), iron (Fe), and manganese (Mn) contents were measured in sediment nodules and associated pore waters obtained from sediment cores collected from a salt marsh on Pólvora Island (southern Brazil). Sediment cores were obtained when brackish water dominated the estuary, at two different environments: an unvegetated mudflat colonized by crabs (<i>Neohelice granulata</i>), and a low intertidal stand vegetated by <i>Spartina alterniflora</i>. We determined the percentage of nodules in each depth interval of the cores, along with redox potential, and As, Fe, and Mn contents of the nodules. The mineralogy of the nodules was investigated, and results showed they are mainly composed by quartz, phyllosilicates, and amorphous Fe–Mn oxides/oxyhydroxides. Pore water results showed that bioturbation by local crabs supports oxygen penetration to depths of ca. 25 cm below the salt marsh surface, with lower Fe contents in pore water associated with the brackish period. However, <i>S. alterniflora</i> growth appears to have a greater impact on sediment geochemistry of Fe, Mn, and possibly As due to sulfate reduction and the associated decrease in pore water pH. Higher Fe concentrations were observed in the pore waters during the period of brackish water dominance, which also corresponded to the <i>S. alterniflora</i> growth season. The study demonstrates that differences in geochemical conditions (e.g., Fe content) that can develop in salt marsh sediments owing to different types of bioirrigation processes (i.e., bioirrigation driven by crabs versus that related to the growth of <i>S. alterniflora</i>) play important roles in the biogeochemical cycling of As.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 2","pages":"79 - 103"},"PeriodicalIF":1.6,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09387-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4682946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Correction to: Colloidal Organic Matter and Metal(loid)s in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea) 更正:沿海水域(北亚得里亚海的里雅斯特湾)的胶体有机物和金属(胶体)
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.1007/s10498-020-09380-0
Katja Klun, Ingrid Falnoga, Darja Mazej, Primož Šket, Jadran Faganeli
{"title":"Correction to: Colloidal Organic Matter and Metal(loid)s in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea)","authors":"Katja Klun,&nbsp;Ingrid Falnoga,&nbsp;Darja Mazej,&nbsp;Primož Šket,&nbsp;Jadran Faganeli","doi":"10.1007/s10498-020-09380-0","DOIUrl":"https://doi.org/10.1007/s10498-020-09380-0","url":null,"abstract":"","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 3","pages":"293 - 309"},"PeriodicalIF":1.6,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09380-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments 修正:细菌硫酸盐还原抑制对高盐环境中甲烷生成和稳定同位素组成的影响
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-10 DOI: 10.1007/s10498-020-09381-z
Cheryl A. Kelley, Brad M. Bebout, Jeffrey P. Chanton, Angela M. Detweiler, Adrienne Frisbee, Brooke E. Nicholson, Jennifer Poole, Amanda Tazaz, Claire Winkler
{"title":"Correction to: The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments","authors":"Cheryl A. Kelley,&nbsp;Brad M. Bebout,&nbsp;Jeffrey P. Chanton,&nbsp;Angela M. Detweiler,&nbsp;Adrienne Frisbee,&nbsp;Brooke E. Nicholson,&nbsp;Jennifer Poole,&nbsp;Amanda Tazaz,&nbsp;Claire Winkler","doi":"10.1007/s10498-020-09381-z","DOIUrl":"https://doi.org/10.1007/s10498-020-09381-z","url":null,"abstract":"","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 3","pages":"311 - 325"},"PeriodicalIF":1.6,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09381-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stable Carbon Isotopes δ13C as a Proxy for Characterizing Carbon Sources and Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon 稳定碳同位素δ13C在喀麦隆Nsimi小型热带水源集水区碳源和碳过程的表征
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-07-01 DOI: 10.1007/s10498-020-09386-8
Gustave Raoul Nkoue Ndondo, J.-L. Probst, J. Ndjama, Jules Remy Ndam Ngoupayou, J.-L. Boeglin, G. E. Takem, F. Brunet, J. Mortatti, F. Gauthier-Lafaye, J.-J. Braun, G. E. Ekodeck

