首页 > 最新文献

Annual Review of Astronomy and Astrophysics最新文献

英文 中文
Galactic Dynamos 银河迪纳摩
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-11-07 DOI: 10.1146/annurev-astro-071221-052807
A. Brandenburg, E. Ntormousi
Spiral galaxies, including the Milky Way, have large-scale magnetic fields with significant energy densities. The dominant theory attributes these magnetic fields to a large-scale dynamo. We review the current status of dynamo theory and discuss various numerical simulations designed either to explain particular aspects of the problem or to reproduce galactic magnetic fields globally. Our main conclusions can be summarized as follows: ▪ Idealized direct numerical simulations produce mean magnetic fields, whose saturation energy density tends to decline with increasing magnetic Reynolds number. This is still an unsolved problem. ▪ Large-scale galactic magnetic fields of microgauss strengths can probably be explained only if helical magnetic fields of small or moderate length scales can be rapidly ejected or destroyed. ▪ Small-scale dynamos are important throughout a galaxy's life and probably provide strong seed fields at early stages. ▪ The circumgalactic medium (CGM) may play an important role in driving dynamo action at small and large length scales. These interactions between the galactic disk and the CGM may provide important insights into our understanding of galactic dynamos. We expect future research in galactic dynamos to focus on the cosmological history of galaxies and the interaction with the CGM as means of replacing the idealized boundary conditions used in earlier work. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
包括银河系在内的螺旋星系都有具有显著能量密度的大尺度磁场。主流理论将这些磁场归因于大型发电机。我们回顾了发电机理论的现状,并讨论了各种数值模拟,这些模拟要么是为了解释问题的特定方面,要么是为了在全球范围内重现银河系磁场。我们的主要结论可以总结如下:▪ 理想化的直接数值模拟产生平均磁场,其饱和能量密度往往随着磁雷诺数的增加而下降。这仍然是一个未解决的问题。▪ 只有当小尺度或中等长度尺度的螺旋磁场能够迅速喷出或破坏时,才能解释微高斯强度的大尺度星系磁场。▪ 小型发电机在星系的整个生命中都很重要,可能在早期阶段提供强大的种子场。▪ 环星系介质(CGM)可能在驱动小尺度和大尺度的发电机作用中发挥重要作用。星系盘和CGM之间的这些相互作用可能为我们理解星系发电机提供重要的见解。我们预计未来对星系发电机的研究将集中在星系的宇宙学历史以及与CGM的相互作用上,以取代早期工作中使用的理想化边界条件。《天文学和天体物理学年度评论》第61卷预计最终在线出版日期为2023年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Galactic Dynamos","authors":"A. Brandenburg, E. Ntormousi","doi":"10.1146/annurev-astro-071221-052807","DOIUrl":"https://doi.org/10.1146/annurev-astro-071221-052807","url":null,"abstract":"Spiral galaxies, including the Milky Way, have large-scale magnetic fields with significant energy densities. The dominant theory attributes these magnetic fields to a large-scale dynamo. We review the current status of dynamo theory and discuss various numerical simulations designed either to explain particular aspects of the problem or to reproduce galactic magnetic fields globally. Our main conclusions can be summarized as follows: ▪ Idealized direct numerical simulations produce mean magnetic fields, whose saturation energy density tends to decline with increasing magnetic Reynolds number. This is still an unsolved problem. ▪ Large-scale galactic magnetic fields of microgauss strengths can probably be explained only if helical magnetic fields of small or moderate length scales can be rapidly ejected or destroyed. ▪ Small-scale dynamos are important throughout a galaxy's life and probably provide strong seed fields at early stages. ▪ The circumgalactic medium (CGM) may play an important role in driving dynamo action at small and large length scales. These interactions between the galactic disk and the CGM may provide important insights into our understanding of galactic dynamos. We expect future research in galactic dynamos to focus on the cosmological history of galaxies and the interaction with the CGM as means of replacing the idealized boundary conditions used in earlier work. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46138946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes 环双星吸积:从双星到大质量双黑洞
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-10-31 DOI: 10.1146/annurev-astro-052622-022933
D. Lai, D. Muñoz
