首页 > 最新文献

Aquatic Geochemistry最新文献

英文 中文
Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia 印度尼西亚爪哇岛Kulonprogo Regency不同地貌单元地下水系统的水文地球化学条件
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-06-24 DOI: 10.1007/s10498-020-09384-w
Reinaldy Pratama Poetra, Tjahyo Nugroho Adji, Langgeng Wahyu Santosa, Nurul Khakhim

Geomorphological (landform) aspects have long been known to control groundwater conditions in an area. Thus, combining the hydrogeological and geomorphological aspects (lithology, genesis, and morphology) becomes a prospective approach for understanding and delineating the hydrogeochemical processes in an area. The idea is then applied in Kulonprogo, Java, Indonesia, that consists of several landforms with minimum anthropogenic influence, in order to identify and quantify the hydrogeochemical processes that are responsible for hydrogeochemical facies changes in each landform. The groundwater facies based on Kurlov classification in each landform are strongly influenced by the water–rock interaction process as it presented in the Gibbs curve. The magnitude of saturation indices and mass transfer is also diverse that caused a distinction of hydrogeochemical facies and processes in each landform. For instance, the evolution of groundwater in the denudational hill to the fluviomarine plain occurs from Ca–HCO3 to Na?+?K–Ca–HCO3. The analysis of Durov diagram and inverse modeling—using PHREEQ—reveals that the hydrogeochemical processes that occur in most of the landform are ion exchange, weathering or dissolution, and precipitation. Further, oxidation–reduction and mixing only occur in few landforms. The further investigation from mass balance calculation that constructs from inverse modeling reveals some interesting findings and hypotheses, such as the construction of gypsum probably found in the deeper layer on swale as a result of pyrite dissolution of 1.074?×?10?3 mmol, and it is responsible in escalating Ca2+ and SO42?. Another finding is that although the calcite mineral mostly related to the past-marine environment, such as in the east denudational hill, the calcite in the west part is formed as a breakdown of 3.225?×?10?3 mmol anorthite.

地貌(地貌)方面长期以来被认为控制着一个地区的地下水条件。因此,结合水文地质和地貌方面(岩性、成因和形态)成为理解和描绘一个地区水文地球化学过程的一种前瞻性方法。然后将这一想法应用于印度尼西亚爪哇的Kulonprogo,该地区由几种人为影响最小的地貌组成,以便确定和量化导致每种地貌水文地球化学相变化的水文地球化学过程。基于库尔洛夫分类的地下水相在吉布斯曲线中表现为受水岩相互作用过程的强烈影响。饱和指数和传质量的大小也各不相同,导致各地貌的水文地球化学相和过程存在差异。例如,剥蚀丘陵向河海平原的地下水演化是由Ca-HCO3到Na?+? K-Ca-HCO3。利用phreeq对Durov图和反演模型进行分析,揭示了在大多数地貌中发生的水文地球化学过程是离子交换、风化或溶解和降水。此外,氧化还原和混合只发生在少数地貌中。通过逆向模型构建的质量平衡计算的进一步研究揭示了一些有趣的发现和假设,例如由于黄铁矿溶解1.074 × 10?3 mmol,负责Ca2+和SO42?的升高。另一个发现是尽管past-marine方解石矿物主要是相关环境,比如在东蓬山,方解石在西方的部分形成的故障3.225 ?×? 10 ?3毫摩尔钙长石。
{"title":"Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia","authors":"Reinaldy Pratama Poetra,&nbsp;Tjahyo Nugroho Adji,&nbsp;Langgeng Wahyu Santosa,&nbsp;Nurul Khakhim","doi":"10.1007/s10498-020-09384-w","DOIUrl":"https://doi.org/10.1007/s10498-020-09384-w","url":null,"abstract":"<p>Geomorphological (landform) aspects have long been known to control groundwater conditions in an area. Thus, combining the hydrogeological and geomorphological aspects (lithology, genesis, and morphology) becomes a prospective approach for understanding and delineating the hydrogeochemical processes in an area. The idea is then applied in Kulonprogo, Java, Indonesia, that consists of several landforms with minimum anthropogenic influence, in order to identify and quantify the hydrogeochemical processes that are responsible for hydrogeochemical facies changes in each landform. The groundwater facies based on Kurlov classification in each landform are strongly influenced by the water–rock interaction process as it presented in the Gibbs curve. The magnitude of saturation indices and mass transfer is also diverse that caused a distinction of hydrogeochemical facies and processes in each landform. For instance, the evolution of groundwater in the denudational hill to the fluviomarine plain occurs from Ca–HCO<sub>3</sub> to Na?+?K–Ca–HCO<sub>3</sub>. The analysis of Durov diagram and inverse modeling—using PHREEQ—reveals that the hydrogeochemical processes that occur in most of the landform are ion exchange, weathering or dissolution, and precipitation. Further, oxidation–reduction and mixing only occur in few landforms. The further investigation from mass balance calculation that constructs from inverse modeling reveals some interesting findings and hypotheses, such as the construction of gypsum probably found in the deeper layer on swale as a result of pyrite dissolution of 1.074?×?10<sup>?3</sup> mmol, and it is responsible in escalating Ca<sup>2+</sup> and SO<sub>4</sub><sup>2?</sup>. Another finding is that although the calcite mineral mostly related to the past-marine environment, such as in the east denudational hill, the calcite in the west part is formed as a breakdown of 3.225?×?10<sup>?3</sup> mmol anorthite.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09384-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4937276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Influence of CO2 on Water Chemistry and Bacterial Community Structure and Diversity: An Experimental Study in the Laboratory CO2对水体化学及细菌群落结构和多样性影响的实验室实验研究
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-06-22 DOI: 10.1007/s10498-020-09383-x
Hongying Zhang, Zongjun Gao, Mengjie Shi, Shaoyan Fang