Stream carbon fluxes are one of the major components in the global C cycle, yet the discrimination of the various sources of stream carbon remains to a large extent unclear and less is known about the biogeochemical transformations that accompany the transfer of C from soils to streams. Here, we used patterns in stream water and groundwater δ13C values in a small forested tropical headwater catchment to investigate the source and contribution from the soil carbon pools to stream organic and inorganic carbon behavior over seasonal scales. Stream organic carbon (DOC and POC) comes mainly from the upper rich soil organic carbon horizons and derived from total organic carbon (TOC) of biogenic source. The isotopic compositions δ13CTOC, δ13CDOC and δ13CPOC of these carbon species were very close (??30‰ to ??26‰) and typical of the forested C3 vegetation. The relationship observed between DOC and log pCO2 and δ13CDIC indicated that besides the considerable CO2 evasion that occurs as DIC is transported from soils to streams, there were also other processes affecting the stream DIC pool. In-stream mineralization of DOC and mixing of atmospheric carbon had a significant influence on the δ13CDIC values. These processes which varied seasonally with hydrological changes represent the main control on DOC and DIC cycling in the wet tropical milieu. The rapid turnover of carbon on hillside soils, the transformation of TOC to DOC in wetland soils and further mineralization of stream DOC to DIC favor the evasion of C, making the zone a source of carbon to the atmosphere.

河流碳通量是全球碳循环的主要组成部分之一,但对河流碳的各种来源的区分在很大程度上仍然不清楚,而且对伴随碳从土壤向河流转移的生物地球化学转化所知较少。在此,我们利用热带森林小流域的河流水和地下水δ13C值的变化模式,研究了土壤碳库在季节尺度上对河流有机碳和无机碳行为的贡献。河流有机碳(DOC和POC)主要来自上层富土壤有机碳层,来源于生物源总有机碳(TOC)。这些碳的同位素组成δ13CTOC、δ13CDOC和δ13CPOC非常接近(??30‰~ 26‰),典型的C3森林植被。DOC与log pCO2和δ13CDIC的关系表明,除了DIC从土壤向河流输送过程中发生大量的CO2逃避外,还有其他过程影响河流DIC库。DOC的流内成矿作用和大气碳的混合作用对δ13CDIC值有显著影响。这些随季节变化而变化的过程是热带湿润环境DOC和DIC循环的主要控制因素。山坡土壤碳的快速周转、湿地土壤TOC向DOC的转化以及河流DOC向DIC的进一步矿化有利于碳的逃逸,使该地区成为大气碳的来源。
{"title":"Stable Carbon Isotopes δ13C as a Proxy for Characterizing Carbon Sources and Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon","authors":"Gustave Raoul Nkoue Ndondo,&nbsp;J.-L. Probst,&nbsp;J. Ndjama,&nbsp;Jules Remy Ndam Ngoupayou,&nbsp;J.-L. Boeglin,&nbsp;G. E. Takem,&nbsp;F. Brunet,&nbsp;J. Mortatti,&nbsp;F. Gauthier-Lafaye,&nbsp;J.-J. Braun,&nbsp;G. E. Ekodeck","doi":"10.1007/s10498-020-09386-8","DOIUrl":"https://doi.org/10.1007/s10498-020-09386-8","url":null,"abstract":"<p>Stream carbon fluxes are one of the major components in the global C cycle, yet the discrimination of the various sources of stream carbon remains to a large extent unclear and less is known about the biogeochemical transformations that accompany the transfer of C from soils to streams. Here, we used patterns in stream water and groundwater δ<sup>13</sup>C values in a small forested tropical headwater catchment to investigate the source and contribution from the soil carbon pools to stream organic and inorganic carbon behavior over seasonal scales. Stream organic carbon (DOC and POC) comes mainly from the upper rich soil organic carbon horizons and derived from total organic carbon (TOC) of biogenic source. The isotopic compositions δ<sup>13</sup>C<sub>TOC</sub>, δ<sup>13</sup>C<sub>DOC</sub> and δ<sup>13</sup>C<sub>POC</sub> of these carbon species were very close (??30‰ to ??26‰) and typical of the forested C3 vegetation. The relationship observed between DOC and log pCO<sub>2</sub> and δ<sup>13</sup>C<sub>DIC</sub> indicated that besides the considerable CO<sub>2</sub> evasion that occurs as DIC is transported from soils to streams, there were also other processes affecting the stream DIC pool. In-stream mineralization of DOC and mixing of atmospheric carbon had a significant influence on the δ<sup>13</sup>C<sub>DIC</sub> values. These processes which varied seasonally with hydrological changes represent the main control on DOC and DIC cycling in the wet tropical milieu. The rapid turnover of carbon on hillside soils, the transformation of TOC to DOC in wetland soils and further mineralization of stream DOC to DIC favor the evasion of C, making the zone a source of carbon to the atmosphere.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 1","pages":"1 - 30"},"PeriodicalIF":1.6,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09386-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4031170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate 氰化物与四硫酸盐反应生成硫氰酸盐的动力学
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-06-29 DOI: 10.1007/s10498-020-09385-9
Irina Kurashova, Alexey Kamyshny Jr.