We review recent works on the dynamics of circumbinary accretion, including time variability, angular momentum transfer between the disk and the binary, and the secular evolution of accreting binaries. These dynamics impact stellar binary formation/evolution, circumbinary planet formation/migration, and the evolution of (super)massive black hole binaries. We discuss the dynamics and evolution of inclined/warped circumbinary disks and connect with observations of protoplanetary disks. A special kind of circumbinary accretion involves binaries embedded in big disks, which may contribute to the mergers of stellar-mass black holes in AGN disks. Highlights include the following: ▪ Circumbinary accretion is highly variable, being modulated at Pb (the binary period) or ∼5 Pb, depending on the binary eccentricity eb and mass ratio qb. ▪ The inner region of the circumbinary disk can develop coherent eccentric structure, which may modulate the accretion and affect the physical processes (e.g., planet migration) taking place in the disk. ▪ Over long timescales, circumbinary accretion steers binaries toward equal masses, and it does not always lead to binary orbital decay. The secular orbital evolution depends on the binary parameters ( eb and qb) and on the thermodynamic properties of the accreting gas. ▪ A misaligned disk around a low-eccentricity binary tends to evolve toward coplanarity due to viscous dissipation. But when eb is significant, the disk can evolve toward “polar alignment,” with the disk plane perpendicular to the binary plane. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
我们回顾了最近关于环双星吸积动力学的研究,包括时间变异性,盘和双星之间的角动量传递,以及吸积双星的长期演化。这些动力学影响恒星双星的形成/演化,环双星行星的形成/迁移,以及(超大)质量黑洞双星的演化。我们讨论了倾斜/弯曲环双星盘的动力学和演化,并结合原行星盘的观测。一种特殊的环双星吸积涉及嵌入大圆盘中的双星,这可能有助于AGN圆盘中恒星质量黑洞的合并。▪环双星吸积是高度可变的,在Pb(双星周期)或~ 5pb时被调制,这取决于双星的离心率eb和质量比qb。▪环双星盘的内部区域可以形成连贯的偏心结构,这可能会调节吸积并影响盘内发生的物理过程(例如行星迁移)。在很长的时间尺度上,环双星吸积会使双星的质量相等,但它并不总是导致双星的轨道衰变。长期轨道演化取决于双星参数(eb和qb)和吸积气体的热力学性质。低偏心双星周围的不对准盘由于粘滞耗散倾向于向共平面发展。但是当eb是显著的,磁盘可以演变成“极对齐”,与磁盘平面垂直于二进制平面。《天文学和天体物理学年度评论》第61卷的最终在线出版日期预计为2023年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes","authors":"D. Lai, D. Muñoz","doi":"10.1146/annurev-astro-052622-022933","DOIUrl":"https://doi.org/10.1146/annurev-astro-052622-022933","url":null,"abstract":"We review recent works on the dynamics of circumbinary accretion, including time variability, angular momentum transfer between the disk and the binary, and the secular evolution of accreting binaries. These dynamics impact stellar binary formation/evolution, circumbinary planet formation/migration, and the evolution of (super)massive black hole binaries. We discuss the dynamics and evolution of inclined/warped circumbinary disks and connect with observations of protoplanetary disks. A special kind of circumbinary accretion involves binaries embedded in big disks, which may contribute to the mergers of stellar-mass black holes in AGN disks. Highlights include the following: ▪ Circumbinary accretion is highly variable, being modulated at Pb (the binary period) or ∼5 Pb, depending on the binary eccentricity eb and mass ratio qb. ▪ The inner region of the circumbinary disk can develop coherent eccentric structure, which may modulate the accretion and affect the physical processes (e.g., planet migration) taking place in the disk. ▪ Over long timescales, circumbinary accretion steers binaries toward equal masses, and it does not always lead to binary orbital decay. The secular orbital evolution depends on the binary parameters ( eb and qb) and on the thermodynamic properties of the accreting gas. ▪ A misaligned disk around a low-eccentricity binary tends to evolve toward coplanarity due to viscous dissipation. But when eb is significant, the disk can evolve toward “polar alignment,” with the disk plane perpendicular to the binary plane. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43871861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Gaussian Process Regression for Astronomical Time Series 天文时间序列的高斯过程回归
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-09-19 DOI: 10.1146/annurev-astro-052920-103508
S. Aigrain, D. Foreman-Mackey