As the second largest carbon pool, soil has a high CO2 content, and it has an important impact on water–rock interactions and the bacterial community structure and diversity in soils. In this paper, three sets of laboratory simulation experiments under six levels of partial pressure CO2 (pCO2) conditions were used to analyze and study the CO2–water–rock interactions and the bacterial community structure and diversity changes in soil under normal temperature and pressure. Results (1) The change of pCO2 had an obvious influence on the chemical components. The dissolution of CO2 led to the dissolution of dolomite and calcite, which increased the concentrations of HCO3?, Ca2+, and Mg2+ significantly. (2) The influence of pCO2 on the bacterial community structure and diversity was different, and the bacterial community structure became more complex and diverse with the extension of the experiment time. In the experiments, Proteobacteria and Firmicutes were the main dominant phyla, and Gammaproteobacteria and Bacilli were the main dominant classes. The abundance of Bacteroidetes and Bacteroidia was significantly increased with the increasing pCO2. (3) pH had a significant influence on the bacterial community structure during the experiments, and the influences of different chemical components, such as HCO3?, Ca2+, Mg2+, total dissolved solids (TDS), and K+, on the abundance of different bacterial species were significantly different. This work can provide a theoretical basis for the technology of bacterial–geological storage of CO2, and it has important significance for the protection of the groundwater environment and the soil ecosystem.

土壤是第二大碳库,具有较高的CO2含量,对土壤水岩相互作用、细菌群落结构和多样性具有重要影响。本文通过6个分压CO2 (pCO2)水平下的3组室内模拟实验,分析研究了常温常压下土壤中CO2 -水-岩相互作用以及细菌群落结构和多样性的变化。结果(1)co2分压的变化对其化学成分有明显影响。CO2的溶解导致白云石和方解石的溶解,从而增加了HCO3?, Ca2+和Mg2+显著。(2) pCO2对细菌群落结构和多样性的影响是不同的,随着实验时间的延长,细菌群落结构变得更加复杂和多样。实验中,变形菌门和厚壁菌门为主要优势门,γ变形菌门和芽胞杆菌门为主要优势纲。拟杆菌门(Bacteroidetes)和拟杆菌门(Bacteroidia)的丰度随着pCO2的增加而显著增加。(3)实验过程中pH对细菌群落结构有显著影响,不同化学成分如HCO3?Ca2+、Mg2+、总溶解固形物(TDS)和K+对不同菌种丰度的影响差异显著。该工作可为细菌地质封存CO2技术提供理论依据,对保护地下水环境和土壤生态系统具有重要意义。
{"title":"Influence of CO2 on Water Chemistry and Bacterial Community Structure and Diversity: An Experimental Study in the Laboratory","authors":"Hongying Zhang,&nbsp;Zongjun Gao,&nbsp;Mengjie Shi,&nbsp;Shaoyan Fang","doi":"10.1007/s10498-020-09383-x","DOIUrl":"https://doi.org/10.1007/s10498-020-09383-x","url":null,"abstract":"<p>As the second largest carbon pool, soil has a high CO<sub>2</sub> content, and it has an important impact on water–rock interactions and the bacterial community structure and diversity in soils. In this paper, three sets of laboratory simulation experiments under six levels of partial pressure CO<sub>2</sub> (pCO<sub>2</sub>) conditions were used to analyze and study the CO<sub>2</sub>–water–rock interactions and the bacterial community structure and diversity changes in soil under normal temperature and pressure. <i>Results</i> (1) The change of pCO<sub>2</sub> had an obvious influence on the chemical components. The dissolution of CO<sub>2</sub> led to the dissolution of dolomite and calcite, which increased the concentrations of HCO<sub>3</sub><sup>?</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> significantly. (2) The influence of pCO<sub>2</sub> on the bacterial community structure and diversity was different, and the bacterial community structure became more complex and diverse with the extension of the experiment time. In the experiments, Proteobacteria and Firmicutes were the main dominant phyla, and Gammaproteobacteria and Bacilli were the main dominant classes. The abundance of Bacteroidetes and Bacteroidia was significantly increased with the increasing pCO<sub>2</sub>. (3) pH had a significant influence on the bacterial community structure during the experiments, and the influences of different chemical components, such as HCO<sub>3</sub><sup>?</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, total dissolved solids (TDS), and K<sup>+</sup>, on the abundance of different bacterial species were significantly different. This work can provide a theoretical basis for the technology of bacterial–geological storage of CO<sub>2</sub>, and it has important significance for the protection of the groundwater environment and the soil ecosystem.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09383-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4868501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Introduction to “Microbial Biogeochemistry: A Special Issue of Aquatic Geochemistry Honoring Mark Hines” 《微生物生物地球化学:纪念马克·海恩斯的水生地球化学特刊》简介
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-22 DOI: 10.1007/s10498-020-09379-7
W. Berry Lyons, David J. Burdige
{"title":"An Introduction to “Microbial Biogeochemistry: A Special Issue of Aquatic Geochemistry Honoring Mark Hines”","authors":"W. Berry Lyons,&nbsp;David J. Burdige","doi":"10.1007/s10498-020-09379-7","DOIUrl":"https://doi.org/10.1007/s10498-020-09379-7","url":null,"abstract":"","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09379-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4870652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System 温带和亚热带海草系统孔隙水碳酸盐化学动力学
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-16 DOI: 10.1007/s10498-020-09378-8
Theodor Kindeberg, Nicholas R. Bates, Travis A. Courtney, Tyler Cyronak, Alyssa Griffin, Fred T. Mackenzie, May-Linn Paulsen, Andreas J. Andersson

Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16?cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.