In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.

在水生系统中,四硫酸盐和氰化物之间的反应产生硫氰酸盐。研究了四硫酸盐与游离氰化物以及六氰高铁酸盐(II)和六氰高铁酸盐(III)两种氰化物配合物在环境相关条件下的反应动力学。对于四硫酸盐与游离氰化物的反应,其反应速率常数和活化能与ph值有很大关系,而反应顺序与ph值无关。我们的观察结果表明,游离氰化物与四硫酸盐反应生成硫氰酸盐的途径如下:(1)在酸性和中性条件下,四硫酸盐与氰化氢反应相对缓慢;(2)四硫酸盐在高碱性条件下与氰化物阴离子反应较快。根据环境条件的不同,游离氰化物与四硫酸盐反应的半衰期从几小时到几年不等。四硫酸盐与六氰高铁酸盐(II)和六氰高铁酸盐(III)的反应没有环境意义,因为它们比四硫酸盐的分解慢。根据检测到的动力学参数,提出了改进四硫酸盐和氰化物分析方案的策略。
{"title":"Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate","authors":"Irina Kurashova,&nbsp;Alexey Kamyshny Jr.","doi":"10.1007/s10498-020-09385-9","DOIUrl":"https://doi.org/10.1007/s10498-020-09385-9","url":null,"abstract":"<p>In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 1","pages":"63 - 77"},"PeriodicalIF":1.6,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09385-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5120758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia 印度尼西亚爪哇岛Kulonprogo Regency不同地貌单元地下水系统的水文地球化学条件
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-06-24 DOI: 10.1007/s10498-020-09384-w
Reinaldy Pratama Poetra, Tjahyo Nugroho Adji, Langgeng Wahyu Santosa, Nurul Khakhim

Geomorphological (landform) aspects have long been known to control groundwater conditions in an area. Thus, combining the hydrogeological and geomorphological aspects (lithology, genesis, and morphology) becomes a prospective approach for understanding and delineating the hydrogeochemical processes in an area. The idea is then applied in Kulonprogo, Java, Indonesia, that consists of several landforms with minimum anthropogenic influence, in order to identify and quantify the hydrogeochemical processes that are responsible for hydrogeochemical facies changes in each landform. The groundwater facies based on Kurlov classification in each landform are strongly influenced by the water–rock interaction process as it presented in the Gibbs curve. The magnitude of saturation indices and mass transfer is also diverse that caused a distinction of hydrogeochemical facies and processes in each landform. For instance, the evolution of groundwater in the denudational hill to the fluviomarine plain occurs from Ca–HCO3 to Na?+?K–Ca–HCO3. The analysis of Durov diagram and inverse modeling—using PHREEQ—reveals that the hydrogeochemical processes that occur in most of the landform are ion exchange, weathering or dissolution, and precipitation. Further, oxidation–reduction and mixing only occur in few landforms. The further investigation from mass balance calculation that constructs from inverse modeling reveals some interesting findings and hypotheses, such as the construction of gypsum probably found in the deeper layer on swale as a result of pyrite dissolution of 1.074?×?10?3 mmol, and it is responsible in escalating Ca2+ and SO42?. Another finding is that although the calcite mineral mostly related to the past-marine environment, such as in the east denudational hill, the calcite in the west part is formed as a breakdown of 3.225?×?10?3 mmol anorthite.