The past two decades have seen a major expansion in the availability, size, and precision of time-domain data sets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity, and comparative robustness, Gaussian processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such data sets. In this review, we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modeling choices involved in GP regression. We then review applications of GPs to time-domain data sets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code; discuss the problem of computational cost and scalability; and give a snapshot of the current ecosystem of open source GP software packages. In summary: ▪ GP regression is a conceptually simple but statistically principled and powerful tool for the analysis of astronomical time series. ▪ It is already widely used in some subfields, such as exoplanets, and gaining traction in many others, such as optical transients. ▪ Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time domain astronomy for many years to come. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
在过去的二十年里,天文学中时域数据集的可用性、规模和精度都有了很大的发展。由于其独特的灵活性、数学简单性和相对鲁棒性的组合,高斯过程(gp)最近成为在此类数据集中对随机信号建模的首选解决方案。在这篇综述中,我们简要介绍了GP在天文学中的出现,提出了潜在的数学理论,并给出了实用的建议,考虑到GP回归中涉及的关键建模选择。然后,我们回顾了迄今为止天体物理学文献中GPs在时域数据集上的应用,从系外行星到活动星系核,展示了该方法的强大功能和灵活性。我们提供了使用模拟数据的工作示例,并提供了源代码链接;讨论了计算成本和可扩展性问题;并简要介绍了当前开源GP软件包的生态系统。总而言之:GP回归在概念上简单,但在统计上有原则,是分析天文时间序列的有力工具。■它已经被广泛应用于一些子领域,如系外行星,并在许多其他领域获得了牵引力,如光学瞬变。▪在进一步算法和概念进步的推动下,我们预计在未来的许多年里,GPs将继续成为强大和可解释的时域天文学的重要工具。《天文学和天体物理学年度评论》第61卷的最终在线出版日期预计为2023年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Gaussian Process Regression for Astronomical Time Series","authors":"S. Aigrain, D. Foreman-Mackey","doi":"10.1146/annurev-astro-052920-103508","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-103508","url":null,"abstract":"The past two decades have seen a major expansion in the availability, size, and precision of time-domain data sets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity, and comparative robustness, Gaussian processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such data sets. In this review, we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modeling choices involved in GP regression. We then review applications of GPs to time-domain data sets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code; discuss the problem of computational cost and scalability; and give a snapshot of the current ecosystem of open source GP software packages. In summary: ▪ GP regression is a conceptually simple but statistically principled and powerful tool for the analysis of astronomical time series. ▪ It is already widely used in some subfields, such as exoplanets, and gaining traction in many others, such as optical transients. ▪ Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time domain astronomy for many years to come. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46573432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The Interstellar Interlopers 星际穿越者
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-09-16 DOI: 10.1146/annurev-astro-071221-054221
D. Jewitt, D. Seligman
Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3 which, if uniform across the galactic disk, would imply 1025 to 1026 similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108 and ∼109 years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
星际闯入者是在太阳系外形成但观察到穿过太阳系的天体。前两个被发现的闯入者,1I/'Oumuamua和2I/Borisov,表现出出乎意料的不同物理性质。1I/'Oumuamua似乎未被解析,像小行星,而2I/Borisov则是一个更像彗星的气体和尘埃来源。两个物体都在非引力加速度的作用下运动。这些闯入者及其不同的特性为我们提供了迄今为止了解庞大且以前未知的星系种群的唯一窗口。这些天体的数量密度为~0.1 AU−3,如果在整个星系盘上均匀分布,这意味着银河系中有1025到1026个类似的天体。闯入者很可能形成于年轻恒星的原行星盘中,并从中喷出。然而,我们目前掌握的数据太少,无法坚决拒绝其他解释。▪ 1I/'Oumuamua和2I/Borisov都是不受引力约束的、显示非引力加速度的亚千米天体。▪ 在没有可测量质量损失的情况下,1I/'Oumuamua的加速需要用升华超挥发物的反冲或辐射压力对质量柱密度为~1 kg m−2的超低原子核的作用来进行紧张的解释。▪ 2I/Borisov是CO和H2O的强来源,它们共同解释了它的活性和非引力加速度。▪ 闯入者很可能是来自其他恒星原行星盘的星子,它们是由行星的引力散射喷出的。1I/'Oumuamua和2I/Borisov的动力学年龄分别为~108年和~109年。▪ 即将到来的天文台应该每年都能探测到星际闯入者,这将迅速提高我们对人口的了解。《天文学和天体物理学年度评论》第61卷预计最终在线出版日期为2023年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"The Interstellar Interlopers","authors":"D. Jewitt, D. Seligman","doi":"10.1146/annurev-astro-071221-054221","DOIUrl":"https://doi.org/10.1146/annurev-astro-071221-054221","url":null,"abstract":"Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3 which, if uniform across the galactic disk, would imply 1025 to 1026 similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108 and ∼109 years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45883127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Pulsar Magnetospheres and Their Radiation 脉冲星磁层及其辐射
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-08-18 DOI: 10.1146/annurev-astro-052920-112338
A. Philippov, M. Kramer
The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.