海草系统是本地和全球碳循环的重要组成部分,可以显著改变海水生物地球化学,从而产生生态影响。然而,海草对孔隙水生物地球化学的影响尚未得到充分的描述,这种海洋大型植物及其相关微生物群落在孔隙水化学修饰中的确切作用仍不明确。在本研究中,研究了南加州和百慕大受潮汐影响的海草系统的水柱和孔隙水中的碳酸盐化学,包括美国圣地亚哥使命湾的植被(Zostera marina)和非植被生物群落(0-16 ?cm),以及百慕大渡口湾红树林湾的植被系统(Thallasia testudinium)。在Mission Bay,溶解无机碳(DIC)和总碱度(TA)随沉积物深度呈明显的递增趋势。垂直孔隙水剖面在不同地点之间存在差异,植被沉积物中DIC和TA的浓度几乎是未植被沉积物的两倍。红树林湾孔隙水碳酸盐参数DIC和TA的范围和垂直剖面都较低,与Mission Bay没有明显的时间信号相比,生物地球化学参数遵循水柱的半日潮汐信号。研究地点之间观察到的差异很可能反映了不同环境下生物(生物量、碎屑和动物)和物理过程(如沉积物渗透性、停留时间和混合)对孔隙水碳酸盐化学的不同影响。
{"title":"Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System","authors":"Theodor Kindeberg,&nbsp;Nicholas R. Bates,&nbsp;Travis A. Courtney,&nbsp;Tyler Cyronak,&nbsp;Alyssa Griffin,&nbsp;Fred T. Mackenzie,&nbsp;May-Linn Paulsen,&nbsp;Andreas J. Andersson","doi":"10.1007/s10498-020-09378-8","DOIUrl":"https://doi.org/10.1007/s10498-020-09378-8","url":null,"abstract":"<p>Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (<i>Zostera marina</i>) and unvegetated biomes (0–16?cm) in Mission Bay, San Diego, USA and a vegetated system (<i>Thallasia testudinium</i>) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09378-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4656138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Chemical Weathering in Small Mountainous Rivers of Southern Italy and Northern Spain 意大利南部和西班牙北部山区小河流的化学风化作用
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-13 DOI: 10.1007/s10498-020-09377-9
Anne E. Carey, Julia M. Young, Susan A. Welch, Kathleen A. Welch, Christopher B. Gardner, W. Berry Lyons

Since the seminal work of Milliman and Syvitski (J Geol 100:525–544, 1992), there has been interest in evaluating the significance of small mountainous river (SMRs) systems and their role in the transport of both solutes, and especially sediments, to the world ocean. Although some data exist from portions of the Earth’s mountainous regions, the majority of this work has been focused in the western Pacific Ocean and Caribbean regions. During those previous studies, workers have sought to evaluate the interconnection between physical erosion and chemical erosion rates. We report herein on the riverine geochemistry of five rivers draining northern Spain and six rivers draining southern Italy. The geochemistry of these rivers is dominated by calcium carbonate weathering and input from either evaporite dissolution or marine aerosols, or both. Silicate mineral weathering is also occurring but it is not the dominant process. Using previously tabulated annual total suspended load data, we have calculated both physical and chemical erosion yields from seven of the eleven rivers under investigation where complete data sets are available. The physical yields are much higher in the Italian rivers, while chemical yields of all rivers are in a similar range. Our work adds new information on SMRs from geographical regions that have not previously been evaluated within this global context.

自Milliman和Syvitski (J Geol 100:525-544, 1992)的开创性工作以来,人们一直对评估小山河(SMRs)系统的重要性及其在溶质,特别是沉积物向世界海洋的运输中的作用感兴趣。虽然有一些来自地球部分山区的数据,但这项工作的大部分集中在西太平洋和加勒比地区。在以前的研究中,工作人员试图评估物理侵蚀率和化学侵蚀率之间的相互关系。我们在此报告了西班牙北部的五条河流和意大利南部的六条河流的河流地球化学。这些河流的地球化学主要由碳酸钙风化作用和蒸发岩溶解或海洋气溶胶或两者的输入所控制。硅酸盐矿物风化也有发生,但不是主要的风化过程。利用以前的年度总悬浮荷载数据表,我们计算了11条调查河流中7条的物理和化学侵蚀产量,这些河流有完整的数据集。意大利河流的物理产量要高得多,而所有河流的化学产量都在一个相似的范围内。我们的工作增加了以前未在这一全球背景下评估过的地理区域的小危害性的新信息。
{"title":"Chemical Weathering in Small Mountainous Rivers of Southern Italy and Northern Spain","authors":"Anne E. Carey,&nbsp;Julia M. Young,&nbsp;Susan A. Welch,&nbsp;Kathleen A. Welch,&nbsp;Christopher B. Gardner,&nbsp;W. Berry Lyons","doi":"10.1007/s10498-020-09377-9","DOIUrl":"https://doi.org/10.1007/s10498-020-09377-9","url":null,"abstract":"<p>Since the seminal work of Milliman and Syvitski (J Geol 100:525–544, 1992), there has been interest in evaluating the significance of small mountainous river (SMRs) systems and their role in the transport of both solutes, and especially sediments, to the world ocean. Although some data exist from portions of the Earth’s mountainous regions, the majority of this work has been focused in the western Pacific Ocean and Caribbean regions. During those previous studies, workers have sought to evaluate the interconnection between physical erosion and chemical erosion rates. We report herein on the riverine geochemistry of five rivers draining northern Spain and six rivers draining southern Italy. The geochemistry of these rivers is dominated by calcium carbonate weathering and input from either evaporite dissolution or marine aerosols, or both. Silicate mineral weathering is also occurring but it is not the dominant process. Using previously tabulated annual total suspended load data, we have calculated both physical and chemical erosion yields from seven of the eleven rivers under investigation where complete data sets are available. The physical yields are much higher in the Italian rivers, while chemical yields of all rivers are in a similar range. Our work adds new information on SMRs from geographical regions that have not previously been evaluated within this global context.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09377-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4550111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Octanol–Water Partition Coefficients of Aristolochic Acids and Implications to the Etiology of Balkan Endemic Nephropathy 马兜铃酸的辛醇-水分配系数及其对巴尔干地区肾病病因的影响
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-05 DOI: 10.1007/s10498-019-09367-6
Chaiyanun Tangtong, Lulu Qiao, David T. Long, Thomas C. Voice