地貌(地貌)方面长期以来被认为控制着一个地区的地下水条件。因此,结合水文地质和地貌方面(岩性、成因和形态)成为理解和描绘一个地区水文地球化学过程的一种前瞻性方法。然后将这一想法应用于印度尼西亚爪哇的Kulonprogo,该地区由几种人为影响最小的地貌组成,以便确定和量化导致每种地貌水文地球化学相变化的水文地球化学过程。基于库尔洛夫分类的地下水相在吉布斯曲线中表现为受水岩相互作用过程的强烈影响。饱和指数和传质量的大小也各不相同,导致各地貌的水文地球化学相和过程存在差异。例如,剥蚀丘陵向河海平原的地下水演化是由Ca-HCO3到Na?+? K-Ca-HCO3。利用phreeq对Durov图和反演模型进行分析,揭示了在大多数地貌中发生的水文地球化学过程是离子交换、风化或溶解和降水。此外,氧化还原和混合只发生在少数地貌中。通过逆向模型构建的质量平衡计算的进一步研究揭示了一些有趣的发现和假设,例如由于黄铁矿溶解1.074 × 10?3 mmol,负责Ca2+和SO42?的升高。另一个发现是尽管past-marine方解石矿物主要是相关环境,比如在东蓬山,方解石在西方的部分形成的故障3.225 ?×? 10 ?3毫摩尔钙长石。
{"title":"Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia","authors":"Reinaldy Pratama Poetra,&nbsp;Tjahyo Nugroho Adji,&nbsp;Langgeng Wahyu Santosa,&nbsp;Nurul Khakhim","doi":"10.1007/s10498-020-09384-w","DOIUrl":"https://doi.org/10.1007/s10498-020-09384-w","url":null,"abstract":"<p>Geomorphological (landform) aspects have long been known to control groundwater conditions in an area. Thus, combining the hydrogeological and geomorphological aspects (lithology, genesis, and morphology) becomes a prospective approach for understanding and delineating the hydrogeochemical processes in an area. The idea is then applied in Kulonprogo, Java, Indonesia, that consists of several landforms with minimum anthropogenic influence, in order to identify and quantify the hydrogeochemical processes that are responsible for hydrogeochemical facies changes in each landform. The groundwater facies based on Kurlov classification in each landform are strongly influenced by the water–rock interaction process as it presented in the Gibbs curve. The magnitude of saturation indices and mass transfer is also diverse that caused a distinction of hydrogeochemical facies and processes in each landform. For instance, the evolution of groundwater in the denudational hill to the fluviomarine plain occurs from Ca–HCO<sub>3</sub> to Na?+?K–Ca–HCO<sub>3</sub>. The analysis of Durov diagram and inverse modeling—using PHREEQ—reveals that the hydrogeochemical processes that occur in most of the landform are ion exchange, weathering or dissolution, and precipitation. Further, oxidation–reduction and mixing only occur in few landforms. The further investigation from mass balance calculation that constructs from inverse modeling reveals some interesting findings and hypotheses, such as the construction of gypsum probably found in the deeper layer on swale as a result of pyrite dissolution of 1.074?×?10<sup>?3</sup> mmol, and it is responsible in escalating Ca<sup>2+</sup> and SO<sub>4</sub><sup>2?</sup>. Another finding is that although the calcite mineral mostly related to the past-marine environment, such as in the east denudational hill, the calcite in the west part is formed as a breakdown of 3.225?×?10<sup>?3</sup> mmol anorthite.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 4","pages":"421 - 454"},"PeriodicalIF":1.6,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09384-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4937276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Influence of CO2 on Water Chemistry and Bacterial Community Structure and Diversity: An Experimental Study in the Laboratory CO2对水体化学及细菌群落结构和多样性影响的实验室实验研究
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-06-22 DOI: 10.1007/s10498-020-09383-x
Hongying Zhang, Zongjun Gao, Mengjie Shi, Shaoyan Fang