脉冲星的发现开辟了一个新的研究领域,可以在极端条件下研究广泛的物理学。目前已知的脉冲星有3000多颗,特别是其中200多颗是在伽马射线频率下研究的。通过将脉冲星磁层的最新见解放在历史背景下,并将其与无线电和高能频率的关键观测特征进行比较,我们展示了以下内容:▪ 年轻高能脉冲星的磁层结构现在已经被了解。老的非周期脉冲星和毫秒脉冲星仍然存在局限性。▪ 观测到的高能辐射很可能是在光柱外的磁层电流片中产生的。▪ 至少有两种不同的无线电发射机制。一个在内部磁层工作,而另一个在光柱附近工作,是该区域高磁场强度脉冲星特有的。▪ 内部磁层的无线电发射与成对产生的过程有着内在的联系,其观测到的特性包含了通过磁层等离子体的几何和传播效应的印记。我们讨论了我们理解的局限性,并确定了一系列观察到的现象和物理过程,这些现象和过程仍有待于未来的解释。这包括将磁层过程与自旋下降特性联系起来,以解释制动和自旋方向的可能演变,建立无线电发射的第一性原理模型以及与观测的定量联系。
{"title":"Pulsar Magnetospheres and Their Radiation","authors":"A. Philippov, M. Kramer","doi":"10.1146/annurev-astro-052920-112338","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-112338","url":null,"abstract":"The discovery of pulsars opened a new research field that allows studying a wide range of physics under extreme conditions. More than 3,000 pulsars are currently known, including especially more than 200 of them studied at gamma-ray frequencies. By putting recent insights into the pulsar magnetosphere in a historical context and by comparing them to key observational features at radio and high-energy frequencies, we show the following: ▪ Magnetospheric structure of young energetic pulsars is now understood. Limitations still exist for old nonrecycled and millisecond pulsars. ▪ The observed high-energy radiation is likely produced in the magnetospheric current sheet beyond the light cylinder. ▪ There are at least two different radio emission mechanisms. One operates in the inner magnetosphere, whereas the other one works near the light cylinder and is specific to pulsars with the high magnetic field strength in that region. ▪ Radio emission from the inner magnetosphere is intrinsically connected to the process of pair production, and its observed properties contain the imprint of both the geometry and propagation effects through the magnetospheric plasma. We discuss the limitations of our understanding and identify a range of observed phenomena and physical processes that still await explanation in thefuture. This includes connecting the magnetospheric processes to spin-down properties to explain braking and possible evolution of spin orientation, building a first-principles model of radio emission and quantitative connections with observations.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48433276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Magnetic Field Diagnostics in the Solar Upper Atmosphere 太阳高层大气中的磁场诊断
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-06-02 DOI: 10.1146/annurev-astro-041122-031043
J. Trujillo Bueno, T. del Pino Alemán
The magnetic field is the main driver of the activity in the solar upper atmosphere, but its measurement is notoriously difficult. In order to determine the magnetic field in the chromosphere, transition region, and corona, we need to measure and interpret the polarization signals that the scattering of anisotropic radiation and the Hanle and Zeeman effects introduce in the emitted spectral line radiation. A number of recent advances have activated the development of this research field. ▪ The quantum theory of the generation and transfer of polarized radiation explains allows us to explain the polarization signals observed in chromospheric and coronal lines and to make successful predictions in unexplored spectral regions. ▪ The development of diagnostic techniques for the solar upper atmosphere has served to improve our empirical knowledge of the magnetic field in a variety of plasma structures, as well as to pave the way for their application to the unprecedented data that the new generation of solar telescopes are expected to provide. However, further improvements are required. ▪ The CLASP suborbital experiments have opened a new diagnostic window, namely ultraviolet (UV) spectropolarimetry as a tool for probing the magnetism and geometry of the upper chromosphere and transition region. A space telescope equipped with a UV spectropolarimeter would lead to major advances in our empirical understanding of solar magnetism. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