The octanol–water partition coefficients (Kow) of the aristolochic acids, AA I and AA II, were determined using the traditional shake-flask method as a function of pH and ionic strength. These compounds have been implicated in the etiology of Balkan endemic nephropathy, but evidence of a plausible exposure pathway remains elusive, and research is constrained by the absence of critical physical–chemical parameters on these compounds. Apparent Kow values were determined across a range of pH and ionic strength conditions. The results show that the apparent Kow decreased by approximately four orders of magnitude as pH increased from 2 to 9. The pH dependence was well described by a simple model that calculated the apparent Kow based on the ionization fractions and intrinsic Kow values for the neutral and ionized species. Higher ionic strength solutions resulted in higher Kow values at high pH, but had no effect at low pH. These results suggest that transport of aristolochic acids will be highly dependent on pH and ionic strength, with significant aqueous-phase transport at neutral to slightly alkaline conditions, with the highest mobility occurring under low ionic strength conditions, and the possibility of significant partitioning to nonpolar phases, such as soil organic matter or plant material, at low pH. Much of the region where BEN is prevalent is a karst environment, and pH values are generally above 8, thus leaching and groundwater transport are favored, which can suggest possible exposure routes.

采用传统的摇瓶法测定了马兜铃酸AA I和AA II的辛醇-水分配系数(Kow)与pH和离子强度的关系。这些化合物与巴尔干地区地方性肾病的病因学有关,但可信的暴露途径的证据仍然难以捉摸,并且由于缺乏这些化合物的关键物理化学参数,研究受到限制。在不同的pH值和离子强度条件下测定了表观Kow值。结果表明,当pH值从2增加到9时,表观Kow降低了约4个数量级。用一个简单的模型很好地描述了pH依赖性,该模型计算了基于电离分数和中性和电离物质的本征Kow值的表观Kow。高离子强度溶液在高pH值下导致较高的Kow值,但在低pH值下没有影响。这些结果表明,马兜铃酸的运输将高度依赖于pH和离子强度,在中性至微碱性条件下具有显著的水相运输,在低离子强度条件下发生最高的流动性,并且可能显著分配到非极性相,如土壤有机质或植物物质。低pH值。本菌主要分布在岩溶环境,pH值一般在8以上,有利于淋滤和地下水运移,提示了可能的暴露途径。
{"title":"Octanol–Water Partition Coefficients of Aristolochic Acids and Implications to the Etiology of Balkan Endemic Nephropathy","authors":"Chaiyanun Tangtong,&nbsp;Lulu Qiao,&nbsp;David T. Long,&nbsp;Thomas C. Voice","doi":"10.1007/s10498-019-09367-6","DOIUrl":"https://doi.org/10.1007/s10498-019-09367-6","url":null,"abstract":"<p>The octanol–water partition coefficients (<i>K</i><sub>ow</sub>) of the aristolochic acids, AA I and AA II, were determined using the traditional shake-flask method as a function of pH and ionic strength. These compounds have been implicated in the etiology of Balkan endemic nephropathy, but evidence of a plausible exposure pathway remains elusive, and research is constrained by the absence of critical physical–chemical parameters on these compounds. Apparent <i>K</i><sub>ow</sub> values were determined across a range of pH and ionic strength conditions. The results show that the apparent <i>K</i><sub>ow</sub> decreased by approximately four orders of magnitude as pH increased from 2 to 9. The pH dependence was well described by a simple model that calculated the apparent K<sub>ow</sub> based on the ionization fractions and intrinsic <i>K</i><sub>ow</sub> values for the neutral and ionized species. Higher ionic strength solutions resulted in higher <i>K</i><sub>ow</sub> values at high pH, but had no effect at low pH. These results suggest that transport of aristolochic acids will be highly dependent on pH and ionic strength, with significant aqueous-phase transport at neutral to slightly alkaline conditions, with the highest mobility occurring under low ionic strength conditions, and the possibility of significant partitioning to nonpolar phases, such as soil organic matter or plant material, at low pH. Much of the region where BEN is prevalent is a karst environment, and pH values are generally above 8, thus leaching and groundwater transport are favored, which can suggest possible exposure routes.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09367-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4555963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Ultra-trace Element Characterization of the Central Ottawa River Basin using a Rapid, Flexible, and Low-volume ICP-MS Method 使用快速,灵活,小体积ICP-MS方法对渥太华河中部流域的超微量元素进行表征
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-05-05 DOI: 10.1007/s10498-020-09376-w
Michael G. Babechuk, Edel M. O’Sullivan, Cora A. McKenna, Carolina Rosca, Thomas F. Nägler, Ronny Schoenberg, Balz S. Kamber

Ultra-trace (<?1?ng?g?1) rare earth elements and yttrium (REE?+?Y) and high field strength element (HFSE) geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying?≥?38 elements (including all REE?+?Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water aliquots as low as?≤?2?mL. The method precision and accuracy are demonstrated using measurement of the National Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material (CRM) SLRS-6 sampled from the Ottawa River (OR). Data from SLRS CRM are compared to those of new, filtered (<?0.45?μm) stream water samples from the central Ottawa River basin (ORB), and discussed in terms of processes and geochemical signatures inherited from the highly evolved igneous/metamorphic Archean and Proterozoic bedrock in the catchment. The ORB waters have significantly LREE?>?HREE-enriched REE?+?Y patterns, small natural positive Y and Gd anomalies, and negative Eu and Ce anomalies. These REE?+?Y features are coherent downstream in the OR apart from amplification of Eu and Ce anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE (Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by crustal Zr/Hf (32.5?±?5.1) and supercrustal Nb/Ta (25.1?±?7.7) ratios. Subcrustal Th/U (0.17–0.96) and supercrustal Mo/W (12.0–74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U?>?Th and Mo?>?W, with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces.