As the second largest carbon pool, soil has a high CO2 content, and it has an important impact on water–rock interactions and the bacterial community structure and diversity in soils. In this paper, three sets of laboratory simulation experiments under six levels of partial pressure CO2 (pCO2) conditions were used to analyze and study the CO2–water–rock interactions and the bacterial community structure and diversity changes in soil under normal temperature and pressure. Results (1) The change of pCO2 had an obvious influence on the chemical components. The dissolution of CO2 led to the dissolution of dolomite and calcite, which increased the concentrations of HCO3?, Ca2+, and Mg2+ significantly. (2) The influence of pCO2 on the bacterial community structure and diversity was different, and the bacterial community structure became more complex and diverse with the extension of the experiment time. In the experiments, Proteobacteria and Firmicutes were the main dominant phyla, and Gammaproteobacteria and Bacilli were the main dominant classes. The abundance of Bacteroidetes and Bacteroidia was significantly increased with the increasing pCO2. (3) pH had a significant influence on the bacterial community structure during the experiments, and the influences of different chemical components, such as HCO3?, Ca2+, Mg2+, total dissolved solids (TDS), and K+, on the abundance of different bacterial species were significantly different. This work can provide a theoretical basis for the technology of bacterial–geological storage of CO2, and it has important significance for the protection of the groundwater environment and the soil ecosystem.

土壤是第二大碳库,具有较高的CO2含量,对土壤水岩相互作用、细菌群落结构和多样性具有重要影响。本文通过6个分压CO2 (pCO2)水平下的3组室内模拟实验,分析研究了常温常压下土壤中CO2 -水-岩相互作用以及细菌群落结构和多样性的变化。结果(1)co2分压的变化对其化学成分有明显影响。CO2的溶解导致白云石和方解石的溶解,从而增加了HCO3?, Ca2+和Mg2+显著。(2) pCO2对细菌群落结构和多样性的影响是不同的,随着实验时间的延长,细菌群落结构变得更加复杂和多样。实验中,变形菌门和厚壁菌门为主要优势门,γ变形菌门和芽胞杆菌门为主要优势纲。拟杆菌门(Bacteroidetes)和拟杆菌门(Bacteroidia)的丰度随着pCO2的增加而显著增加。(3)实验过程中pH对细菌群落结构有显著影响,不同化学成分如HCO3?Ca2+、Mg2+、总溶解固形物(TDS)和K+对不同菌种丰度的影响差异显著。该工作可为细菌地质封存CO2技术提供理论依据,对保护地下水环境和土壤生态系统具有重要意义。
{"title":"Influence of CO2 on Water Chemistry and Bacterial Community Structure and Diversity: An Experimental Study in the Laboratory","authors":"Hongying Zhang,&nbsp;Zongjun Gao,&nbsp;Mengjie Shi,&nbsp;Shaoyan Fang","doi":"10.1007/s10498-020-09383-x","DOIUrl":"https://doi.org/10.1007/s10498-020-09383-x","url":null,"abstract":"<p>As the second largest carbon pool, soil has a high CO<sub>2</sub> content, and it has an important impact on water–rock interactions and the bacterial community structure and diversity in soils. In this paper, three sets of laboratory simulation experiments under six levels of partial pressure CO<sub>2</sub> (pCO<sub>2</sub>) conditions were used to analyze and study the CO<sub>2</sub>–water–rock interactions and the bacterial community structure and diversity changes in soil under normal temperature and pressure. <i>Results</i> (1) The change of pCO<sub>2</sub> had an obvious influence on the chemical components. The dissolution of CO<sub>2</sub> led to the dissolution of dolomite and calcite, which increased the concentrations of HCO<sub>3</sub><sup>?</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> significantly. (2) The influence of pCO<sub>2</sub> on the bacterial community structure and diversity was different, and the bacterial community structure became more complex and diverse with the extension of the experiment time. In the experiments, Proteobacteria and Firmicutes were the main dominant phyla, and Gammaproteobacteria and Bacilli were the main dominant classes. The abundance of Bacteroidetes and Bacteroidia was significantly increased with the increasing pCO<sub>2</sub>. (3) pH had a significant influence on the bacterial community structure during the experiments, and the influences of different chemical components, such as HCO<sub>3</sub><sup>?