磁场是太阳高层大气活动的主要驱动力,但其测量是出了名的困难。为了确定色球层、过渡区和日冕中的磁场,我们需要测量和解释各向异性辐射的散射以及Hanle和Zeeman效应在发射的谱线辐射中引入的极化信号。最近的一些进展促进了这一研究领域的发展。▪ 偏振辐射产生和转移的量子理论使我们能够解释在色球层和日冕线中观察到的偏振信号,并在未探索的光谱区域做出成功的预测。▪ 太阳高层大气诊断技术的发展有助于提高我们对各种等离子体结构中磁场的经验知识,并为其应用于新一代太阳望远镜有望提供的前所未有的数据铺平道路。然而,还需要进一步改进。▪ CLASP亚轨道实验打开了一个新的诊断窗口,即紫外线(UV)光谱偏振法,作为探测上层色球层和过渡区磁性和几何结构的工具。配备紫外分光偏振仪的太空望远镜将使我们对太阳磁性的经验理解取得重大进展。《天文学和天体物理学年度评论》第60卷预计最终在线出版日期为2022年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Magnetic Field Diagnostics in the Solar Upper Atmosphere","authors":"J. Trujillo Bueno, T. del Pino Alemán","doi":"10.1146/annurev-astro-041122-031043","DOIUrl":"https://doi.org/10.1146/annurev-astro-041122-031043","url":null,"abstract":"The magnetic field is the main driver of the activity in the solar upper atmosphere, but its measurement is notoriously difficult. In order to determine the magnetic field in the chromosphere, transition region, and corona, we need to measure and interpret the polarization signals that the scattering of anisotropic radiation and the Hanle and Zeeman effects introduce in the emitted spectral line radiation. A number of recent advances have activated the development of this research field. ▪ The quantum theory of the generation and transfer of polarized radiation explains allows us to explain the polarization signals observed in chromospheric and coronal lines and to make successful predictions in unexplored spectral regions. ▪ The development of diagnostic techniques for the solar upper atmosphere has served to improve our empirical knowledge of the magnetic field in a variety of plasma structures, as well as to pave the way for their application to the unprecedented data that the new generation of solar telescopes are expected to provide. However, further improvements are required. ▪ The CLASP suborbital experiments have opened a new diagnostic window, namely ultraviolet (UV) spectropolarimetry as a tool for probing the magnetism and geometry of the upper chromosphere and transition region. A space telescope equipped with a UV spectropolarimeter would lead to major advances in our empirical understanding of solar magnetism. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42423801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Photometric Redshifts for Next-Generation Surveys 新一代测量的光度红移
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-06-01 DOI: 10.1146/annurev-astro-032122-014611
J. Newman, D. Gruen
Photometric redshifts are essential in studies of both galaxy evolution and cosmology, as they enable analyses of objects too numerous or faint for spectroscopy. The Rubin Observatory, Euclid, and Roman Space Telescope will soon provide a new generation of imaging surveys with unprecedented area coverage, wavelength range, and depth. To take full advantage of these data sets, further progress in photometric redshift methods is needed. In this review, we focus on the greatest common challenges and prospects for improvement in applications of photometric redshifts to the next generation of surveys: ▪ Gains in performance (i.e., the precision of redshift estimates for individual galaxies) could greatly enhance studies of galaxy evolution and some probes of cosmology. ▪ Improvements in characterization (i.e., the accurate recovery of redshift distributions of galaxies in the presence of uncertainty on individual redshifts) are urgently needed for cosmological measurements with next-generation surveys. To achieve both of these goals, improvements in the scope and treatment of the samples of spectroscopic redshifts that make high-fidelity photometric redshifts possible will also be needed. For the full potential of the next generation of surveys to be reached, the characterization of redshift distributions must improve by roughly an order of magnitude compared with the current state of the art, requiring progress on a wide variety of fronts. We conclude by presenting a speculative evaluation of how photometric redshift methods and the collection of the necessary spectroscopic samples may improve by the time near-future surveys are completed. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