淡水的超痕量稀土元素和钇(REE + Y)和高场强元素(HFSE)地球化学可以约束元素来源、水文流域的水过程以及溶解到海洋的陆地通量的特征。本研究详细介绍了一种能够量化?≥?38种元素(包括所有REE?+?)Y, Nb, Ta, Zr, Hf, Mo, W, Th, U),在自然水中的样品制备量低至≤2ml。通过对加拿大国家研究委员会(NRC-CNRC)从渥太华河(OR)取样的河水认证参考物质(CRM) SLRS-6的测量,验证了该方法的精密度和准确度。将SLRS - CRM数据与渥太华河中部(ORB)过滤后的新水样(<?0.45?μm)进行了比较,并从汇水区内高度演化的太古代和元古代火成岩/变质基岩的过程和地球化学特征进行了讨论。ORB水体明显含轻稀土元素(LREE) >?HREE-enriched REE + ?Y型,小的自然正Y和Gd异常,负Eu和Ce异常。这些稀土元素+ ?除了在REE去除/稀释过程中Eu和Ce异常的放大外,Y特征在OR下游是相干的。OR样品捕获了少量可溶HFSE (Th, Nb, Ta, Zr, Hf)的下游下降,可能与它们从溶解负载中去除胶体颗粒有关,同时伴随着地壳Zr/Hf(32.5±5.1)和超地壳Nb/Ta(25.1±7.7)比。地壳下Th/U(0.17-0.96)和地壳上Mo/W(12.0-74.5)的比值表明,所有ORB水体中U的优先释放和溶解度较高。和莫?>?W,后者主要归因于W在土壤或上游水生(氧)(水)氧化物表面的优先吸附。
{"title":"Ultra-trace Element Characterization of the Central Ottawa River Basin using a Rapid, Flexible, and Low-volume ICP-MS Method","authors":"Michael G. Babechuk,&nbsp;Edel M. O’Sullivan,&nbsp;Cora A. McKenna,&nbsp;Carolina Rosca,&nbsp;Thomas F. Nägler,&nbsp;Ronny Schoenberg,&nbsp;Balz S. Kamber","doi":"10.1007/s10498-020-09376-w","DOIUrl":"https://doi.org/10.1007/s10498-020-09376-w","url":null,"abstract":"<p>Ultra-trace (&lt;?1?ng?g<sup>?1</sup>) rare earth elements and yttrium (REE?+?Y) and high field strength element (HFSE) geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying?≥?38 elements (including all REE?+?Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water aliquots as low as?≤?2?mL. The method precision and accuracy are demonstrated using measurement of the National Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material (CRM) SLRS-6 sampled from the Ottawa River (OR). Data from SLRS CRM are compared to those of new, filtered (&lt;?0.45?μm) stream water samples from the central Ottawa River basin (ORB), and discussed in terms of processes and geochemical signatures inherited from the highly evolved igneous/metamorphic Archean and Proterozoic bedrock in the catchment. The ORB waters have significantly LREE?&gt;?HREE-enriched REE?+?Y patterns, small natural positive Y and Gd anomalies, and negative Eu and Ce anomalies. These REE?+?Y features are coherent downstream in the OR apart from amplification of Eu and Ce anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE (Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by crustal Zr/Hf (32.5?±?5.1) and supercrustal Nb/Ta (25.1?±?7.7) ratios. Subcrustal Th/U (0.17–0.96) and supercrustal Mo/W (12.0–74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U?&gt;?Th and Mo?&gt;?W, with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09376-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Seasonal and Spatial Variations of Chemical Weathering in the Mekong Basin: From the Headwaters to the Lower Reaches 湄公河流域化学风化的季节和空间变化:从上游到下游
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-04-23 DOI: 10.1007/s10498-020-09374-y
Hiroto Kajita, Yuki Ota, Toshihiro Yoshimura, Daisuke Araoka, Takuya Manaka, Ouyang Ziyu, Shinya Iwasaki, Takuya Yanase, Akihiko Inamura, Etsuo Uchida, Hongbo Zheng, Qing Yang, Ke Wang, Atsushi Suzuki, Hodaka Kawahata

Chemical weathering in the Himalayan river basins is among the highest in the world and has received vast research attention related to past climate change. Many early estimates of chemical weathering are based on a small number of water property data that ignore those spatial and seasonal variations. Therefore, this study analyzed spatial and seasonal variations in chemical weathering in the Mekong Basin, where the geology, climate, and hydrologic cycle of the basin vary significantly from the lower to upper reaches and from dry to rainy seasons. We separately estimated the origins of dissolved elements and potential CO2 consumption rates using the numerous chemical compositions of river water throughout the entire basin and in both seasons. The CO2 consumption rate in the rainy season is three to five times that in the dry season that may be due to the high temperature and precipitation. Despite the low temperatures and dryness of the upper and middle basins, the CO2 consumption rate is approximately twice that in the lower reaches; this can be attributed to active physical denudation in steep mountainous areas which increases the surface area for water–rock interactions. The total CO2 consumption obtained by combining each season and basin was 48?70?×?109?mol/a and 148?159?×?109?mol/a for silicate and carbonate weathering, respectively, which are almost half the values of previous estimates. Our results suggest that seasonally and spatially separated evaluations are important for generating estimates of chemical weathering in large Himalayan rivers.