</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, total dissolved solids (TDS), and K<sup>+</sup>, on the abundance of different bacterial species were significantly different. This work can provide a theoretical basis for the technology of bacterial–geological storage of CO<sub>2</sub>, and it has important significance for the protection of the groundwater environment and the soil ecosystem.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 4","pages":"401 - 419"},"PeriodicalIF":1.6,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09383-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4868501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Introduction to “Microbial Biogeochemistry: A Special Issue of Aquatic Geochemistry Honoring Mark Hines” 《微生物生物地球化学:纪念马克·海恩斯的水生地球化学特刊》简介
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-05-22 DOI: 10.1007/s10498-020-09379-7
W. Berry Lyons, David J. Burdige
{"title":"An Introduction to “Microbial Biogeochemistry: A Special Issue of Aquatic Geochemistry Honoring Mark Hines”","authors":"W. Berry Lyons,&nbsp;David J. Burdige","doi":"10.1007/s10498-020-09379-7","DOIUrl":"https://doi.org/10.1007/s10498-020-09379-7","url":null,"abstract":"","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 3","pages":"179 - 181"},"PeriodicalIF":1.6,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09379-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4870652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System 温带和亚热带海草系统孔隙水碳酸盐化学动力学
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-05-16 DOI: 10.1007/s10498-020-09378-8
Theodor Kindeberg, Nicholas R. Bates, Travis A. Courtney, Tyler Cyronak, Alyssa Griffin, Fred T. Mackenzie, May-Linn Paulsen, Andreas J. Andersson

Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16?cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.

海草系统是本地和全球碳循环的重要组成部分,可以显著改变海水生物地球化学,从而产生生态影响。然而,海草对孔隙水生物地球化学的影响尚未得到充分的描述,这种海洋大型植物及其相关微生物群落在孔隙水化学修饰中的确切作用仍不明确。在本研究中,研究了南加州和百慕大受潮汐影响的海草系统的水柱和孔隙水中的碳酸盐化学,包括美国圣地亚哥使命湾的植被(Zostera marina)和非植被生物群落(0-16 ?cm),以及百慕大渡口湾红树林湾的植被系统(Thallasia testudinium)。在Mission Bay,溶解无机碳(DIC)和总碱度(TA)随沉积物深度呈明显的递增趋势。垂直孔隙水剖面在不同地点之间存在差异,植被沉积物中DIC和TA的浓度几乎是未植被沉积物的两倍。红树林湾孔隙水碳酸盐参数DIC和TA的范围和垂直剖面都较低,与Mission Bay没有明显的时间信号相比,生物地球化学参数遵循水柱的半日潮汐信号。研究地点之间观察到的差异很可能反映了不同环境下生物(生物量、碎屑和动物)和物理过程(如沉积物渗透性、停留时间和混合)对孔隙水碳酸盐化学的不同影响。
{"title":"Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System","authors":"Theodor Kindeberg,&nbsp;Nicholas R. Bates,&nbsp;Travis A. Courtney,&nbsp;Tyler Cyronak,&nbsp;Alyssa Griffin,&nbsp;Fred T. Mackenzie,&nbsp;May-Linn Paulsen,&nbsp;Andreas J. Andersson","doi":"10.1007/s10498-020-09378-8","DOIUrl":"https://doi.org/10.1007/s10498-020-09378-8","url":null,"abstract":"<p>Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (<i>Zostera marina</i>) and unvegetated biomes (0–16?cm) in Mission Bay, San Diego, USA and a vegetated system (<i>Thallasia testudinium</i>) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 4","pages":"375 - 399"},"PeriodicalIF":1.6,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09378-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4656138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Chemical Weathering in Small Mountainous Rivers of Southern Italy and Northern Spain 意大利南部和西班牙北部山区小河流的化学风化作用
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-05-13 DOI: 10.1007/s10498-020-09377-9
Anne E. Carey, Julia M. Young, Susan A. Welch, Kathleen A. Welch, Christopher B. Gardner, W. Berry Lyons