光度红移在星系演化和宇宙学研究中都是至关重要的,因为它们可以分析数量过多或微弱的物体,而无法进行光谱学分析。鲁宾天文台、欧几里得和罗马太空望远镜将很快提供新一代成像调查,其覆盖范围、波长范围和深度都是前所未有的。为了充分利用这些数据集,需要在光度红移方法方面取得进一步进展。在这篇综述中,我们重点关注光度红移应用于下一代调查的最大共同挑战和改进前景:▪ 性能的提高(即单个星系红移估计的精度)可以大大加强对星系演化的研究和一些宇宙学探针。▪ 下一代调查的宇宙学测量迫切需要改进表征(即在存在个体红移不确定性的情况下准确恢复星系的红移分布)。为了实现这两个目标,还需要改进光谱红移样品的范围和处理,使高保真度光度红移成为可能。为了充分发挥下一代调查的潜力,与现有技术相比,红移分布的表征必须提高大约一个数量级,这需要在各种方面取得进展。最后,我们对光度红移方法和必要光谱样品的收集如何在不久的将来完成调查时得到改进进行了推测性评估。《天文学和天体物理学年度评论》第60卷预计最终在线出版日期为2022年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Photometric Redshifts for Next-Generation Surveys","authors":"J. Newman, D. Gruen","doi":"10.1146/annurev-astro-032122-014611","DOIUrl":"https://doi.org/10.1146/annurev-astro-032122-014611","url":null,"abstract":"Photometric redshifts are essential in studies of both galaxy evolution and cosmology, as they enable analyses of objects too numerous or faint for spectroscopy. The Rubin Observatory, Euclid, and Roman Space Telescope will soon provide a new generation of imaging surveys with unprecedented area coverage, wavelength range, and depth. To take full advantage of these data sets, further progress in photometric redshift methods is needed. In this review, we focus on the greatest common challenges and prospects for improvement in applications of photometric redshifts to the next generation of surveys: ▪ Gains in performance (i.e., the precision of redshift estimates for individual galaxies) could greatly enhance studies of galaxy evolution and some probes of cosmology. ▪ Improvements in characterization (i.e., the accurate recovery of redshift distributions of galaxies in the presence of uncertainty on individual redshifts) are urgently needed for cosmological measurements with next-generation surveys. To achieve both of these goals, improvements in the scope and treatment of the samples of spectroscopic redshifts that make high-fidelity photometric redshifts possible will also be needed. For the full potential of the next generation of surveys to be reached, the characterization of redshift distributions must improve by roughly an order of magnitude compared with the current state of the art, requiring progress on a wide variety of fronts. We conclude by presenting a speculative evaluation of how photometric redshift methods and the collection of the necessary spectroscopic samples may improve by the time near-future surveys are completed. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49634638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Cosmology and High-Energy Astrophysics: A 50-Year Perspective on Personalities, Progress, and Prospects 宇宙学与高能天体物理学:50年的个性、进展和前景
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-04-08 DOI: 10.1146/annurev-astro-111021-084639
M. Rees
In the 1960s, novel and increasingly powerful observational techniques opened up the field of high-energy astrophysics. Cosmology started to become an empirical science, and there was a resurgence in the study of general relativity. Martin Rees became a graduate student at the University of Cambridge during that period and subsequently held postdoc positions in the United States. He was therefore fortunate to have a close-up perspective on some of these developments and to interact with many senior figures who were spearheading these advances. He himself became a phenomenologist, contributing his own ideas to several topics in these fields and working with many collaborators. This article offers an assessment of some key subsequent developments and personal perspectives from a diverse career spanning more than 50 years. Expected final online publication date for the Annual Review of Astronomy Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