喜马拉雅河流域的化学风化是世界上最严重的,并且受到了与过去气候变化相关的广泛关注。许多化学风化的早期估计是基于少量的水性质数据,忽略了这些空间和季节变化。因此,本研究分析了湄公河流域化学风化的空间和季节变化,从下游到上游,从旱季到雨季,流域的地质、气候和水文循环变化明显。我们利用整个盆地和两个季节河水的众多化学成分分别估算了溶解元素的来源和潜在的二氧化碳消耗率。雨季的CO2消耗率是旱季的三到五倍,这可能是由于高温和降水造成的。尽管上游和中部盆地温度较低且较为干燥,但CO2消耗速率约为下游的两倍;这可归因于陡峭山区的活跃物理剥蚀,这增加了水岩相互作用的表面积。结合各季节和流域得到的CO2总消耗量为48 × 70 × 109?Mol /a和148 × 159 × 109?Mol /a,分别为硅酸盐和碳酸盐风化,几乎是以前估计值的一半。我们的研究结果表明,季节和空间分离的评价对于生成喜马拉雅大河流的化学风化估算是重要的。
{"title":"Seasonal and Spatial Variations of Chemical Weathering in the Mekong Basin: From the Headwaters to the Lower Reaches","authors":"Hiroto Kajita,&nbsp;Yuki Ota,&nbsp;Toshihiro Yoshimura,&nbsp;Daisuke Araoka,&nbsp;Takuya Manaka,&nbsp;Ouyang Ziyu,&nbsp;Shinya Iwasaki,&nbsp;Takuya Yanase,&nbsp;Akihiko Inamura,&nbsp;Etsuo Uchida,&nbsp;Hongbo Zheng,&nbsp;Qing Yang,&nbsp;Ke Wang,&nbsp;Atsushi Suzuki,&nbsp;Hodaka Kawahata","doi":"10.1007/s10498-020-09374-y","DOIUrl":"https://doi.org/10.1007/s10498-020-09374-y","url":null,"abstract":"<p>Chemical weathering in the Himalayan river basins is among the highest in the world and has received vast research attention related to past climate change. Many early estimates of chemical weathering are based on a small number of water property data that ignore those spatial and seasonal variations. Therefore, this study analyzed spatial and seasonal variations in chemical weathering in the Mekong Basin, where the geology, climate, and hydrologic cycle of the basin vary significantly from the lower to upper reaches and from dry to rainy seasons. We separately estimated the origins of dissolved elements and potential CO<sub>2</sub> consumption rates using the numerous chemical compositions of river water throughout the entire basin and in both seasons. The CO<sub>2</sub> consumption rate in the rainy season is three to five times that in the dry season that may be due to the high temperature and precipitation. Despite the low temperatures and dryness of the upper and middle basins, the CO<sub>2</sub> consumption rate is approximately twice that in the lower reaches; this can be attributed to active physical denudation in steep mountainous areas which increases the surface area for water–rock interactions. The total CO<sub>2</sub> consumption obtained by combining each season and basin was 48?70?×?10<sup>9</sup>?mol/a and 148?159?×?10<sup>9</sup>?mol/a for silicate and carbonate weathering, respectively, which are almost half the values of previous estimates. Our results suggest that seasonally and spatially separated evaluations are important for generating estimates of chemical weathering in large Himalayan rivers.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09374-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4881741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effect of Organic Alkalinity on Seawater Buffer Capacity: A Numerical Exploration 有机碱度对海水缓冲能力影响的数值探讨
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-04-20 DOI: 10.1007/s10498-020-09375-x
Xinping Hu

Organic alkalinity is a poorly understood component of total titration alkalinity in aquatic environments. Using a numerical method, the effects of organic acid (HOA) and its conjugate base (OA?) on seawater carbonate chemistry and buffer behaviors, as well as those in a hypothetical estuarine mixing zone, are explored under both closed- and open-system conditions. The simulation results show that HOA addition leads to pCO2 increase and pH decrease in a closed system when total dissolved inorganic carbon (DIC) remains the same. If opened to the atmosphere (pCO2?=?400?μatm), CO2 degassing and re-equilibration would cause depressed pH compared to the unperturbed seawater, but the seawater buffer to pH change ?(left( {beta _{{{text{DIC}}}} , = left( {frac{{partial ln left( {left[ {{text{H}}^{ + } } right]} right)}}{{partial {text{DIC}}}}} right)^{{ - 1}} } right)) indicates that weaker organic acid (i.e., higher pKa) results in higher buffer capacity (greater βDIC) than the unperturbed seawater. In comparison, OA? (with accompanying cations) in the form of net alkalinity addition leads to pCO2 decrease in a closed system. After re-equilibrating with the atmosphere, the resulting perturbed seawater has higher pH and βDIC than the unperturbed seawater. If river water has organic alkalinity, pH in the estuarine mixing zone is always lower than those caused by a mixing between organic alkalinity-free river (at constant total alkalinity) and ocean waters, regardless of the pKa values. On the other hand, organic alkalinity with higher pKa provides slightly greater βDIC in the mixing zone, and that with lower pKa either results in large CO2 oversaturation (closed system) or reduced βDIC (in mid to high salinity in the closed system or the entire mixing zone in the open system). Finally, despite the various effects on seawater buffer through either HOA or OA? addition, destruction of organic molecules including organic alkalinity via biogeochemical reactions should result in a net CO2 loss from seawater. Nevertheless, the significance of this organic alkalinity, especially that comes from organic acids that are not accounted for under the currently recognized “zero proton level” (Dickson in Deep Sea Res 28:609–623, 1981), remains unknown thus a potentially interesting and relevant research topic in studying oceanic alkalinity cycle.