Since the seminal work of Milliman and Syvitski (J Geol 100:525–544, 1992), there has been interest in evaluating the significance of small mountainous river (SMRs) systems and their role in the transport of both solutes, and especially sediments, to the world ocean. Although some data exist from portions of the Earth’s mountainous regions, the majority of this work has been focused in the western Pacific Ocean and Caribbean regions. During those previous studies, workers have sought to evaluate the interconnection between physical erosion and chemical erosion rates. We report herein on the riverine geochemistry of five rivers draining northern Spain and six rivers draining southern Italy. The geochemistry of these rivers is dominated by calcium carbonate weathering and input from either evaporite dissolution or marine aerosols, or both. Silicate mineral weathering is also occurring but it is not the dominant process. Using previously tabulated annual total suspended load data, we have calculated both physical and chemical erosion yields from seven of the eleven rivers under investigation where complete data sets are available. The physical yields are much higher in the Italian rivers, while chemical yields of all rivers are in a similar range. Our work adds new information on SMRs from geographical regions that have not previously been evaluated within this global context.

自Milliman和Syvitski (J Geol 100:525-544, 1992)的开创性工作以来,人们一直对评估小山河(SMRs)系统的重要性及其在溶质,特别是沉积物向世界海洋的运输中的作用感兴趣。虽然有一些来自地球部分山区的数据,但这项工作的大部分集中在西太平洋和加勒比地区。在以前的研究中,工作人员试图评估物理侵蚀率和化学侵蚀率之间的相互关系。我们在此报告了西班牙北部的五条河流和意大利南部的六条河流的河流地球化学。这些河流的地球化学主要由碳酸钙风化作用和蒸发岩溶解或海洋气溶胶或两者的输入所控制。硅酸盐矿物风化也有发生,但不是主要的风化过程。利用以前的年度总悬浮荷载数据表,我们计算了11条调查河流中7条的物理和化学侵蚀产量,这些河流有完整的数据集。意大利河流的物理产量要高得多,而所有河流的化学产量都在一个相似的范围内。我们的工作增加了以前未在这一全球背景下评估过的地理区域的小危害性的新信息。
{"title":"Chemical Weathering in Small Mountainous Rivers of Southern Italy and Northern Spain","authors":"Anne E. Carey,&nbsp;Julia M. Young,&nbsp;Susan A. Welch,&nbsp;Kathleen A. Welch,&nbsp;Christopher B. Gardner,&nbsp;W. Berry Lyons","doi":"10.1007/s10498-020-09377-9","DOIUrl":"https://doi.org/10.1007/s10498-020-09377-9","url":null,"abstract":"<p>Since the seminal work of Milliman and Syvitski (J Geol 100:525–544, 1992), there has been interest in evaluating the significance of small mountainous river (SMRs) systems and their role in the transport of both solutes, and especially sediments, to the world ocean. Although some data exist from portions of the Earth’s mountainous regions, the majority of this work has been focused in the western Pacific Ocean and Caribbean regions. During those previous studies, workers have sought to evaluate the interconnection between physical erosion and chemical erosion rates. We report herein on the riverine geochemistry of five rivers draining northern Spain and six rivers draining southern Italy. The geochemistry of these rivers is dominated by calcium carbonate weathering and input from either evaporite dissolution or marine aerosols, or both. Silicate mineral weathering is also occurring but it is not the dominant process. Using previously tabulated annual total suspended load data, we have calculated both physical and chemical erosion yields from seven of the eleven rivers under investigation where complete data sets are available. The physical yields are much higher in the Italian rivers, while chemical yields of all rivers are in a similar range. Our work adds new information on SMRs from geographical regions that have not previously been evaluated within this global context.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 3","pages":"269 - 291"},"PeriodicalIF":1.6,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09377-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4550111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Aquatic Geochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1