20世纪60年代,新颖且日益强大的观测技术开辟了高能天体物理学领域。宇宙学开始成为一门经验科学,广义相对论的研究也死灰复燃。在此期间,马丁·里斯成为剑桥大学的研究生,随后在美国担任博士后。因此,他很幸运能够近距离观察其中的一些事态发展,并与许多领导这些进展的高级人物互动。他本人成为了一名现象学家,为这些领域的几个主题贡献了自己的想法,并与许多合作者合作。这篇文章从50多年的不同职业生涯中评估了一些关键的后续发展和个人观点。《天文学年度评论》第60卷预计最终在线出版日期为2022年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Cosmology and High-Energy Astrophysics: A 50-Year Perspective on Personalities, Progress, and Prospects","authors":"M. Rees","doi":"10.1146/annurev-astro-111021-084639","DOIUrl":"https://doi.org/10.1146/annurev-astro-111021-084639","url":null,"abstract":"In the 1960s, novel and increasingly powerful observational techniques opened up the field of high-energy astrophysics. Cosmology started to become an empirical science, and there was a resurgence in the study of general relativity. Martin Rees became a graduate student at the University of Cambridge during that period and subsequently held postdoc positions in the United States. He was therefore fortunate to have a close-up perspective on some of these developments and to interact with many senior figures who were spearheading these advances. He himself became a phenomenologist, contributing his own ideas to several topics in these fields and working with many collaborators. This article offers an assessment of some key subsequent developments and personal perspectives from a diverse career spanning more than 50 years. Expected final online publication date for the Annual Review of Astronomy Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42896326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asteroseismology Across the Hertzsprung–Russell Diagram 赫罗图上的星震学
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-04-08 DOI: 10.1146/annurev-astro-052920-094232
D. Kurtz
Asteroseismology has grown from its beginnings three decades ago to a mature field teeming with discoveries and applications. This phenomenal growth has been enabled by space photometry with precision 10–100 times better than ground-based observations, with nearly continuous light curves for durations of weeks to years, and by large-scale ground-based surveys spanning years designed to detect all time-variable phenomena. The new high-precision data are full of surprises, deepening our understanding of the physics of stars. ▪ This review explores asteroseismic developments from the past decade primarily as a result of light curves from the Kepler and Transiting Exoplanet Survey Satellite space missions for massive upper main sequence OBAF stars, pre-main-sequence stars, peculiar stars, classical pulsators, white dwarfs and subdwarfs, and tidally interacting close binaries. ▪ The space missions have increased the numbers of pulsators in many classes by an order of magnitude. ▪ Asteroseismology measures fundamental stellar parameters and stellar interior physics—mass, radius, age, metallicity, luminosity, distance, magnetic fields, interior rotation, angular momentum transfer, convective overshoot, core-burning stage—supporting disparate fields such as galactic archeology, exoplanet host stars, supernovae progenitors, gamma-ray and gravitational wave precursors, close binary star origins and evolution, and standard candles. ▪ Stars are the luminous tracers of the Universe. Asteroseismology significantly improves models of stellar structure and evolution on which all inference from stars depends. Expected final online publication date for the Annual Review of Astronomy Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
星震学已经从30年前开始发展成为一个成熟的领域,发现和应用都很丰富。这一惊人的增长得益于空间测光技术,其精度比地面观测高10-100倍,具有持续数周至数年的几乎连续的光曲线,以及跨越数年的大规模地面观测,旨在探测所有时变现象。新的高精度数据充满了惊喜,加深了我们对恒星物理的理解。▪本综述主要通过开普勒和凌日系外行星巡天卫星空间任务对大质量上主序OBAF恒星、主序前恒星、特殊恒星、经典脉冲星、白矮星和亚矮星以及潮汐相互作用的近距离双星的光曲线,探讨了过去十年的星震发展。太空任务使许多种类的脉动星的数量增加了一个数量级。▪星震学测量基本的恒星参数和恒星内部物理——质量、半径、年龄、金属丰度、光度、距离、磁场、内部旋转、角动量转移、对流超调、核心燃烧阶段——支持不同的领域,如银河系考古学、系外行星宿主恒星、超新星祖先、伽马射线和引力波前体、近双星起源和演化,以及标准蜡烛。星星是宇宙的发光示踪剂。星震学极大地改进了恒星结构和演化的模型,所有的恒星推断都依赖于这些模型。