有机碱度是水生环境中总滴定碱度的一个鲜为人知的组成部分。采用数值方法,研究了在封闭和开放两种系统条件下,有机酸(HOA)及其共轭碱(OA?)对海水碳酸盐化学和缓冲行为的影响,以及对假想河口混合带的影响。模拟结果表明,在总溶解无机碳(DIC)保持不变的情况下,HOA的加入导致封闭体系中pCO2增加,pH降低。如果将其开放到大气中(pCO2 = 400 μatm),与未受扰动的海水相比,CO2脱气和再平衡会使pH值降低,但海水对pH值的变化有缓冲作用。(left( {beta _{{{text{DIC}}}} , = left( {frac{{partial ln left( {left[ {{text{H}}^{ + } } right]} right)}}{{partial {text{DIC}}}}} right)^{{ - 1}} } right))表明较弱的有机酸(即较高的pKa)比未受扰动的海水具有更高的缓冲能力(较大的βDIC)。相比之下,OA?在封闭体系中,以净碱度的形式加入导致pCO2的降低。与大气再平衡后,扰动海水的pH值和βDIC均高于未扰动海水。如果河水具有有机碱度,无论pKa值如何,河口混合带的pH值总是低于无有机碱度的河水(总碱度恒定)与海水混合后的pH值。另一方面,pKa较高的有机碱度使混合区βDIC略高,而pKa较低的有机碱度则导致CO2大过饱和(封闭体系)或降低βDIC(封闭体系中高盐度或开放体系中整个混合区)。最后,尽管HOA或OA对海水缓冲的影响各不相同。此外,通过生物地球化学反应破坏有机分子,包括有机碱度,将导致海水中二氧化碳的净损失。然而,这种有机碱度的意义,特别是来自目前公认的“零质子水平”(Dickson in Deep Sea Res 28:609-623, 1981)下未被解释的有机酸的意义仍然未知,因此在研究海洋碱度循环中可能是一个有趣和相关的研究课题。
{"title":"Effect of Organic Alkalinity on Seawater Buffer Capacity: A Numerical Exploration","authors":"Xinping Hu","doi":"10.1007/s10498-020-09375-x","DOIUrl":"https://doi.org/10.1007/s10498-020-09375-x","url":null,"abstract":"<p>Organic alkalinity is a poorly understood component of total titration alkalinity in aquatic environments. Using a numerical method, the effects of organic acid (HOA) and its conjugate base (OA<sup>?</sup>) on seawater carbonate chemistry and buffer behaviors, as well as those in a hypothetical estuarine mixing zone, are explored under both closed- and open-system conditions. The simulation results show that HOA addition leads to <i>p</i>CO<sub>2</sub> increase and pH decrease in a closed system when total dissolved inorganic carbon (DIC) remains the same. If opened to the atmosphere (<i>p</i>CO<sub>2</sub>?=?400?μatm), CO<sub>2</sub> degassing and re-equilibration would cause depressed pH compared to the unperturbed seawater, but the seawater buffer to pH change ?<span>(left( {beta _{{{text{DIC}}}} , = left( {frac{{partial ln left( {left[ {{text{H}}^{ + } } right]} right)}}{{partial {text{DIC}}}}} right)^{{ - 1}} } right))</span> indicates that weaker organic acid (i.e., higher <i>pK</i><sub><i>a</i></sub>) results in higher buffer capacity (greater <i>β</i><sub>DIC</sub>) than the unperturbed seawater. In comparison, OA<sup>?</sup> (with accompanying cations) in the form of net alkalinity addition leads to <i>p</i>CO<sub>2</sub> decrease in a closed system. After re-equilibrating with the atmosphere, the resulting perturbed seawater has higher pH and <i>β</i><sub>DIC</sub> than the unperturbed seawater. If river water has organic alkalinity, pH in the estuarine mixing zone is always lower than those caused by a mixing between organic alkalinity-free river (at constant total alkalinity) and ocean waters, regardless of the <i>pK</i><sub><i>a</i></sub> values. On the other hand, organic alkalinity with higher <i>pK</i><sub><i>a</i></sub> provides slightly greater <i>β</i><sub>DIC</sub> in the mixing zone, and that with lower <i>pK</i><sub><i>a</i></sub> either results in large CO<sub>2</sub> oversaturation (closed system) or reduced <i>β</i><sub>DIC</sub> (in mid to high salinity in the closed system or the entire mixing zone in the open system). Finally, despite the various effects on seawater buffer through either HOA or OA<sup>?</sup> addition, destruction of organic molecules including organic alkalinity via biogeochemical reactions should result in a net CO<sub>2</sub> loss from seawater. Nevertheless, the significance of this organic alkalinity, especially that comes from organic acids that are not accounted for under the currently recognized “zero proton level” (Dickson in Deep Sea Res 28:609–623, 1981), remains unknown thus a potentially interesting and relevant research topic in studying oceanic alkalinity cycle.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09375-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4774764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The Effects of pH, Temperature, and Humic-Like Substances on Anaerobic Carbon Degradation and Methanogenesis in Ombrotrophic and Minerotrophic Alaskan Peatlands pH、温度和腐殖质样物质对营养型和轻度营养型阿拉斯加泥炭地厌氧碳降解和甲烷生成的影响
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2020-04-06 DOI: 10.1007/s10498-020-09372-0
Lin Zhang, Xiao Liu, Khrys Duddleston, Mark E. Hines