《天文学年鉴》第60卷的最终在线出版日期预计是2022年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Asteroseismology Across the Hertzsprung–Russell Diagram","authors":"D. Kurtz","doi":"10.1146/annurev-astro-052920-094232","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-094232","url":null,"abstract":"Asteroseismology has grown from its beginnings three decades ago to a mature field teeming with discoveries and applications. This phenomenal growth has been enabled by space photometry with precision 10–100 times better than ground-based observations, with nearly continuous light curves for durations of weeks to years, and by large-scale ground-based surveys spanning years designed to detect all time-variable phenomena. The new high-precision data are full of surprises, deepening our understanding of the physics of stars. ▪ This review explores asteroseismic developments from the past decade primarily as a result of light curves from the Kepler and Transiting Exoplanet Survey Satellite space missions for massive upper main sequence OBAF stars, pre-main-sequence stars, peculiar stars, classical pulsators, white dwarfs and subdwarfs, and tidally interacting close binaries. ▪ The space missions have increased the numbers of pulsators in many classes by an order of magnitude. ▪ Asteroseismology measures fundamental stellar parameters and stellar interior physics—mass, radius, age, metallicity, luminosity, distance, magnetic fields, interior rotation, angular momentum transfer, convective overshoot, core-burning stage—supporting disparate fields such as galactic archeology, exoplanet host stars, supernovae progenitors, gamma-ray and gravitational wave precursors, close binary star origins and evolution, and standard candles. ▪ Stars are the luminous tracers of the Universe. Asteroseismology significantly improves models of stellar structure and evolution on which all inference from stars depends. Expected final online publication date for the Annual Review of Astronomy Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63954453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Photodissociation and X-Ray-Dominated Regions 光解与x射线主导区
IF 33.3 1区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2022-02-11 DOI: 10.1146/annurev-astro-052920-010254
M. Wolfire, L. Vallini, M. Chevance
The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating are dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations. Several important results include the following: ▪ Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. ▪ A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. ▪ The CO ladder and [Ci][Formula: see text][Cii] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. ▪ With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
来自恒星和活动星系核(agn)的辐射产生光解区(pdr)和x射线主导区(xdr),其中化学或加热分别由远紫外线(FUV)辐射或x射线辐射主导。pdr包括各种各样的环境,从弥漫的星际介质到密集的恒星形成区域。xdr存在于拥有agn的星系中心、原恒星盘和x射线双星附近。在这篇综述中,我们描述了pdr和xdr中主要的热、化学和辐射传递过程,并简要描述了模型及其用于分析观测结果的用途。然后,我们展示了最近来自银河系、邻近星系外以及高红移观测的结果。一些重要的结果包括:▪速度分辨PDR线揭示了中性原子气体的运动学,并提供了恒星反馈过程的约束。然而,他们的解释存在争议,因为观测表明恒星风的作用很突出,而它们在理论模型中却不那么重要。▪很大一部分分子质量存在于CO-dark气体中,特别是在低金属丰度和/或高辐射环境中。■CO梯和[Ci][公式:见原文][Ci]比值可以确定是FUV射线还是X射线主导了河外源的ISM加热。▪利用阿塔卡马大型毫米/亚毫米阵列,PDR和XDR示踪剂现在可以在宇宙时间的银河系尺度上进行常规检测。这使得将宇宙的恒星形成历史与气体的物理和化学性质的演变联系起来成为可能。《天文学和天体物理学年度评论》第60卷的最终在线出版日期预计为2022年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Photodissociation and X-Ray-Dominated Regions","authors":"M. Wolfire, L. Vallini, M. Chevance","doi":"10.1146/annurev-astro-052920-010254","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-010254","url":null,"abstract":"The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating are dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations. Several important results include the following: ▪ Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. ▪ A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. ▪ The CO ladder and [Ci][Formula: see text][Cii] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. ▪ With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas. Expected final online publication date for the Annual Review of Astronomy and Astrophysics Volume 60 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":null,"pages":null},"PeriodicalIF":33.3,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63954443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
期刊
Annual Review of Astronomy and Astrophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1