Methane production usually increases from the acidic sphagnum-dominated ombrotrophic peatlands to minerotrophic ones with more neutral pH and higher coverage of vascular plants. Along this ombrotrophic–minerotrophic gradient, pH, microbial communities, and properties of dissolved organic matter in porewater all vary greatly. The hydrographic change resulted from permafrost thaw and projected global warming can potentially connect the minerotrophic and ombrotrophic sites via porewater and turn acidic bogs to minerotrophic fens. It is thus very important to investigate how the anaerobic carbon degradation processes respond to changes in fundamental factors like pH, temperature, properties of dissolved organic matter, and microbial communities resulted from such hydrographic change. In this study, one ombrotrophic (pH?=?3.9) and one minerotrophic peatland site were sampled in Fairbanks, Alaska in Sep 2017 and a 42-day-period anaerobic laboratory incubation was conducted to study the changes in anaerobic carbon degradation processes including primary and secondary fermentation, methanogenesis, and acetogenesis when pH, temperature, and porewater were manipulated individually and a combination of two or three of these factors. The results suggested lowering pH would inhibit many anaerobic carbon degradation processes in the minerotrophic peatland except primary fermentation. Elevating pH in the ombrotrophic site did not stimulate its methanogen community, but primary fermentation responded better with increasing pH than with increasing temperature alone. Replacing the porewater in the minerotrophic site with that from the ombrotrophic site with high aromaticity did not inhibit methanogenesis but potentially brought in highly efficient primary fermenters. Acetoclastic methanogenesis, acetogenesis, and syntrophy only exist in the minerotrophic site but not at the ombrotrophic one. Porewater from the minerotrophic site could potentially introduce acetoclastic methanogens and syntrophs to the ombrotrophic site but would not make them active unless both pH and temperature were increased. When ground water connects ombrotrophic and minerotrophic peatlands due to thawing of permafrost, secondary fermenters and acetoclastic methanogens could be introduced to acidic bogs and cooperate efficiently to degrade the stored carbon in ombrotrophic peatlands especially under elevated temperature conditions.

甲烷产量通常从酸性泥炭为主的营养型泥炭地向pH偏中性、维管植物盖度较高的营养型泥炭地增加。沿着这个营养型-微营养型梯度,孔隙水中的pH值、微生物群落和溶解有机物的性质都有很大的变化。永久冻土融化和预估的全球变暖导致的水文变化可能通过孔隙水将微营养化和全营养化地点连接起来,并将酸性沼泽转变为微营养化沼泽。因此,研究厌氧碳降解过程如何响应由这种水文变化引起的pH、温度、溶解有机质性质和微生物群落等基本因素的变化是非常重要的。本研究于2017年9月在美国阿拉斯加州费尔班克斯(Fairbanks)选取一个营养型(pH = 3.9)泥炭地和一个矿营养型泥炭地为研究对象,进行了为期42天的厌氧实验室培养,研究了pH、温度和孔隙水分别以及其中两种或三种因素共同作用下,初级和次级发酵、产甲烷和产丙酮等厌氧碳降解过程的变化。结果表明,降低pH可以抑制除初级发酵外的许多厌氧碳降解过程。在营养化部位,pH升高对产甲烷菌群落没有刺激作用,但初始发酵对pH升高的响应优于单纯温度升高。用高芳香性的近营养区孔隙水替代微营养区孔隙水不会抑制甲烷的生成,但可能带来高效的初级发酵剂。丙酮裂解产甲烷、丙酮生成和合胞作用只存在于微营养区,而不存在于营养区。来自微营养点的孔隙水可能会将醋酸分解产甲烷菌和共生菌引入到营养点,但除非pH和温度都升高,否则不会使它们活跃。当多年冻土融化导致地下水连接营养型泥炭地和微营养型泥炭地时,次生发酵菌和产甲烷菌可以被引入酸性泥炭地,并在高温条件下有效地协同降解营养型泥炭地储存的碳。
{"title":"The Effects of pH, Temperature, and Humic-Like Substances on Anaerobic Carbon Degradation and Methanogenesis in Ombrotrophic and Minerotrophic Alaskan Peatlands","authors":"Lin Zhang,&nbsp;Xiao Liu,&nbsp;Khrys Duddleston,&nbsp;Mark E. Hines","doi":"10.1007/s10498-020-09372-0","DOIUrl":"https://doi.org/10.1007/s10498-020-09372-0","url":null,"abstract":"<p>Methane production usually increases from the acidic sphagnum-dominated ombrotrophic peatlands to minerotrophic ones with more neutral pH and higher coverage of vascular plants. Along this ombrotrophic–minerotrophic gradient, pH, microbial communities, and properties of dissolved organic matter in porewater all vary greatly. The hydrographic change resulted from permafrost thaw and projected global warming can potentially connect the minerotrophic and ombrotrophic sites via porewater and turn acidic bogs to minerotrophic fens. It is thus very important to investigate how the anaerobic carbon degradation processes respond to changes in fundamental factors like pH, temperature, properties of dissolved organic matter, and microbial communities resulted from such hydrographic change. In this study, one ombrotrophic (pH?=?3.9) and one minerotrophic peatland site were sampled in Fairbanks, Alaska in Sep 2017 and a 42-day-period anaerobic laboratory incubation was conducted to study the changes in anaerobic carbon degradation processes including primary and secondary fermentation, methanogenesis, and acetogenesis when pH, temperature, and porewater were manipulated individually and a combination of two or three of these factors. The results suggested lowering pH would inhibit many anaerobic carbon degradation processes in the minerotrophic peatland except primary fermentation. Elevating pH in the ombrotrophic site did not stimulate its methanogen community, but primary fermentation responded better with increasing pH than with increasing temperature alone. Replacing the porewater in the minerotrophic site with that from the ombrotrophic site with high aromaticity did not inhibit methanogenesis but potentially brought in highly efficient primary fermenters. Acetoclastic methanogenesis, acetogenesis, and syntrophy only exist in the minerotrophic site but not at the ombrotrophic one. Porewater from the minerotrophic site could potentially introduce acetoclastic methanogens and syntrophs to the ombrotrophic site but would not make them active unless both pH and temperature were increased. When ground water connects ombrotrophic and minerotrophic peatlands due to thawing of permafrost, secondary fermenters and acetoclastic methanogens could be introduced to acidic bogs and cooperate efficiently to degrade the stored carbon in ombrotrophic peatlands especially under elevated temperature conditions.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09372-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4237941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Aquatic Geochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1